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On cusps in the boundary of the Maskit slice
for once punctured torus groups
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e-mail:miyaji@sci.osaka-cu.ac.jp

Introduction.

The aim of this paper is to explain analytic and geometric properties
of the Maskit slice for once punctured torus groups which are obtained in
[8]. We will investigate the Maskit slice via the horocyclic coordiate of the
Teichmiiller space of once punctured tori. The computer graphic of this
image of the embedding is drawn by Professor David J.Wright ([11]). In
drowing his picture, he conjectured some properties of the figure. This paper
will treat one of his conjectures.

The author would like to thank Professor Masashi Kisaka and Professor
Shunsuke Morosawa for their good organization of this conference at RIMS,
Kyoto University. He thanks Professor C.T.McMullen and Professor David
J.Wright for telling me the spiralling phenomena of the boundary of the
Maskit slice, and also thanks the second for permission to include his figures.

1 Notation and definition

1.1 Simple closed curves on a once punctured torus

Let ¥ be a once punctured torus. Let @ and 3 be oriented simple closed
curves on ¥ such that the algebraic intersection number of o and 3 is +1.
Then the fundamental group 7,(X) of ¥ is generated freely on o and 3.
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Figure 8.2: Boundary of T_1,1
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Figure 1: The Maskit embedding Courtesy of David J. Wright

Let Q = QU {1/0}. In this talk, all rational numbers are used by the
form p/q € Q satisfying that p and g are relatively prime integers with ¢ > 0.
For p/q € Q, we define y(p/q) € m1(Z) as the following recursive operation:
Let us first 4(1/0) = o~ and v(0/1) = 3. Then we put ¥((p+7)/(¢+3)) =
v(r/s)v(p/q) where p/q,r/s € Q with ps—rq = —1. It can be shown that the
homology class of ¥(p/q) is equal to —p[] +¢[8], and hence ¥(p/q) represents
a simple closed curve on . Furthermore, every simple closed curve on L is
represented by v(p/q) for some p/q € Q.

1.2 The model domain for the Maskit slice

Next, we define the model domain M C C of the Maskit slice after Keen
and Series [2] and Wright [11]. For x € C, we put

2 I R Tt )

b nefra]
Let G, = (S,T,). We define the homomorphism ¥, from m(X) to G, by
xu(e) = S and x,(8) = T,. Then we say that 4 € C is contained in M
if Img > 0, y, is an isomorphism, and G, is a terminal regular b-group.
This M is known as the figure drawn by D.J. Wright. Recently, Y.N.Minsky

proved that M is a Jordan domain in the Riemann sphere (cf. Minsky [6]).
By a Theorem of Jgrgensen, for every point 4 in the closure of M in C,



22

(r, is a Kleinian group and x, is an isomorphism. For the Maskit slice or
embedding, consult Kra [4] and Maskit [5].

For p/q € Q, let Wy, = xu(¥(p/q)). Then there exists p(p/q) € M\
{00} such that Wp/q u(p/q) 1s parabolic and that Wi/, ,(p/q) 1s loxodromic unless
r/s = p/q. It is known that for 4 € dM \ {0}, G, is geometrically finite
if and only if u = p(p/q) for some p/q € Q, and G,/ Is a maximally
parabolic group with A.P.T.s W, u(p/q) and S, see Keen, Maskit and Series

3]

2 Main Theorem

2.1 Main theorem

The main theorem of this talk is the following assertion.

Main Theorem. For M \ {oo}. if G, is geometrically finite, then p s
an inward-pointing cusp of M.

For a boundary point z¢ of a domain D in C, the point z¢ is called an
inward-pointing cusp if there exists a disk B such that 0 € 9B and zo+t* € D
for all t € B (Figure 2). |

Figure 2: An inward-pointing cusp.
To show the main theorem, we will prove the following two theorems:

Theorem A. For p/q € Q, if the derivative of tr*W,, . does not vanish at
1= u(p/q), then u(p/q) 1s an inward-pointing cusp of M.

TheoremB. For any p/q € Q, the derivative of tr*W,,,. does not vanish
at = u(p/q)-



We note that Theorem B gives an affirmative answer of one of conjectures
of D.Wright appearing in his unpublished paper [L1]:

Theorem. For any p/q € Q, the point y = 1(p/q) is a simple root of of
the polynomial tr*W,,, , — 4.

2.2 Proof of theorems

Theorem A is proved by applying a Theorem of Minsky, called Pivot theorem
(cf. [6] and [7]).

Next, we explain the proof of Theorem B. To prove this, we deeply use
the notion of the pleating ray in M introduced by L.Keen and C.Series in
their paper [2].

Let P,/, be the p/g-pleating ray in M, that is, for each u € P,/,, the
connected component of the boundary of convex hull of the limit set of G,
facing to the invariant component of G, is bent along the axis of W, .
Notice that Pp/q is a simple curve in M whose end points are co and p(p/q).
Further, we know that W, , is hyperbolic on P,/,. Denote by #(x) > 0 the
translation length of W,, ,. Then this { is a diffeomorphism from P/, to
Rso:={z € R| 2 > 0}. For r/s € Q, A/, the complex translation length
of W,/s,. We assume that A/, is holomorphic on M. It is easy to see that
if r/s # p/q, Arjs can be extended holomorphically on a neighborhood of

w(p/q)-
Then Theorem B is shown by the following lemma.

Main Lemma. Letr/s € Q with r/s # p/q. Then there exists lo,Co > 0
such that l

In fact, Theorem B is proved by Main Lemma as follows: Since tr*W,; , =
—(p—2n)? and p(n/1) = 2n+ 2i, we may assume that p/q # n/1 for n € Z.

Let /s € Q with the properties that r/s # p/q and the derivative of
\./s does not vanish at i = u(p/q). For example, the case where r/s = n/l,
n € Z satisfies this condition.

(Arss 0 £7DY(D)] < Col

S

whenever [ < ;.
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Take positive constants ly and Cp for 7/s as in Main Lemma. Then,

< Gyl (1)

j L hyeo ()

dl

for 0 < [ < lo. Let u € Ppq with {(i) < lo. Integrating (1) from [ = 0 to
[ ={(u), we obtain ‘

Arss(i) = Ass(ulp/))] < 27 Crl(p)?.

Since Wy/q.u(p/q) 1s parabolic, the trace function of W, , forms
60 Woygu = 4+ £(1)* + o(é(p)*)

for 1 € Py, near u(p/q). Hence there exists Cj, [y > 0 such that

[Args(i) = Aess(p(p/ D)) < Coltr* Wojgu — 4] (2)

for p € Pyyq with £(x) < ly. Dividing the inequality (2) by |u — u(p/q)| and
letting w4 — u(p/q), we conclude the assertion.

2.3 Quasiconformal deformation

We define a quasiconformal deformation of the group on a pleating ray, which
is the central tool for proving Main Lemma. In this and the following section
we fix a rational number p/q. Set £ as in previous subsection, and put 7—6(4)
the bending angle along the axis of W/, ,..

Let u € P,/ Let Hy and Hj be the F-peripheral subgroups with respect
to Wy, in G,. Namely, take V € G, satisfying G, = (Wpjq,, V). Then
we define H; = (Wp/g, VEiWy/,, V%) where ¢ = (—1)". We know that the
pair {H;}i=12 is well-defined, that is, the definition of the pair {H:}iz12 1s
independent of the choice of V.

Since H; acts on the peripheral disk A(H;) of H;, we can consider the axis
w; of W, in A(H;) as 2-dimensional hyperbolic geometry. By definition,
each w; is a circular arc connecting between the fixed points of Wy, .. Fur-
ther, w; and wy bound the sector F contained in A(H;) U A(Hy). Such Fis
uniquely determined, see Figure 3. Set Fig) = B~(F) for [B] € (Wp/q,u)\Gu-
(Notice that F is invariant under the action of W, ,.) Then, for [Bi],[Bo] €
(Woyqu)\Gy, it holds Fip,) N Fp,) = 0 if [B] # [Bs)-
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Fixed points of Wy/qu

Figure 3: The set F.

Fix a Mobius transformation A sending the fixed points of W,/ to
{0,00}. By definition, A(F) is a sector with center at origin whose central

angle is equal to 7—0(u). Set 7(z) = A(2)A’(2)/A(2)A’(2) on F and 7(2) = 0
otherwise. We can define the Bertrami differential 7, u € P,/,, compatible

with G, by

e L gy BO
O I

(Bl€(Wp/q,u)\Gau

The differential 7, satisfies that ||7,]|cc = 1/¢(1) and the support Supp(r,)
is UiBle(Wy ,, N\G L 8-

For e € C, |¢| < £(1), let w® be a solution on C of the Bertrami equation
Ow® = er,dwt. Then, there exists a holomorphic mapping ®, from a disk
{|e] < €(p)} to M such that @,(0) = p and G, (. is conjugate to w*G,(w*) ™
by an element in PSLy(C).

2.4 Proof of Main Lemma

To prove Main Lemma, we shall show the following two propositions:

Proposition A. For y € Py, let ®, as in previous subsection. Then,
there exists |, > 0 such that if {(u) < 1, then

d

. 1
‘(‘iz()\p/q 0 (pﬂ») 2 5

e=0
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Proposition B.  As in Proposition A, define the mapping ®,, for u € Ppq.
Take r/s € Q with r/s # p/q. Then there exist l; and Cy > 0 such that

< Col(p)

d
‘ d—e'(/\,./s 0 @M)

le=0
for all € Ppjq with £(p) < Ly,

These propositions are showed by applying the Gardinar’s differential
formula for complex translation length (cf.§8 of Imayoshi and Taniguchi [1]):

Proposition. (F.Gardiner) Let g(w) = e'w with ReA > 0. Let v be a
Bertrami differential on C compatible with g. Denote by f¢ a solution on C
of the equation Of¢ = evdf° for |¢| < 1/||V||co. Define a holomorphic function
Ae) on {|e] < 1/||v||} by tr2feg(f¢)~" = 4 cosh®(A(€)/2) and A(0) = X. Then,

it holds
d\

de

1 déd :
=2 [ o =gt
{1<|¢|<eReA}

= =
e=0 T Q

3 Further results

We also obtain an analytic property of the image. The next theorem concerns
with the actions of the Teichmiiller modular group on the boundary: Since it
is known that boundary points corresponding to geometrically finite groups
lie densely on the boundary, the main theorem tells us that this boundary 1s
very complicate in the geometrical point of view. For instance, we can show
from the main theorem that the image is not quasidisk. In addition to the
complexities of the boundary, C.T.McMullen and D.J.Wright observed that
the spiraling phenomena! occurs in the boundary of the Maskit slice?.

On the other hand, Y.Minsky proved that the image is Jordan domain.
Therefore, the actions of the Teichmiiller modular group can be extended
continuously not only on the boundary but also on the Riemann sphere.
Hence, this result tells us that the complexity is studied via the actions of

1They observed more strongly result: There exist boundary points that require arbi-

trary large winding number to get to.
2The author knew these phenomena from Professor C.T.McMullen in oral communica-

tion, and from Professor D.J.Wright in e-mail communication, independently.



the Teichmiiller modular group on the boundary. However we obtain no more
information about regularities of the actions from topological properties on
the boundary. The next observation is related to this subject.

Theorem C.3  Let p/q,r/s € Q. Let h € Aut(M) with h(u(p/q)) =
u(r/s). Then h is conformal at u(p/q) in the following sense: there exists
a € C\ {0} such that

h(u) = p(r/s) + a(p — u(p/q)) + o(lu — u(p/9))),
as p — u(p/q) in a cone with vertex at u(p/q) (cf. Figure 4).

Cone

Figure 4: A cone with vertex at u(p/q)

Remark that elements in the Teichmuller modular group satisfy the con-
dition in Theorem C. We also note that such cone domain alway exists since
z1 is an inward-pointing cusp. This theorem gives an expectation that the
boundary may not be so complicated from the function theoretic point of
view.

In [10] J.P.Otal proved the following remarkable fact: Let p be a once
punctured torus group, that is, p is a faithful discrete representation from
m(X) to PSL(2,C). If p(y(p/q)) is hyperbolic and its translation length is
~ sufficiently small, then the boundary of convex core of H*/p(m (X)) is bent
along the geodesic corresponding to p(v(p/q)).

In our case, the following result is observed.

TheoremD. Let p/q € Q. Then there exists a neighborfood Uy of u(p/q)
in C such that for u € Uy, if the element x,.(y(p/q)) is hyperbolic, then G, is
discrete (further u € M) and the boundary of convex core of H>/G, is bent
along the geodesic corresponding to x,.(v(p/q)).

3The author hopes that this theorem becomes a step-stone for solving the problem on
the self-similarity of the boundary of M (cf. McMullen [9],p.180).
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