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1 Introduction

In his paper [12], Sasaki studied the holomorphic slice S of the space of
punctured torus groups determined by the trace equation zy = 2z. He
found a simply connected domain E contained in S by using his system of
inequalities which characterizes some quasifuchsian punctured torus groups
(c.f. [11]). Moreover decomposing the boundary of E into 3 pieces OE =
e1 Ues Ues he showed that e; Ues is contained in S and e3 (consisting of two
points) is in the boundary dS. In this paper we consider the slice S itself
more precisely.

Thanks to the recent work by Akiyoshi-Sakuma-Wada-Yamashita (c.f. [1])
to reorganize the work of Jorgensen (c.f. [3]) on the combinatorial pattern of
the isometric circles of punctured torus groups, Yamashita made a program
which can draw the picture of several slices of the space of punctured torus
groups. The picture in this paper is also due to Yamashita. In this picture
S is the complement of the black-coloured regions in {& € C : Re o > 1},
and E is the white-coloured polygonal subdomain of S. (We remark that
the disk-like domain in {@ € C: 0 < Re a < 1} is the image of S under the
involution o — é) From this picture it is easy to imagine that S itself is a
simply connected domain.

In this paper we show that & has a structure of the Teichmuller space
of once-punctured tori. More precisely it is so called the (rectangular) Earle
slice of puncture torus groups. (For the rhombic Earle slice, see [6].) As a
corollary of this result, we can show that S is connected and simply con-
nected. Moreover S is a Jordan domain, which is an application of the work
of Minsky on the classification of punctured torus groups (c.f. [10] and [7]).
The author wishes to thank Yasushi Yamashita for his kind assistance with
computer graphics.



2 Punctured torus groups

Let S be an oriented once-punctured torus and m1(S) be its fundamental
group. An ordered pair «, 8 of generators of 71 (S) is called canonical if the
oriented intersection number i(c, §) in S with respect to the given orienta-
tion of S is equal to +1. The commutator [, 8] = aBa~137! represents a
loop around the puncture.

Define R(m(S)) to be the set of PSLy(C)-conjugacy classes of represen-
tations from 71 (S) to PSLy(C) which take the commutator of generators to
a parabolic element. Let D(71(S)) denote the subset of R(m;(S)) consisting
of conjugacy classes of discrete and faithful representations. Any represen-
tative of an element of D(m(S)) is called a marked punctured torus group.
Let QF denote the subset of D(w;(S)) consisting of conjugacy classes of
representations p such that for the action of I' = p(71(S)) on the Riemann
sphere C the region of discontinuity 2 has exactly two simply connected
invariant components Q*. The quotients Q* /T are both homeomorphic to
S and inherit an orientation induced from the orientation of C. We choose
the labelling so that QT is the component such that the homotopy basis
of Q7 /T induced by the ordered pair of marked generators p(a), p(3) of T
is canonical. Any representative of an element of QF is called a marked
quasifuchsian punctured torus group. Considering the algebraic topology
D(m1(S5)) is closed in R(m1(S)) and QF is open in D(m1(S)) (see [9]). A
quasifuchsian group I is called Fuchsian if the components Q*F are round
discs.

Recall that the set of measured geodesic laminations on a hyperbolic
surface is independent of the hyperbolic structure. Denote by PML(S)
the set of projective measured laminations on S. Let C(S) denote the set
of free homotopy classes of unoriented simple non-peripheral curves on S.
There are in one-to-one correspondence with Q = Q U {00}, after choosing
an canonical basis (o, 8) for m(S) as follows; Any element of H;(S) can
be written as (p,q) = p[a] + ¢[f] in the basis ([@],[F]) for H1(S), and we
associate to this the slope —p/q € Q which describes an element of C(S).
Cosidering projective classes of weighted counting measures, we can identify
C(S) with the set of projective rational raminations. Recall that PML(S)
may be identified with R, in such a way that rational laminations correspond

to Q.

We can also embed D(71(S)) into C? by using trace functions on D(m;(S)).

Setting ¢ = Tr A, y = Tr B and z = Tr AB, where A, B are the generator
pair of the marked group I' = (A, B) in D(m(S)), gives an embedding of
D(m(8)) into {(z,y,2) € C°: 2* +y* + 2° = ayz}.
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3 The slice S defined by the trace equation zy = 2z

Let us consider the following slice § and the set E

§ = {(£.9,2) € C* oy =2} OF
E = {(z,y,2) € C°:zy =2y,2° +y* + 2° = zyz,|z| > 2,|y| > 2}.

Moreover decompose the boundary 0F of E into OF = e; U es U e3 where

e1 = {(z,9,2) € CPray=2y,2" + ¢’ + 2% = 2yz,|z| = 2,|y| > 2}
e = {(x,y,z)EC3:my=2y,x2+y2+z2=$y27|33|>2a|y|:2}
e = {(2,2) € CP oy = 2,0” 42+ 2 = ayz, o] = 2,y| =2},

In [12] Sasaki proved the next result.

Theorem 3.1 1. (theorem 4 in [12]) E C S.
2. (theorem 5 in [12]) e;Uey C S.

3. (theorem 6 in [12]) e3 € 0S.

By normalizing the generators A,B of I' = (A, B) in §, § can be em-
bedded into the complex plane C as follows (c.f. [12]); Conjugating by a
suitable element of PSLs(C), we can normalize A, B such that

0 o241 4o?
A= aQ B = a?=1 af-1
VLo L )T T 2241 o+l

(07

aZ—1 a?—1

where a = re® satisfying r > 1 and —5 <8< 3. We can take o € C as a
global holomorphic coordinate of S. The picture in this paper represents S
in this coordinate «.

Generators A, B of I' = (A, B) in S have a following property.

Proposition 3.2 (see theorem 7 in [12])

ForT' = (A,B) € QF, T is an element of the slice S if and only if there
is an elliptic transformation of order two I € PSLy(C) such that TAI =
A,IBI = B, |

This proposition is enough for us to show that & has a nice topological
property from the following theorem due to Earle (c.f. [2]). Recall that an
isomorphism of Kleinian groups is called type preserving if it maps loxo-
dromic elements in PSLy(C) to loxodromics and parabolics to parabolics.



Theorem 3.3 Let 0 be an involution of m1(7T1) induced by an orientation re-
versing diffeomorphism of a Riemann surface Ty of type (1,1). Let (o, B) be
a homotopy basis of m1(T1) canonical with respect to the orientation induced
by the conformal structure on Ti. Then, up to conjugation in PSLo(C),
there exists a unique marked quasifuchsian group p : m(T1) — ' = (A, B),
such that: '

1. There is a conformal map Ty — QF /T’ inducing the representation p.

2. There is a Moébius transformation © € PSLy(C) of order two which
induces a conformal homeomorphism Qt — Q= such that O(yz) =
0(7)O(z) for ally €T and 2 € Q.

Theorem 3.3 shows that the Earle slice is a holomophic embedding of
the Teichmiiller space Teich(77) of 71 into QF. The embedding depends
only on the choice of the involution 8 of 71 (7;). We call the image, an Farle
slice of QF, and denote it &. _ :

Let 6 : m(71) — m1(T1) be the involution defined by 6(c) = a and
0(8) = B~1. Clearly, 6 satisfies the condition of theorem 3.3.

Corollary 3.4 S = &g. In particular S is connected and simply connected.

4 Properties of S as the Earle slice

For A,B € PSLy(C), put w = Tr AB™!. Then the trace equation zy = 2z‘4

is equivalent to z = w. Therefore

Proposition 4.1
S={(z,y,2) €C3: 2z =w}NQF.

We remark that the rhombic Earle slice can be written by {(z,y,2) € C? :
z =y} N QF (c.f. remark 3.2 in [6]).

We call a torus a rectangle if it admits two anticonformal involutions.
In [4] Keen characterized rectangular quasifuchsian puncture torus groups
(c.f. theorem 4.2 and 4.3 in [4]). From the normalization of the generators
A, BofI'=(A,B) in S,

Proposition 4.2 The Fuchsian locus in S is equal to {& € R : a > 1}.
This Fuchsian locus in S coincides with the set of rectangular Fuchsian
groups in QF.
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From this proposition it seems reasonable to call & the rectangular Earle
slice.

We can find anticonformal and conformal symmetries of S (see proposi-
tion 3.4 and 3.6 in [6]).

Proposition 4.3 1. § s invariant under complex conjugation.

2. § is invariant under the map o — g—*_”%

We can see these symmetries from the picture of S in this paper.

Next we consider the pleating locus of § (c.f. [5]). Let @« € S and
let 'y = (Aq, Ba) be the corresponding marked quasifuchsian group with
regular set and limit set 2,, A, respectively. Let 0C, be the boundary
in H3 of the hyperbolic convex hull of A,; it is clearly invariant under
the action of I',. The nearest point retraction Q, — 0C, by mapping
z € 4, to the unique point of contact with 0C, of the largest horoball in
H?3 centered at z with interior disjoint from 8C,, can easily be modified to
a I'p-equivariant homeomorphism. We denote two connected components
of dC, corresponding to QI by 8Cf respectively. Thus each component
dCE /T, is topologically a punctured torus. 8CE/T, are pleated surfaces
in H3/T',. More precisely, there are complete hyperbolic surfaces S, each
homeomorphic to S, and maps f* : S& — H?/T,, such that every point
in ST is in the interior of some geodesic arc which is mapped by f* toa
geodesic arc in H3 /Ty, and such that f* induce isomorphisms 71 (S) — T,.
Further, f* are isometries onto their images with the path metric induced
from H3. The bending or pleating locus of 8C§ /T consists of those points
of S contained in the interior of one and only one geodesic arc which
is mapped by f* to a geodesic arc in H3/T,. For T, non-Fuchsian, the
pleating loci are geodesic laminations, meaning they are unions of pairwise
disjoint simple geodesics on SE. We denote these laminations by | pl® ()],
and usually identify such a lamination with its image under f* in H3/T',.
A geodesic lamination is called rational if it consists entirely of closed leaves.
Since the maximum number of pairwise disjoint simple closed curves on a
punctured torus is one, such a lamination consists of a single simple closed
geodesic and is therefore of the form v(p/q)(c) for some p/q € Q.

For p/q,r/s € Q, define

P(p/a,r/s) ={a €S pl™(a)] = v(p/q)(a), Ipl™ ()| = v(r/s)(e)}

Then by the similar arguments of [6] (especially, see theorem 5.1 and
5.11), we can show the next result.



Theorem 4.4 1. P(p/q,7/s) # 0 if and only if r/s = —p/q and p/q #

0,00. P(p/q,—p/q) is an embedded arc from the Fuchsian locus in S

to the (p/q, —p/q)-cusp in 8S.

2. The set of rational pleating rays P(p/q,—p/q) (p/q € Q — {0}) are
dense in S.

Moreover by using the argument in [7],
Theorem 4.5 S is a Jordan domain.

As a corollary of this theorem, we can determine the end invariants of the
boundary groups in dS (c.f. [10]) which are (z,—z) where z € R — {0}.
Especially no boundary groups in 0S are b-groups, which was also shown
by Sasaki (see theorem 8 in [12]).
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