A note on a paper of Sasaki

Yohei Komori Department of Mathematics Osaka City University Osaka 558, Japan

1 Introduction

In his paper [12], Sasaki studied the holomorphic slice S of the space of punctured torus groups determined by the trace equation xy = 2z. He found a simply connected domain E contained in S by using his system of inequalities which characterizes some quasifuchsian punctured torus groups (c.f. [11]). Moreover decomposing the boundary of E into 3 pieces $\partial E =$ $e_1 \cup e_2 \cup e_3$ he showed that $e_1 \cup e_2$ is contained in S and e_3 (consisting of two points) is in the boundary ∂S . In this paper we consider the slice S itself more precisely.

Thanks to the recent work by Akiyoshi-Sakuma-Wada-Yamashita (c.f. [1]) to reorganize the work of Jørgensen (c.f. [3]) on the combinatorial pattern of the isometric circles of punctured torus groups, Yamashita made a program which can draw the picture of several slices of the space of punctured torus groups. The picture in this paper is also due to Yamashita. In this picture S is the complement of the black-coloured regions in $\{\alpha \in \mathbf{C} : Re \ \alpha > 1\}$, and E is the white-coloured polygonal subdomain of S. (We remark that the disk-like domain in $\{\alpha \in \mathbf{C} : 0 < Re \ \alpha < 1\}$ is the image of S under the involution $\alpha \mapsto \frac{1}{\alpha}$.) From this picture it is easy to imagine that S itself is a simply connected domain.

In this paper we show that S has a structure of the Teichmüller space of once-punctured tori. More precisely it is so called the (rectangular) Earle slice of puncture torus groups. (For the rhombic Earle slice, see [6].) As a corollary of this result, we can show that S is connected and simply connected. Moreover S is a Jordan domain, which is an application of the work of Minsky on the classification of punctured torus groups (c.f. [10] and [7]). The author wishes to thank Yasushi Yamashita for his kind assistance with computer graphics.

2 Punctured torus groups

Let S be an oriented once-punctured torus and $\pi_1(S)$ be its fundamental group. An ordered pair α, β of generators of $\pi_1(S)$ is called *canonical* if the oriented intersection number $i(\alpha, \beta)$ in S with respect to the given orientation of S is equal to +1. The commutator $[\alpha, \beta] = \alpha\beta\alpha^{-1}\beta^{-1}$ represents a loop around the puncture.

Define $\mathcal{R}(\pi_1(S))$ to be the set of $PSL_2(\mathbb{C})$ -conjugacy classes of representations from $\pi_1(S)$ to $PSL_2(\mathbb{C})$ which take the commutator of generators to a parabolic element. Let $\mathcal{D}(\pi_1(S))$ denote the subset of $\mathcal{R}(\pi_1(S))$ consisting of conjugacy classes of discrete and faithful representations. Any representative of an element of $\mathcal{D}(\pi_1(S))$ is called a marked punctured torus group. Let \mathcal{QF} denote the subset of $\mathcal{D}(\pi_1(S))$ consisting of conjugacy classes of representations ρ such that for the action of $\Gamma = \rho(\pi_1(S))$ on the Riemann sphere C the region of discontinuity Ω has exactly two simply connected invariant components Ω^{\pm} . The quotients Ω^{\pm}/Γ are both homeomorphic to S and inherit an orientation induced from the orientation of $\hat{\mathbf{C}}$. We choose the labelling so that Ω^+ is the component such that the homotopy basis of Ω^+/Γ induced by the ordered pair of marked generators $\rho(\alpha), \rho(\beta)$ of Γ is canonical. Any representative of an element of QF is called a *marked* quasifuchsian punctured torus group. Considering the algebraic topology $\mathcal{D}(\pi_1(S))$ is closed in $\mathcal{R}(\pi_1(S))$ and \mathcal{QF} is open in $\mathcal{D}(\pi_1(S))$ (see [9]). A quasifuchsian group Γ is called *Fuchsian* if the components Ω^{\pm} are round discs.

Recall that the set of measured geodesic laminations on a hyperbolic surface is independent of the hyperbolic structure. Denote by PML(S)the set of projective measured laminations on S. Let $\mathcal{C}(S)$ denote the set of free homotopy classes of unoriented simple non-peripheral curves on S. There are in one-to-one correspondence with $\hat{\mathbf{Q}} \equiv \mathbf{Q} \cup \{\infty\}$, after choosing an canonical basis (α, β) for $\pi_1(S)$ as follows; Any element of $H_1(S)$ can be written as $(p,q) = p[\alpha] + q[\beta]$ in the basis $([\alpha], [\beta])$ for $H_1(S)$, and we associate to this the slope $-p/q \in \hat{\mathbf{Q}}$ which describes an element of $\mathcal{C}(S)$. Cosidering projective classes of weighted counting measures, we can identify $\mathcal{C}(S)$ with the set of projective rational raminations. Recall that PML(S)may be identified with $\hat{\mathbf{R}}$, in such a way that rational laminations correspond to $\hat{\mathbf{Q}}$.

We can also embed $\mathcal{D}(\pi_1(S))$ into \mathbb{C}^3 by using trace functions on $\mathcal{D}(\pi_1(S))$. Setting $x = \operatorname{Tr} A$, $y = \operatorname{Tr} B$ and $z = \operatorname{Tr} AB$, where A, B are the generator pair of the marked group $\Gamma = \langle A, B \rangle$ in $\mathcal{D}(\pi_1(S))$, gives an embedding of $\mathcal{D}(\pi_1(S))$ into $\{(x, y, z) \in \mathbb{C}^3 : x^2 + y^2 + z^2 = xyz\}.$

3 The slice S defined by the trace equation xy = 2z

Let us consider the following slice S and the set E

$$\begin{split} \mathcal{S} &:= \{(x,y,z) \in \mathbf{C}^3 : xy = 2y\} \cap \mathcal{QF} \\ E &:= \{(x,y,z) \in \mathbf{C}^3 : xy = 2y, x^2 + y^2 + z^2 = xyz, |x| > 2, |y| > 2\}. \end{split}$$

Moreover decompose the boundary ∂E of E into $\partial E = e_1 \cup e_2 \cup e_3$ where

- $e_1 := \{(x, y, z) \in \mathbf{C}^3 : xy = 2y, x^2 + y^2 + z^2 = xyz, |x| = 2, |y| > 2\}$ $e_1 := \{(x, y, z) \in \mathbf{C}^3 : xy = 2y, x^2 + y^2 + z^2 = xyz, |x| > 2, |y| = 2\}$
- $e_1 := \{(x, y, z) \in \mathbf{C}^3 : xy = 2y, x^2 + y^2 + z^2 = xyz, |x| = 2, |y| = 2\}.$

In [12] Sasaki proved the next result.

Theorem 3.1 1. (theorem 4 in [12]) $E \subset S$.

- 2. (theorem 5 in [12]) $e_1 \cup e_2 \subset S$.
- 3. (theorem 6 in [12]) $e_3 \in \partial S$.

By normalizing the generators A, B of $\Gamma = \langle A, B \rangle$ in S, S can be embedded into the complex plane **C** as follows (c.f. [12]); Conjugating by a suitable element of $PSL_2(\mathbf{C})$, we can normalize A, B such that

$$A = \begin{pmatrix} \alpha & 0\\ 0 & \frac{1}{\alpha} \end{pmatrix}, B = \begin{pmatrix} \frac{\alpha^2 + 1}{\alpha^2 - 1} & \frac{4\alpha^2}{\alpha^4 - 1}\\ \frac{\alpha^2 + 1}{\alpha^2 - 1} & \frac{\alpha^2 + 1}{\alpha^2 - 1} \end{pmatrix}$$

where $\alpha = re^{i\theta}$ satisfying r > 1 and $-\frac{\pi}{2} < \theta \leq \frac{\pi}{2}$. We can take $\alpha \in \mathbf{C}$ as a global holomorphic coordinate of S. The picture in this paper represents S in this coordinate α .

Generators A, B of $\Gamma = \langle A, B \rangle$ in S have a following property.

Proposition 3.2 (see theorem 7 in [12])

For $\Gamma = \langle A, B \rangle \in QF$, Γ is an element of the slice S if and only if there is an elliptic transformation of order two $I \in PSL_2(\mathbb{C})$ such that IAI = A, $IBI = B^{-1}$.

This proposition is enough for us to show that S has a nice topological property from the following theorem due to Earle (c.f. [2]). Recall that an isomorphism of Kleinian groups is called *type preserving* if it maps loxodromic elements in $PSL_2(\mathbf{C})$ to loxodromics and parabolics to parabolics. **Theorem 3.3** Let θ be an involution of $\pi_1(\mathcal{T}_1)$ induced by an orientation reversing diffeomorphism of a Riemann surface \mathcal{T}_1 of type (1,1). Let (α,β) be a homotopy basis of $\pi_1(\mathcal{T}_1)$ canonical with respect to the orientation induced by the conformal structure on \mathcal{T}_1 . Then, up to conjugation in $PSL_2(\mathbb{C})$, there exists a unique marked quasifuchsian group $\rho : \pi_1(\mathcal{T}_1) \to \Gamma = \langle A, B \rangle$, such that:

- 1. There is a conformal map $\mathcal{T}_1 \to \Omega^+ / \Gamma$ inducing the representation ρ .
- 2. There is a Möbius transformation $\Theta \in PSL_2(\mathbb{C})$ of order two which induces a conformal homeomorphism $\Omega^+ \to \Omega^-$ such that $\Theta(\gamma z) = \theta(\gamma)\Theta(z)$ for all $\gamma \in \Gamma$ and $z \in \Omega^+$.

Theorem 3.3 shows that the Earle slice is a holomophic embedding of the Teichmüller space $\text{Teich}(\mathcal{T}_1)$ of \mathcal{T}_1 into \mathcal{QF} . The embedding depends only on the choice of the involution θ of $\pi_1(\mathcal{T}_1)$. We call the image, an *Earle* slice of \mathcal{QF} , and denote it \mathcal{E}_{θ} .

Let $\theta : \pi_1(\mathcal{T}_1) \to \pi_1(\mathcal{T}_1)$ be the involution defined by $\theta(\alpha) = \alpha$ and $\theta(\beta) = \beta^{-1}$. Clearly, θ satisfies the condition of theorem 3.3.

Corollary 3.4 $S = \mathcal{E}_{\theta}$. In particular S is connected and simply connected.

4 Properties of S as the Earle slice

For $A, B \in PSL_2(\mathbb{C})$, put $w = \text{Tr} AB^{-1}$. Then the trace equation xy = 2z is equivalent to z = w. Therefore

Proposition 4.1

$$\mathcal{S} = \{(x, y, z) \in \mathbf{C}^3 : z = w\} \cap \mathcal{QF}.$$

We remark that the rhombic Earle slice can be written by $\{(x, y, z) \in \mathbb{C}^3 : x = y\} \cap \mathcal{QF}$ (c.f. remark 3.2 in [6]).

We call a torus a *rectangle* if it admits two anticonformal involutions. In [4] Keen characterized rectangular quasifuchsian puncture torus groups (c.f. theorem 4.2 and 4.3 in [4]). From the normalization of the generators A, B of $\Gamma = \langle A, B \rangle$ in S,

Proposition 4.2 The Fuchsian locus in S is equal to $\{\alpha \in \mathbf{R} : \alpha > 1\}$. This Fuchsian locus in S coincides with the set of rectangular Fuchsian groups in $Q\mathcal{F}$. From this proposition it seems reasonable to call S the *rectangular* Earle slice.

We can find anticonformal and conformal symmetries of S (see proposition 3.4 and 3.6 in [6]).

Proposition 4.3 1. S is invariant under complex conjugation.

2. S is invariant under the map $\alpha \mapsto \frac{\alpha+1}{\alpha-1}$.

We can see these symmetries from the picture of S in this paper.

Next we consider the pleating locus of S (c.f. [5]). Let $\alpha \in S$ and let $\Gamma_{\alpha} = \langle A_{\alpha}, B_{\alpha} \rangle$ be the corresponding marked quasifuchsian group with regular set and limit set $\Omega_{\alpha}, \Lambda_{\alpha}$ respectively. Let $\partial \mathcal{C}_{\alpha}$ be the boundary in \mathbf{H}^3 of the hyperbolic convex hull of Λ_{α} ; it is clearly invariant under the action of Γ_{α} . The nearest point retraction $\Omega_{\alpha} \to \partial \mathcal{C}_{\alpha}$ by mapping $x \in \Omega_{\alpha}$ to the unique point of contact with $\partial \mathcal{C}_{\alpha}$ of the largest horoball in \mathbf{H}^3 centered at x with interior disjoint from $\partial \mathcal{C}_{\alpha}$, can easily be modified to a Γ_{α} -equivariant homeomorphism. We denote two connected components of $\partial \mathcal{C}_{\alpha}$ corresponding to Ω_{α}^{\pm} by $\partial \mathcal{C}_{\alpha}^{\pm}$ respectively. Thus each component $\partial \mathcal{C}^{\pm}_{\alpha}/\Gamma_{\alpha}$ is topologically a punctured torus. $\partial \mathcal{C}^{\pm}_{\alpha}/\Gamma_{\alpha}$ are pleated surfaces in $\mathbf{H}^3/\Gamma_{\alpha}$. More precisely, there are complete hyperbolic surfaces S_{α}^{\pm} , each homeomorphic to S, and maps $f^{\pm}: S^{\pm}_{\alpha} \to \mathbf{H}^3/\Gamma_{\alpha}$, such that every point in S^{\pm}_{α} is in the interior of some geodesic arc which is mapped by f^{\pm} to a geodesic arc in $\mathbf{H}^3/\Gamma_{\alpha}$, and such that f^{\pm} induce isomorphisms $\pi_1(S) \to \Gamma_{\alpha}$. Further, f^{\pm} are isometries onto their images with the path metric induced from \mathbf{H}^3 . The bending or pleating locus of $\partial \mathcal{C}^{\pm}_{\alpha}/\Gamma_{\alpha}$ consists of those points of S^{\pm}_{α} contained in the interior of one and only one geodesic arc which is mapped by f^{\pm} to a geodesic arc in $\mathbf{H}^3/\Gamma_{\alpha}$. For Γ_{α} non-Fuchsian, the pleating loci are geodesic laminations, meaning they are unions of pairwise disjoint simple geodesics on S^{\pm}_{α} . We denote these laminations by $|pl^{\pm}(\alpha)|$, and usually identify such a lamination with its image under f^{\pm} in $\mathbf{H}^3/\Gamma_{\alpha}$. A geodesic lamination is called *rational* if it consists entirely of closed leaves. Since the maximum number of pairwise disjoint simple closed curves on a punctured torus is one, such a lamination consists of a single simple closed geodesic and is therefore of the form $\gamma(p/q)(\alpha)$ for some $p/q \in \mathbf{Q}$.

For $p/q, r/s \in \hat{\mathbf{Q}}$, define

$$\mathcal{P}(p/q, r/s) = \{ \alpha \in \mathcal{S} : |pl^+(\alpha)| = \gamma(p/q)(\alpha), |pl^-(\alpha)| = \gamma(r/s)(\alpha) \}$$

Then by the similar arguments of [6] (especially, see theorem 5.1 and 5.11), we can show the next result.

- **Theorem 4.4** 1. $\mathcal{P}(p/q, r/s) \neq \emptyset$ if and only if r/s = -p/q and $p/q \neq 0, \infty$. $\mathcal{P}(p/q, -p/q)$ is an embedded arc from the Fuchsian locus in \mathcal{S} to the (p/q, -p/q)-cusp in $\partial \mathcal{S}$.
 - 2. The set of rational pleating rays $\mathcal{P}(p/q, -p/q)$ $(p/q \in \mathbf{Q} \{0\})$ are dense in S.

Moreover by using the argument in [7],

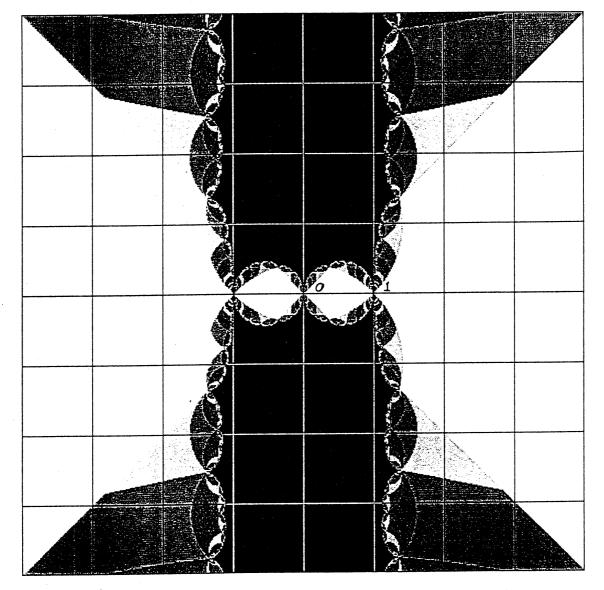
Theorem 4.5 S is a Jordan domain.

As a corollary of this theorem, we can determine the end invariants of the boundary groups in ∂S (c.f. [10]) which are (x, -x) where $x \in \mathbf{R} - \{0\}$. Especially no boundary groups in ∂S are b-groups, which was also shown by Sasaki (see theorem 8 in [12]).

References

- [1] H. Akiyoshi, M. Sakuma, M. Wada and Y. Yamashita, preprint (1999).
- [2] C. J. Earle, Some intrinsic coordinates on Teichmüller space, Proc. Amer. Math. Soc. 83 (1981), 527-531.
- [3] T. Jørgensen, Once punctured tori, unpublished preprint.
- [4] L. Keen, Teichmüller Space of Punctured Tori: I, Complex Variables, Vol.2 (1983), 199-211.
- [5] L. Keen and C. Series, Pleating invariants for punctured torus groups, Revised version of Warwick University preprint, 10/1998.
- [6] Y. Komori and C. Series, Pleating coordinates for the Earle embedding, Warwick University preprint, 46/1998.
- [7] Y. Komori, On the boundary of the Earle slice for punctured torus groups, preprint (1999).
- [8] I. Kra, On algebraic curves (of low genus) defined by Kleinian groups, Annales Polonici Math. XLVI (1985), 147-156.
- [9] K.Matsuzaki and M.Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monograph, 1998.
- [10] Y. Minsky, The classification of punctured torus groups, Ann. of Math. 149 (1999), 559-626.

- [11] T. Sasaki, A fundamental domain for some quasi-Fuchsian groups, Osaka J. Math. 27 (1990), 67-80.
- [12] T. Sasaki, The slice determined by moduli equation xy = 2z in the deformation space of once punctured tori, Osaka J. Math. 33 (1996), 475-484.



The holomorphic slice S. Courtesy of Yasushi Yamashita