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The Fatou conjecture (or the HD conjecture) asserts that any rational function
can be approximated by hyperbolic rational functions of the same degree and any
polynomial can be approximated by hyperbolic polynomials of the same degree.
The real Fatou conjecture asserts that a real polynomial can be approximated by
hyperbolic real polynomials of the same degree.

A possible solution of these conjecture comes from solving the rigidity problem:
any two combinatorial rational functions are quasiconformally conjugate (this state-
ment is usually named the combinatorial rigidity conjecture); and a rational map
other than a Latt\‘es example, carries no invariant line field on the Julia set (this is
named the quasiconformal rigidity conjecture, or the NILF conjecture following Mc-
Mullen and Sullivan). In [18], $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$ and Sullivan reduced the Fatou conjecture
to the qc rigidity problem. They stated the no invariant line field (NILF) conjecture
and showed that the NILF conjectnre implies the Fatou conjecture. We don’t know
whether the NILF conjecture implies the real Fatou conjecture. However, beside a
solution to NILF conjecture, a solution to the combinatorial rigidity problem among
real polynomials would imply the real Fatou conjecture.

These conjectures are far from being solved. All essential progress in this direc-
tion was only done for polynomials with only one critical point in its Julia set, to
the atlthor’s knowledge. It is known that for a quadratic polynomial which is not
infinitely renormalizable- or which is real, there cannot be invariant line field sup-
ported on the Julia set due to Yoccoz and $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}e\mathrm{n}$, see $[5],[16]$ . It is also proved
recently by Levin and van Strien that the no invariant line field conjecture holds for
$\mathrm{a}$ , real polynomial which has only a critical point, see [9], [10]. In [6] and [12], the
real Fatou $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\iota \mathrm{l}\mathrm{r}\mathrm{e}$ was solved in the quadratic case; more recently, Shishikura
[23] has given a new proof of that theorem. Little is known about a polynomial
which has more than a critical point. Branner and Htlbbard has proved the rigidity
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\iota \mathrm{l}\mathrm{r}\mathrm{e}$ for polynomials of degree 3 which has at most one non-escaping critical
point and cannot be renormalized (infinitely many times) to a quadratic polynomial,
see $[2],[3]$ . In this result, $\mathrm{a}\mathrm{l}\mathrm{t}\mathrm{h}_{\mathrm{o}\mathrm{t}1}\mathrm{g}\mathrm{h}$ the polynomial is allowed to have several critical
points, there is only one in the Julia set.

In [21], the NILF conjecture is proved for all real polynomials whose real critical
points are all turning points and whose critical values are all on the real axis. In
the space of real polynomials of a fixed degree with all critical points real, such

数理解析研究所講究録
1153巻 2000年 41-58 41



polynomials form a dense set.

Main Theorem. Let $f$ be a real polynomial satisfying the following two condi-
tions:

(1) $fo?$’ any critical point $c$ of $f_{f}f(c)\in R,\cdot$ and
(2) any (real) persistently recurrent critical point $c$ of $f$ is a turning point (has

even local degree).
Then $f$ carries no invariant line field on the Julia set.

Towards the density of hyperbolicity, our result says the following:

Corollary. Let $f$ be a real polynomial of degree $d\geq 2$ whose all critical values
are on the real a.xis. Suppose that $f$ is structurally stable in the space of all (complex)
polynomials of degree $d$ . Then $f$ is hyperbolic.

Proof of Corol,$l,ary$: Since $f$ is structurally stable, the Teichmuller space of $f$

has dimension $d-1$ . In particular, all the critical points are non-degenerate which
implies that condition (2) in the main theorem holds. Thus by the main theorem,
$f$ carries no invariant line field on the Julia set. By [18], $f$ has to be hyperbolic.
Q.E.D.

An invariant line field can be seen as a measurable $f$-invariant Beltrami differ-
ential $\mu=\mu(z)d\overline{z}/dz$ on the Riemann sphere $\hat{C}$ such that $\mu(z)=0$ or $|\mu(z)|=1$ for
any $z$ and the support supp$(\mu)=\{z:|\mu(z)|=1\}$ has positive Lebesgue measure.

By t,he definition, if $J(f)$ has zero (two-dimensional Lebesgue) measure, then
$J(f)$ carries no $f$-invariant line field. It is well-known that the Julia set of a hyper-
bolic rational map has measure zero. Moreover, due to Urbanski ([25]), if $R$ is a
rational function without non-periodic recurrent critical point, then $J(R)$ has zero
measure. Another remarkable result on the measure of Julia sets is that for any
quadratic polynomial $f$ without indifferent periodic cycle, at most finitely renor-
malizable, $J(f)$ has measure zero, due to Lyubich ([11]) and Shishikura ([22]).

We shall first investigate when the Julia set has zero measure, and prove the
following:

Theorenl A. Let $f$ be a real polynomial such that all its critical, values are
on the real a.xis. Then for almost every point $z\in J(f),$ $\omega(z)=\omega(c)$ for some
persistently recurrent critical point $c$ .

In $particular_{f}$ if $f$ has no persistently recurrent critical point, then the Julia set
has measure zero.

Here, we sa,$\mathrm{y}$ a recurrent critical point $c$ is reluctantly recurrent if $\omega(c)$ is not
minimal (that is, there is an $x\in\omega(c)$ such that $\omega(x)\neq\omega(c)$ ) or there is a positive
constant $\delta$ such that for any $n_{0}\in N$ , there is a positive integer $n>n_{0}$ and an
$x\in\omega(c)$ , a neighborhood $U$ of $x$ such that $f^{n}$ : $Uarrow B(f^{n}(x), \delta)$ is a diffeomorphism.
A recurrent critical point $c$ is persistently recurrent if it is not reluctantly recurrent.
These concepts appear first on the work of Yoccoz on quadratic polynomials.

Since our object is a real polynomial, the non-recurrent critical points can be
done in a very easy way. To deal with the relucta.ntly recurrent critical points, we
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will $\iota \mathrm{s}\mathrm{e}$ puzzle partitions, constructed by Branner-Hubbard in the case that the
Jnlia set is non-connected, and by Yoccoz in the case that the Julia set is connected.

The $\omega$-limit set $\omega(c)$ of a persistently recurrent critical point $c$ is a minimal set,
so

$E_{c}=\{z\in J(f) : \omega(z)--\omega(c)\}=\{z\in J(f) : \omega(z)\subset\omega(c)\}$

is a measurable f-completely-invariant set for any persistently recurrent critical
point $c$ , so if $J(f)$ carries an invariant line field $\mu$ , then for some persistently recurrent
critical point $c,$ $\mu|E_{c}$ is also an invariant line field. This reduces the problem to the
case that $f$ has exactly one minimal set which contains critical points. Let $\mathcal{F}$ be the
collection of all real polynomials satisfying the requirements in the main theorem.

Reduced Main Theorem. Let $g$ be a real symmetric $generali,zed$ polynomial-
like map induced by an $f\in \mathcal{F}$ such that $g$ has exactly one minimal set which contains
critical points. Suppose that $g$ is non-renormalizable (if the domain of $g$ is not
connected) or infinitely renormalizable (if the domain of $g$ is connected). Then $J(g)$

carries no $g$ -invariant line field.
Let $U_{i}(1\leq i\leq m),$ $V$ be topological disks. A map $g$ : $\bigcup_{i=1}^{m}U_{i}arrow V$ is called

generalized polynomial-like if $g|U_{i}$ : $U_{i}arrow V$ is a branched covering for any $1\leq i\leq m$

$\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{d}realsymmetric\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}z\in U_{i},\mathrm{w}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}^{\frac{}{z}}\in U_{i}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}1\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}c\mathrm{o}\mathrm{f}g\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{n}\mathrm{y}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}k,k(c)_{\frac{\in\cup}{g(z)}}.i=1U_{i}m.g\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{n}\mathrm{d}g(^{\frac{g}{z}})=g\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{a}1\mathrm{l}\mathrm{e}\mathrm{d}$

renormalizable if there ia an interval $I$ , a positive integer $s$ such that the interiors
of $I,g(I),$ $\cdots,$ $g^{s-1}(I)$ are pairwise disjoint, $g^{s}(I)\subset I,$ $g^{s}(\partial I)\subset\partial I$ .

$\mathrm{G}^{\mathrm{t}}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}$ a rational function $f$ of degree $d\geq 2$ and $\mu$ an $f- \mathrm{i}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{t}_{\iota}$ line field. Let
$\mathcal{H}(f)$ denote the full dynamics generated by $f$ , that is the collection of holomorphic
maps $h:Uarrow V$ with the following properties: $U,$ $V$ are open sets in $\hat{C}$ ; and there
exists $i,j\in N$ such that $f^{i}\mathrm{o}h=f^{j}$ . Then for any element $h$ : $Uarrow V$ in $\mathcal{H}(f)$ ,
$h^{*}(\mu|V)=l^{l|U}$ . Near an almost continuous point $x$ of $\mu$ , such that $\mu(x)\neq 0$ ,
the line field $\mu$ looks almost parallel. So if $\mathcal{H}(f)$ contains a sequence of functions
$\{h_{n} : U_{n}arrow V_{n}\},$ $n+1,2,$ $\cdots$ with the following properties:

(1) $U_{n},$ $V_{n}$ are topological disks, and

$diam_{s}(U_{n})arrow 0,$ $diam_{s}(V_{n})arrow 0$

as $narrow\infty$ ;
(2) $h_{n}$ is a proper map whose degree is $\geq 2$ and $\leq N$ ;
(3) For any $u\in U_{n}$ such that $h_{n}’(u)=0$ we have

$\max_{z\in\partial U_{n}}d_{s}(z, u)\leq Cd_{s}(u, \partial U_{n})$

and
$\max_{z\in\partial V_{n}}d_{s}(z, u)\leq Cd_{s}(u, \partial V_{n})$;

(4)
$d_{s}(U_{n}, x)\leq Cdiam_{s}(U_{n}),$ $d_{s}(V_{n}, x)\leq Cdiam_{s}(V_{n})$ ,

where $diam_{s},$ $d_{s}$ denote the diameter, the distance in the spherical metric respec-
tively, $N\in N$ and $C>0$ are constants independent of $n$ . Then $\mu$ will have to fail
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to be almost continnous at $x$ or {$\iota(x)$ will have to be $0$ . This is an idea of $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$

$([16])$ and will be the initial point for our proof of the nonexistence of invariant line
field on the pa,rt $E_{c}$ of the Julia set.

We will consider a particular subfamily of $\mathcal{H}(f)$ , which consists of maps whose
germs are holomorphic maps between the puzzle pieces in the non-infinitely renor-
malizable case or renormalizations in the renormalizable case. Functions in the
subfamily are defined near a critical point, and can be pulled back to neighborhoods
of $\mathrm{a}.\mathrm{e}$ . $x\in J(f)$ . To control the geometry of the domains, the images and the
non-linearity, we need a “complex bound”.

In our consideration, the (
$‘ \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{x}$ bound” will come from a “real bound”:

Theorem B. Let $N$ be a compact interval, or the unit circle and $f$ : $Narrow N$

be a $C^{3}$ map with non-flat critical points. Let $c$ be a non-periodic recurrent critical
point such that $\omega(c)$ is minimal and

(1) there is a nice interval containing $Cj$ and
(2) the critical points in $\omega(c)$ are all turning points ($local$ extrema).
Then there is a sequence of nice intervals $I_{n},$ $n=1,2,$ $\cdots$ , containing $c$ such that

$|I_{n}|arrow 0$ as $narrow\infty$

and the $\delta$ -neighborhood of $I_{n}$ is disjoint from $\omega(c)-I_{n}$ , where $\delta>0$ is positive
constant depending only on $f$ .

The real bound $\mathrm{c}o$mes from the investigation of the real dynamics. The main
analytic tool in this direction is cross-ratio estimate developed since $80’ \mathrm{s}$ . To get the
real bound, the non-infinitely renormalizable case and the infinitely renormalizable
case have to be done in quite different ways.

If $f$ has only one critical point, then theorem $\mathrm{B}$ was proved by Sullivan [24]
(in the infinitely renormalizable case) and Martens $[14]$ ( $\mathrm{i}\mathrm{n}$ other cases). When $f$

has more than one critical points, the infinitely renormalizable case can be done
in a similar way as Sullivan did. In the non-renormalizable case, Vargas ([26])
claimed that there is an arbitrarily small symmetric interval $I$ containing $c$ such
that a definite neighborhood of $I$ is disjoint from $\omega(c)-I$ . (However, on pp175 of
[26] Vargas said that “the intervals of the new covering chains cover $\Lambda$ ”, which is
confusing to me.) Our result says more, that is, we can take the small intervals to be
nice, which is crucial when considering the first return maps. Our proof of theorem
$\mathrm{B}$ in non-renormalizable case is based on Vargas’s work and uses some ideas from
renormalization theory.

As an immediate consequence, we know that under the assumption of theorem $B$ ,
$\omega(c)$ has one-dimensional Lebesgue measure zero. The last statement is proved by
Blokh and Lyubich in the infinitely renormalizable case and also claimed by Vargas
([26]) in the non-renormalizable case. We hope that theorem $\mathrm{B}$ may be usefnl in
other places of one-dimensional dynamics.

To get a complex bound from a real bound was first done by Sullivan ([24]), see
[9] also. Notice that however, our (

$‘ \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{x}$ bound” is in a weaker sense than usual.
If an object can give an estimate of distortions and the shape of domains, images
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for a $\mathrm{s}\iota \mathrm{l}\mathrm{b}\mathrm{f}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{y}$ in $\mathcal{H}(f)$ , we shall call it a “complex bound”. In [9], [10], $‘(\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{x}$

bonnd” is used to control the geometry of a family of generalized polynomial-like
elements in $\mathcal{H}(f)$ .

The proof of the reduced main theorem is given in the same outline of $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$

[16]. We shall divide it into two cases: the case that an arbitrarily large real bound
exists and the converse case. In the former case, we shall prove a “complex bound”
in the $\iota \mathrm{s}\iota$ al sense. In the latter case, the postcritical set has essentially bounded
geometry and hyperbolic geometry is widely used.

The need for a “complex bound” appears in many places of holomorphic dynam-
ics, for $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{I}\mathrm{n}\mathrm{p}\mathrm{l}\mathrm{e}$ , the local connectivity of Julia set, combinatorial rigidity problem
and renormalization theory, etc. However, how to get such a bound for a complex
polynomial is still poorly understood. This is the essential part that our method
requires the objects to be real.

The qc rigidity problem for real polynomials with inflection critical points re-
mains open. Once we can prove that theorem $B$ holds in that case too, the argu-
ment in this paper implies the non-existence of invariant line field as well. (In the
case that there is only one inflection critical point, theorem $B$ has been proved by
Levin $([8]).)$ The combinatorial rigidity problem is much more important and seems
much more difficult. We should emphasize that the main theorem does not imply
that the real Fatou conjecture. It is only a step towards the solution of the conjec-
ture. Also, since we can only obtain a complex bound in a weak sense, we cannot
conclude the local connectivity of Julia sets as in [9].

In the following, we shall restrict us to the non-renormalizable cubic case and
expain the method of the proof of Theorem $B$ and the main theorem in more details.
The general case can be done using the same method, but with a more complicated
$\arg\iota$ment. For the detailed proof of that part and the proof of theorem $A$ , see [21].
Let $f(z)=\pm(z^{3}-3a^{2}z)+b$ , where $a,$ $b\in R$ . $f$ has exactly two critical points $a,$ $-a$ .
We assume furtherrnore that $\omega(a)=\omega(-a)\ni a,$ $-a$ and is minimal. Assume that
$f$ is not hyperbolic too. Then $a,$ $-a$ are both recurrent critical points contained in
the Julia set and the filled Julia set coincide with the Julia set.

1 Proof of Theorem $\mathrm{B}$

A chain is a sequence of intervals $\{C_{7}i\}_{i=0}^{n}\mathrm{s}\iota$ch that $f(G_{i})\subset G_{i+1}$ for any $0\leq i\leq$

$n-]$ . The order is the number of $G_{i^{\mathrm{S}}}$
’ containing a critical point. The intersection

multiplicity is the maximal number of intervals $G_{i}$ which have a common interior
point. The chain is called rnaximal if $G_{i}$ is a maximal interval such that $f(G_{i}’)\subset G_{i+1}$

for any $0\leq i\leq\uparrow \mathrm{z}-1$ . If $\{C_{7}i\}_{i=0}^{n}$ is a maximal chain we shall sa.y that $G_{0}$ is a pull-
back of $G_{n}$ . If $C_{\tau_{i}}$ does not contain a critical point for any $0\leq i\leq n-1$ , then the
chain is called monotone and $G_{0}$ is called a monotone pull back of $G_{n}$ . If $G_{i}$ does
not contains a critical point for any $0<i<n$ , but $G_{0}$ contains one, we shall say
that the chain is unimodal, and $C_{70}$ is a unimodal pull back of $c_{\tau_{n}}$ .

Recall that an interval $T$ is called nice if $f^{n}(\partial T)\cap T^{o}=\emptyset$ for any $n\in N$ . In
this manuscript, we require fnrthermore that $\partial T$ is contained in the bachward orbit
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of a repelling periodic point of $f$ . (Clearly, if $C_{7}$ and $C_{7}’$ are two pull-back of $T$ then
either they are disjoint or one is contained in the other.) There is an arbitarily short
nice interval symmetric with respect to $a(\mathrm{o}\mathrm{r}-a)$ .

A $ho7nterval$ is an interval $I$ stlch that $f^{n}|I$ is monotone for any $n\in R$ . It is
known that in $0\iota \mathrm{r}$ setting ( $f$ has no periodic attrctor), there is no homterval. Thus
for any non-trivial interval $I,$ $\inf_{n\geq 0}|f^{n}(I)|>0$ . Hence for each $\eta>0$ , there is a
$\xi>0$ snch that if $|I|<\xi$ , then for any $n\in N$ , any component of $f^{-n}(I)$ has length
$<\eta$ .

Schwarzian derivative and cross-ratio estimate: Note that

$Sf= \frac{f’’’}{f’}-\frac{3}{2}(\frac{f’’}{f’})^{2}<0$ ,

wherever $f’\neq 0$ .
For ant two intervals $J\subset\subset I$ , we define the cross-ratio

$C(I, J)= \frac{|I||J|}{|L||R|}$ ,

where $L,$ $R$ are the components of $I-J$ .
Accoding to [19], once $f|I$ is a monotone, $C(f(I), f(J))\geq C(I, J)$ . Thus the

following holds:

Lemma 1.1 Let $J\subset\subseteq I$ be two intervals such that $f^{n}|I$ is monotone and such that
$f^{n}(I)$ conatins the $\delta$-neighborhood of $f^{n}(J)$ , then I contains the $\epsilon$ -neighborhood of
$J$ , where $\epsilon>0$ is a constant depending only on $\delta>0$ .

The following two propositions were proved by E.Vargas ([26]):

Proposition 1.1 Suppose that I is a small symmetric nice interval containing $c=$

$a$ or –a $a’|,dJ$ is the component of the first return map to I which contains $c$ .
Then either I contains a $\rho$ -neighborhood of $J$ or if we denote $T$ the $\rho$ -neighborhood
of I and $k$ the minimal positive integer such that $f^{k}(c)\in I$ , the chain $\{T_{i}\}_{i=0}^{k}$ with
$T_{k}=T_{f}T_{i}\supset g^{i}(J))0\leq i\leq k$ has intersection multiplicity bounded from above by
14 and order bounded from above by $4_{f}u$)$here\rho>0$ is a constant $dependi,ng$ only on
$f$ .

Proposition 1.2 There is an arbitrarily small symmetric nice interval I contain-
ing $c=a$ or $-a_{f}$ such that I contains the $\rho_{1}$ -neighborhood of $J_{f}$ where $J$ is the
component $\dot{c}ontainingc$ of the domain of the first return map to I and $\rho_{1}>0$ is a
constant depending only on $f$ .

Next we will introdnce a concept box mappings. These mapping were originally
introduced by Swiatek in the study of the dynamics of real quadratic polynomials
and then generalized by Swiatek and Vargas to study the dynamics of some real
cubic polynomials.
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Definition 1.1 Let $I_{1}$ ( $I_{2}$ , resp.) be symmetric nice intervals around $a$ ( $-a$ , resp.)
such that they are pairwise disjoint. Let $J_{i}^{j},$ $j=0,1,$ $\cdots,$ $r_{i}$ be pairwise disjoint
intervals contained in $I_{i}$ such that $J_{i}^{0}$ contains a critical point.

A map $B$ : $\bigcup_{i=1}^{2}\bigcup_{i=0}^{r}J_{i}^{j}arrow\bigcup_{i=1}^{b}I_{i}$ is called a (real) box mapping (induced by $f$)
if for each $i\in\{1,2\}$ there is a positive integer $s_{i}$ and symmetric nice intervals

$I_{i}=I\iota_{i}^{\prime 0}\supset I\iota_{i}^{\prime 1}\supset\cdots\supset I\mathrm{t}_{i}^{rs,-1}\supset K_{i}^{s;}=J_{i}^{0}$

such that for any $i=1,2$ and each $j=0,1,$ $\cdots,$ $r_{i}$ there is a $k=k(i,j)\in\{1,2\}$ and
$l=l(i,j)\in\{0,1, \cdots, s_{i}\}fp=p(i,j)\in N$ with the following properties:

(1) $B|J_{i}^{j}=f^{p}|J_{ii}^{j}$

(2) there is a maximal, chain $\{G_{k}\}_{k=0}^{p}$ with $G_{p}=I\mathrm{t}_{k}^{\prime l}$ and $G_{0}=J_{i}^{j}$ , moreover the
chain is unimodal if $j=0$ and monotone $otherwise_{\mathrm{i}}$

(3) $J_{i}^{j}\cap\omega(a)\neq\emptyset \mathfrak{j}$

(4) for any $x\in J_{i}^{j}$ ,

$f(x),$ $f^{2}(x),$
$\cdots,$ $f^{p-1}(x) \not\in\bigcup_{i=1}^{2}J_{i}^{0}$ ;

(5) for any positive integer $n$ ,

$B^{n}( \pm a)\in\bigcup_{i=1}^{2}\bigcup_{j=0}^{r_{t}}J_{i}^{j}$ .

We shall call that $\max\{s_{1}, s_{2}\}$ the order of the box mapping $B$ .
If for any $i\in\{1,2\}$ and each $j\in\{0,1, \cdots, r_{i}\},$ $B( \partial J_{i}^{j})\subset\bigcup_{i=1}^{2}\partial I_{i}(B(\partial J_{i}^{j})\subset$

$\bigcup_{i=1}^{2}\partial I_{i}\cup\partial J_{i}^{0}$ , resp.) we shal,$l$ call that the box mapping $B$ is of type $I$ (type II,
resp.).

Let $c\in\{a, -a\}$ be a critical point of $f$ and c’be the other critical point of $f$ . For
any nice interval $I_{1}\ni c$ sufficiently short, we can construct a box mapping naturally.
Let $I_{2}$ be the component containing $c’$ of the first return map to $I$ of $f$ . For any
$x\in\omega(c)\cap I_{1}$ , let $J(x)$ denote the component of the first return map to $I_{1}$ . Let $r_{1}$

be the number of these intervals $J(x)’ \mathrm{s}$ and let $J_{1}^{0}\ni c,$ $J_{i}^{1},$
$\cdots,$

$J_{1}^{r_{1}}$ be these intervals
$J(x)’ \mathrm{s}$ . Let $r_{2}=0$ and $J_{2}^{0}=I_{2}$ . Finally define $B_{I}$ : $\bigcup_{i=1}^{2}\bigcup_{i=0}^{r}J_{i}^{j}arrow\bigcup_{i=1}^{2}I_{i}$ to be the
first return map of $f$ to $\bigcup_{i=1}^{2}I_{i}$ . It is not difficult to check that $B_{I}$ is a box mapping
of type $I$ . We shall call $B_{I}$ the box mapping associated to $I$ . The map $B_{I}$ will play
a special role and is usually the initial point for our argument.

Give a box mapping, we can construct many other box mappings by taking
appropriate $\mathrm{r}\mathrm{e}\mathrm{s}\dot{\mathrm{t}}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ of some iterates of the original box mapping. The procedure
is called “renormalizing” and the new box mappings will be called renormalizations
of the original one.

Let $B$ : $\bigcup_{i=1}^{2}\bigcup_{i^{\mathfrak{i}}=0}^{r}J_{f}^{j}$. $arrow\bigcup_{i=1}^{2}I_{i}$ be a box mapping. Let $\Lambda$ be a subset of {1, 2}
and $\Lambda^{c}=\{1,2\}-\Lambda$ . We can construct a new box mapping $B_{1}=\mathcal{R}(B, \Lambda)$ as follows.
Let $I_{i,1}=I_{i}$ for $i\in\Lambda_{c}$ and $I_{i,1}=J_{i}^{0}$ for $i\in\Lambda$ . For any $x \in\omega(a)\cap(\bigcup_{i=1}^{2}I_{i,1})$ , let
$k(x)$ be the minimal positive integer such that

$B^{k\langle x)}(x) \in\bigcup_{i=1}^{2}I_{i,1}$
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( $k(x)$ exists since $\omega(a)$ is minimal and condition (5) in definition holds). Let $J(x)$

be the component of the domain of $B^{k\langle x)}$ containing $x$ . Define

$B_{1}$ : $\bigcup_{i=1}^{2}\bigcup_{x\in I_{i,1}\cap\omega(a\rangle}J(x)arrow\bigcup_{i=1}^{2}I_{i,1}$

such that $B_{1}|J(x)=B^{k\langle x)}$ . Roughly speaking, $B_{1}$ is the first return map of $B$ to
$\bigcup_{i=1}^{b}I_{i,1}$ . It is $\mathrm{e}\mathrm{a}$,sy to check that $B_{1}$ is a box mapping and if $R$ is of type $I$ , so is $B_{1}$ .

It may happen that $\mathcal{R}(B, \Lambda)=B$ , that is, we in fact have not constructed a new
box mapping. This case happens if and only if for any $i\in\Lambda,$ $r_{i}=0$ and $J_{i}^{0}=I_{i}$ .

Let us introduce another renormalization operator for box mappings. Let $B$ :
$\bigcup_{i=1}^{2}\bigcup_{i=0}^{r_{i}}J_{i}^{j}arrow\bigcup_{i=1}^{2}I_{i}$ be a box mapping of type II. Let $\Lambda=\{i$ : $1\leq i\leq 2,$ $J_{i}^{0}=$

$I_{i}\}$ . Note that since we are assuming that $f$ is non-renormalizable, $\Lambda$ consists os at
most one elemnt. Assuming that $\Lambda\neq\emptyset$ , let us define a box mapping $\mathcal{L}(B, \Lambda)$ as
follows. To fix the notations, let $\Lambda=\{2\}$ . Since $f$ is non-renormalizable, $B(I_{2})\subset I_{1}$ .
For any $x\in\omega(a)\cap I_{2}$ , if $B(x)\in J_{1}^{j}$ , then define $J(x)$ to be the maximal interval
such that $B(x)\subset J_{1}^{j}$ . Define

$B_{1}|J(x)=B|J(x)$ if $B(J(x))\subset J_{1}^{0}$ ; and

$B_{1}|J(x)=B^{2}|J(x)$ otherwise.

Extend $B_{1}$ to be a box mapping from $\bigcup_{j^{1}=0}^{r}J_{1}^{j}$ ) $\cup(\bigcup_{x\in \mathrm{t}v\langle a)\cap I_{2}}J(x))$ to $\bigcup_{i=1}^{2}I_{i}$ be
defining that

$B_{1}| \bigcup_{j=0}^{r_{1}}J_{1}^{j})=B|(\bigcup_{j=0}^{r_{1}}J_{1}^{j})$ .

Then $B_{1}$ is a box mapping of type II. We just define that $\mathcal{L}(B, \Lambda)=B_{1}$ in this
case.

Proposition 1.3 Suppose that I is a small symmetric nice interval containing $c$

and $J$ is the component of the domain of the first return map to I which contains
$c$ . Then there is a box mapping $B:( \bigcup_{j^{1}=0}^{r}J_{1}^{i})\cup(I_{2})arrow\bigcup_{i=1}^{2}I_{i}$ such that $I_{1}=I$ and
and the following holds:

(1) $B$ is of type $I,\cdot$

(2) $B(I_{2})\cap J\neq\emptyset$ .

Proof. Let $B$ : $( \bigcup_{j=0}^{r}J^{j})\cup(I_{2})arrow I_{1}\cup I_{2}$ be the box mapping associated to $I$ .
Then $J^{0}=J$ by definition. If $B(I_{2})\cap J\neq\emptyset$ , then $B$ satisfied the desired condition.
Assume that $B(I_{2})\cap J=\emptyset$ . Let $R_{1}=\mathcal{L}(B, \{2\})$ .

$R_{1}$ is a box mapping of type $I$ . Let $R_{n+1}=\mathcal{R}(R_{n}, \{2\})$ for any $n\in N$ . All these
$R_{n}’ \mathrm{s}$ are box mappings of type $I(n\geq 2)$ . Since $\omega(a)$ is minimal, there is a positive
integer $n_{1}$ such that $R_{n_{1}+1}=R_{n_{1}}$ .

Let $\tilde{R}_{1}=R_{n_{1}}$ . Then $\tilde{R}_{1}$ has the form $( \bigcup_{i}J_{1,1}^{j})\cup(I_{2,1})$ to $\bigcup_{i=1}^{2}I_{i,1}$ with $I_{1,1}=$

$I_{1}=I$ . By the construction, $I_{2,1}\subset\subset I_{2}$ .
If $\tilde{R}_{1}(I_{2,1})\cap J_{1,1}^{0}\neq\emptyset$ , then $\tilde{R}_{1}$ satisfied the desired conditions. So we assume

that we are not in this case. Then we can apply the argument for $\tilde{R}_{1}$ instead of
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$B$ . Continue the argument, we either obtain a box mapping as required, or obtain
a sequence $\tilde{R}_{n}$ : $( \bigcup_{j}J_{n,1}^{j})\cup(I_{n,2})arrow I_{n,1}\cup I_{n,2}$ of box mappings of type $I$ with the
properties $I_{n,1}=I$ and $I_{n+1,2}\subset\subset I_{n,2}$ . But since $\omega(a)$ is minmal, the latter case
cannot happen. Q.E.D.

Proof of Theo $7^{\backslash }emB$ :
Let $I_{1}$ be a small symmetric nice interval containing $a$ such that $|I|/|J|>1+\rho_{1}$ ,

where $J$ is the component of the first return map to $I$ of $f$ which contains $a$ . Let
$B$ : $( \bigcup_{j=0}^{r}J_{1}^{j})\cup I_{2}arrow I_{1}\cup I_{2_{-}}\mathrm{b}\mathrm{e}$ the box mapping as in the previous proposition.
Then we have the following:

Proposition 1.4 Let $K$ be the component of the first return map to $I_{2}$ which con-
tains $-a$ , then $|I_{2}|/|K|>1+\rho_{2}$ , where $\rho_{2}>0$ is a constant depending only on
$f$ .

Proof. This is an observation of Vargas, as a corollary of Proposition 1.1. $\mathrm{Q}.\mathrm{E}$.D.

For $x\in\omega(a)\cap I_{2}$ , let $k(x)\in N$ ne the minimal positive integer such that
$B^{k(x)}(x)\in J_{1}^{0}\cup I_{2}$ . Let $J(x)$ be the maximal interval containing $x$ such that
$B^{k(x)}|J(x)$ is well defined. Define $R|J(x)=B^{k(x\rangle}$ and extend it to be a map from
$( \bigcup_{j}J_{1}^{j})\cup(\bigcup_{x\in\omega\langle a)\cap I_{2}}J(x)$ by defining $R|J_{1}^{j}=B|J_{1}^{j}$ . Then $R$ is a box mapping of
type II.

We claim that $|I_{2}|/|J(-a)|$ is uniformly bounded from 1. In fact, if $R(J(-a))\subset$

$I_{1}$ , then such a bound comes from the bound on $|I_{1}|/|J_{1}^{0}|$ and if $R(J(-a))\subset I_{2}$ ,
then $J(-a)\subset K$ and thus snch a bound comes from the bound on $|I_{2}|/|K|$ .

Let $\tilde{R}$ : $\bigcup_{i=1}^{2}\bigcup_{i=0}^{\overline{r}}\tilde{J}_{i}^{j}arrow\bigcup_{i=1}^{2}\tilde{I}_{i}$ be the box mapping $\mathcal{R}(R, \{1,2\})$ . Then $\tilde{R}$ is a
box mapping of type $I$ such that $|\tilde{I}_{i}|/|\tilde{J}_{i}^{j}|$ is bounded uniformly from below for any
$i,j$ such that $J_{i}^{j}\subset\subset I_{i}$ .

Therefore thereom $B$ holds because of the following proposition:

Proposition 1.5 Let $B$ : $\bigcup_{i=1}^{2}\bigcup_{j=0}^{r}J_{i}^{j}arrow\bigcup_{i=1}^{2}I_{i}$ be a box mapping of type I such
that for any $i,j,$ $I_{i}=J_{i}^{j}$ or $|I_{i}|/|J_{i}^{j}|>1+\delta$ . Assume that $|I_{1}|,$ $|I_{2}|$ are sufficiently
small. Then there is a pull back of $I_{1}$ or $I_{2}$ such that the $\epsilon$ -neighborhood of $K$ is
disjoint from $\omega(a)-K$ , where $\epsilon>0$ is a constant depending only $f$ and $\delta>0$ .

Proof. Case 1. We first assume that $J_{t}^{0}\subset\subset I_{i}$ for $i=1,2$ . For any $x\in\omega(a)\cap((I_{1}\cup$

$l_{2})-(J_{1}^{0}\cup J_{2}^{0}))$ , let $n(x)$ denote the minimal positive integer such that $B^{n\langle x\rangle}(x)\in$

$\bigcup_{i=1}^{2}J_{i}^{0}$ . Since $\omega(a)$ is minimal, $n(x)$ is uniformly bounded. Let $x_{0}\in\omega(a)\cap(I_{1}\cup I_{2})$

be a point snch that $n=n(x_{0})= \max n(x)$ . Suppose that $B^{n}(x)\in I_{1}$ without loss of
generality. $\mathrm{C}^{1}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}$ the maximal chain $\{G_{i}\}_{i=0}^{n}$ of $B$ such that $G_{n}=I_{1}$ and $G_{0}\ni x$

( $G_{i}$ is a maxiaml interval such that $B|G_{i}$ is well-defined and $B(G_{i})\subset G_{i+1}$ for any
$0\leq i\leq n-1)$ . Let $c_{\tau_{0}’}\subset G_{0}$ be the maximal interval such that $B^{n}(G_{0}’)\subset J_{1}^{0}$ .
One can easily check that the chain is a a montone chain and hence $G_{0}$ contains a
definite neighborhood of $C_{\tau_{0}}’$ . By the maximality of $n,$ $\omega(a)\cap C_{70}=\omega(a)\cap G_{0}’$ . By
pulling $G_{0}\supset G_{0}’$ to the neighborhood of a critical point, we obtain a small symmetic
nice interval $K$ , such that a definite neighborhood of $K$ is disjoint from $\omega(a)-K$ .

Case 2. Now assume that $J_{2}^{0}=I_{2}$ , then we must have $J_{1}^{0}\subset I_{1}$ . Let $c$ be the
critical point in $I_{2}$ and let $J$ be the component of the domain of $B^{2}$ conatining $c$ .
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If $B(c)\not\in J_{1}^{0}$ , let $\tilde{B}$ be the first return map (of.$f$ ) to $J_{1}^{0}\cup J$ , and we return to case
1. Assume that $B(c)\in J_{1}^{0}$ , then for any $x\in omega(a)\cap(I_{1}-J_{1}^{0})$ (note such an $x$

exists), let $n(x)$ denote the minimal positive integer such that $B^{n\langle x)}(x)\in J_{1}^{0}\cup J$ .
The $\arg\iota \mathrm{m}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{t}$ in case 1 remains valid in this case. Q.E.D.

2 Proof of the Main Theorem
Case I: A large real bound exists.

Proposition 2.1 Suppose that there exists a sequence of nice symmetric interval
$I_{n}\ni a$ such that $|I_{n}|arrow 0$ as $narrow\infty$ and $d(\omega(a)\cap I_{n}, omega(a)-I_{n})/diam(\omega(a)\cap$

$I_{n})arrow\infty$ as $narrow\infty$ . Then for $n$ sufficiently large, the box mapping associated to
$I_{n}$ has an $‘ {}^{t}extension$ ” to a holomorphic box mapping $F_{n}$ : $( \bigcup_{j=0}^{r(n)}U^{j}(n))\cup W(n)arrow$

$V(n)\cup W(n)$ such that there is a topological disk $V’(n)\supset\supset V(n)w\uparrow,thmod(V’(n)-$

$\overline{V(n)})arrow\infty$ as $narrow\infty$ .

A map $F: \bigcup_{j=0}^{r}U_{j}\cup Warrow V\cup W$ is called a holomorphic box mapping if
(1) $V,$ $W$ are disjoint topological disks and $U_{j}’ \mathrm{s}$ are disjoint topological disks

contained in $V$ ;
(2) $F|W:Warrow V$ is a brached covering with a unique critical point $c’,$ ;
(3) for each $0\leq j\leq r,$ $F(U_{i})=V$ or $W$ and $F|U_{0}$ is a banched covering with a

unique critical point $c,$ $F|U_{j}$ is conformal if $j\neq 0$ ; and
(4) for each $n\in N,$ $F^{n}(c),$ $F^{n}(c’) \in\bigcup_{j=0}^{r}U_{j}\cup W$ ;
(.5) For any $x\in\omega(a)\cap(V\cup W)$ , if $F(x)=f^{s}(x)$ , then $f(x),$ $f^{2}(x),$ $\cdots,$ $f^{s-1}(x)\not\in$

$V\cup W$ .
Proof. Let $B$ : $( \bigcup_{j=0}^{r}J_{1}^{j})\cup I_{2}arrow I_{1}\cup I_{2}$ be the box mapping associated to

$I_{n}$ . Using Yoccoz puzzle partition construction, $B$ extends to a holomorphix box
mapping $G_{n}$ : $( \bigcup_{j=0}^{r}U_{j}’)\cup W’arrow V’\cup W’$. For such an extension, we cannot gurantee
$\mathrm{t}\mathrm{h}\mathrm{e}\backslash$ existence of $V’(n)$ . Let $B|I_{2}=f^{k}$ and $B|J_{1}^{j}=f^{k_{\mathrm{J}}}$ .

Snppose $n>>1$ and thus $d(\omega(a)\cap I_{n})/diam(\omega(a)I_{n})>M$ , where $M>1$ is a
large number. For simplicity, let us assume $d(\omega(a)\cap I_{n},\omega(a)-I_{n})/|I_{n}|>M$ . The
other cases acn be done in the same way (with a little refinement, in that case, the
holomorphic box mapping may fail to be an extension of the real box mapping in
strict sense). Let $D$ be a round disk centered at the critical point $c\in I_{1}$ with radius
$\frac{M}{2}$ . Let $E$ be the component of $f^{-k}(D)$ containing $I_{2}$ . Then $E$ is “almost round” as
seen from any point on $I_{2}$ . For any $0\leq j\leq r$ , let $D_{j}$ be the component of $f^{-k_{j}}(D)$

(or $f^{k_{j}}(E)$ ) containing $J_{1}^{j}$ if $B(J_{1}^{j})\subseteq I_{1}$ (or $B(J_{1}^{j})\subset I_{2}$ ). Then $D_{j}$ is $‘(\mathrm{a}\mathrm{l}\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}$ round”
as seen from a point on $J_{1}^{j}$ . Since the radius of $D_{j}$ is at most $(1+o(1))diam(I_{1})$ ,
$D_{i}\subset\subset D$ .

Let $U_{j}$ be the component of $D_{j}\cap U_{j}’$ containing $J_{1}^{J}$

’

for $0\leq j\leq r$ , and $V$ be the
component of $D\cap V’’$ conatining $I_{1},$ $W$ be the component of $E\cap W’$ conatining $I_{2}$ .
Then the map $F: \bigcup_{;=0}^{r}.U_{j}\cup Warrow V\cup W$ defined by $F|W=f^{k},$ $F|U_{j}=f^{k_{j}}$ is the
desired holomorphic box mapping. Q.E.D.

Corollary 2.2 In this case, $f$ carries no invari.ant line field on the Julia set.
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Proof. Let $F_{n}$ be the holomorphic box ma,pping obtained in the previous proposition.
To fix the notations, we assume that $a\in U^{0}(n)\mathrm{a}\mathrm{n}\mathrm{d}-a\in W(n)$ . For any $n$ , let $s_{n}$ be
the minimal positive integer such that $F_{n}(a)\in W(n)$ , and $\tilde{W}(n)$ be the component
of the domain of $F_{n^{n}}^{s}$ which contains $a$ . Let $\tilde{V}(n)=W(n)$ and let $\tilde{F}_{n}$ be the first
return map to $\tilde{V}(n)\cup\tilde{W}(n)$ of $F_{n}$ , restristed to those components containing points
in $\omega(a)$ , then $\tilde{F}_{n}$ is also a holomorphic box mapping.

Take a point $x\in J(f)$ such that $\omega(x)=\omega(a)$ and such that $x$ is not in the
backward orbit of any critical point. Almost every point in the Julia set satisfy these
conditions. We only need to show that for any $f$-invariant line field $\mu,$ $\mu(x)=0$ or
$l^{l}$ is not almost continuous at $x$ .

Let $k_{1}^{n}=\{k\in N\cup\{0\} : f^{k}(x)\in U^{0}(n)\}$ and $k_{2}^{n}=\{k\in N\cup\{0\}$ : $f^{k}(x)\in$

$W(n)\}$ .
Case 1. $k_{1}^{n}<k_{2}^{n}$ for infinitely many $n$ .
For such $n$ , there is a univalent branch $g_{n}$ of $f^{-k_{1}^{n}}$ defined on $V(n)$ sending $f^{k_{1}^{n}\langle x)}$

to $x$ . Let $h_{n}$ : $g_{n}(U^{0}(n))arrow g_{n}(V(n)$ be the map $g_{n}\mathrm{o}F_{n}\mathrm{o}f^{k_{1}^{n}}$ . Then $U_{0}(n),$ $V(n)\ni x$ .
It is easy to see that diam$(V(n))arrow 0$ as $narrow\infty$ . Therefore, after a little refinement,
$l^{\iota}$ looks “almost parallel” on $U_{0}^{n}$ and $V_{n}$ , and $\{h_{n}\}$ forms a family of uniformly non-
linerity (after approriate rescaling). These imply that $\mu(x)=0$ or $\mu$ is not almost
continous at $x$ .

Case 2. $k_{1}^{n}>k_{2}^{n}$ for $n>>1$ .
In this case, for $n>>1$ , there is a univalent branch $g_{n}$ of $f^{-k_{2}^{n}}$ defined on

$\tilde{V}(n)=W(n)$ , sending $f^{k_{2}^{n}}(x)$ to $x$ .
Considering $\tilde{F}_{n}$ instead of $F_{n}$ , we can define $\tilde{k}_{i}^{n},$ $i=1,2$ as before. If $\tilde{k}_{1}^{n}<\tilde{k}_{2}^{n}$

for infinitely many $n$ , then we come back to Case 1. So assume that $\tilde{k}_{2}^{n}<\tilde{k}_{1}^{n}$ for
$n>>1$ . We have then a univalent branch $\tilde{g}_{n}$ of $f^{-\overline{k}_{2}^{n}}$ defined on $\tilde{W}(n)$ , sending
$f^{\overline{k}_{2}^{n}}(x)$ to $x$ . Let $h_{n}=g_{n}\mathrm{o}\tilde{F}_{n}\mathrm{o}f^{\overline{k}_{2}^{n}}$ : $\tilde{g}_{n}(\tilde{W}(n))arrow g_{n}(\tilde{V}(n))$ . These maps provide a
unformly non-linear family near $x$ . The proof is completed. $\mathrm{Q}.\mathrm{E}$.D.

Case II: A large real bound does not exist.
From now on, we assume that there is an $M>0$ such that for any symmetric

nice interval $I,$ $d(\omega(a)\cap I, \omega(a)-I)/diam(\omega(a)\cap I)\leq M$ .
We shall call a symmetric nice interval I delta-excellent if the $\delta$-neighborhood

of $I$ is disjoint from $\omega(a)-I$ , and for any component $J$ of the domain of the first
return map to $I$ (of $f$ ) intersecting $\omega(a)$ , we have that the $\delta$-neighborhood of $J$ is
contained in $I$ . When we investigated the real dynamics, we in fact obtained the
following:

Proposition 2.3 For some $\delta>0$ , there exists an arbitarily small $\delta$ -excellent inter-
val containing a (or-a).

By defining an analogy of Yoccoz’s $\tau$ -function, we obtained the following:

Proposition 2.4 Let I be a su.fficiently small symmetric $\delta$-excellent interval. Then
there is a constant $N>0$ depending only on $\delta$ and $M$ such that I has at most $N$

unimodal pull back.

For the proof, $\mathrm{s}\mathrm{e}\mathrm{e}[21]$ . In particular, if $\omega(a)$ is minimal but $a$ is reluctantly recurrent,
then $\omega(a)$ mnst has unbounded geometry.
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Let $\mathcal{I}_{\delta}$ be the collection of $\delta$-excellent intervals. Let $I\in \mathcal{I}_{\delta}$ with $|I|<<1$ .
Let $J_{i},$ $i=1,$ $\cdots,n$ be the components of the domain of the first return map to $I$

intersecting $\omega(c)-I$ and let $J_{0}=I$ . The following is easy:

Lemma 2.1 There is a constant $\delta_{1}>0$ such that for any $0\leq i\leq n$ ,

$\frac{d_{\mathrm{e}}(\omega(c)\cap J_{i},\omega(c)-J_{i})}{diam_{e}(\omega(c)\cap J_{i})}\geq\delta$ .

Let us denote by $\gamma_{i}$ the unique simple geodesic in $C-\omega(c)$ separating $\omega(c)\cap J_{i}$ from
$\omega(c)-J_{i}$ . Denote by $l(\gamma_{i})$ the length of $\gamma_{i}$ in the hyperbolic metric of $C-\omega(c)$ . Let
$\Omega_{i}$ denote the topological disk bounded by $\gamma_{i}$ . Due to the previous lemma and the
existence of the number $M$ , there is two constants $0<\delta_{2}<\delta_{3}<\infty$ such that for
any $i,$ $\delta_{2}\leq l(\gamma_{i})\leq\delta_{3}$ .

From now on, we shall use $d$ to denote the distance in the hyperbolic metric of
$C-\omega(a)$ , and use $d_{e}$ to denote the Euclean distance in $C$ .

Let $X=C- \bigcup_{i}\Omega_{i}$ . $X$ is a finitely connected planar hyperbolic Riemann surface
with one cusp, whose remaining ends are cut off by geodesic $\gamma_{0},$ $\gamma_{1},$ $\cdots,$ $\gamma_{n},$ $n\geq 1$ .
Since the hyperbolic length of $\gamma_{i}$ is uniformly bounded from zero, by a theorem of
$\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$ , there is a constant $\delta_{4}>0$ such that there are $i,j\in\{0,1, \cdots, n\},$ $i\neq j$

with
$d(\gamma_{i}, \gamma_{j})\leq\delta_{4}$ .

For any $z\in C$ such that $g^{n}(z)\not\in P(g)$ , let $||(g^{n})’(z)||$ denote the norm of $(g^{n})’$

measured in the hyperbolic metric of $C-P(g)$ . By considering pull back to the
neighborhood of a critical point, we have the following:

Proposition 2.5 There is positive constants $\delta_{5},$ $\delta_{6},$ $\delta_{7},$ $\delta_{8)}$ a nonnegative integer $p_{f}$

two symmetric admissible intervals $K,$ $L$ which are pull backs of I with the following
properties:

(1)

$\frac{d_{e}(\omega(c)\cap I\mathrm{t}’,\omega(c)-I\mathrm{f})}{diam_{\mathrm{e}}(\omega(c)\cap I\{\mathrm{i})}\geq\delta_{5}$ , $\frac{d_{e}(\omega(c)\cap L,\omega(c)-L)}{diam_{e}(\omega(c)\cap L)}\geq\delta_{5}$;

(2) there exists a domain $\tilde{\Omega}_{L}$ such that $f^{p}$ : $\tilde{\Omega}_{L}arrow\Omega_{L}$ is a conformal map) and

$d(\gamma_{J\mathrm{i}^{\vee}}, \partial\tilde{\Omega}_{L})\leq\delta_{6}$ , $\delta_{7}\leq l(\partial\tilde{\Omega}_{L})\leq\delta_{8}$ ,

where $\gamma_{I\backslash }.$,( $\gamma_{L}$ , resp.) is the simple geodesic separating $\omega(c)\cap K$ ($\omega(c)\cap L$ , resp.) from
$\omega(c)-K$ ($\omega(c)-L$ , resp.), and $\Omega_{I\dot{\iota}’}(\Omega_{L})$ is the topological disk bounded by $\gamma_{K}$ ( $\gamma_{L}$ , resp.).

Let $K$ and $L$ be the symmetric nice intervals constructed in the last proposition.
Let

$B_{I\backslash }-$ : $( \bigcup_{j=0}^{r}I\mathrm{t}_{1}^{\prime j})\cup I\mathrm{f}_{2}arrow\bigcup_{i=1}^{2}I\mathrm{f}_{i}$

denote the real box mapping associated to $K$ . Since $I$ is a $\delta$-excellent interval, we
know that both of $K$ and $L$ are $\delta’$-excellent intervals for some $\delta’>0$ depending only
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on $\delta$ . By proposition 2.4, either of $K$ and $L$ has at most $N=N(\delta)$ unimodal pnll
backs.

For the moment, let us fix a point $x\in J(f)$ such that $\omega(x)=\omega(a)$ and such
that $x$ is not in the backward orbit of any critical point of $f$ .
Proposition 2.6 There is a constant $C>1$ , a domain $\Omega\in\{\Omega_{K_{1}}, \Omega_{\mathrm{A}_{2}’},\tilde{\Omega}_{L}\}$ and a
nonnegative integer $k$ such that there is a univalent branch $h$ of $g^{-k}$ defined on $\Omega$

and $d_{e}(x, h(\Omega))\leq Cdiam_{e}(h(\Omega))$ .

Proof. The proof will be divided in two cases. Case 1 will be done similarly as the
case that we have decay geometry (a large real bound), case 2 has to be done in a
different way.

Let
$R=R_{K}.’( \bigcup_{j=0}^{r}K_{1}^{i})\cup I\{\mathrm{i}_{2})arrow K_{1}=K$

denote the first return map to $K$ . Write $R|K_{1}^{j}=f^{s_{1}^{f}}$ , and denote by $D_{j}$ the compo-
nents of $f^{-s_{1}^{j}}(\Omega_{I\backslash }-)\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\dot{\mathrm{i}}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}\omega(a)\cap K_{1}^{i}$. Write $R|I\iota_{2}’=f^{s_{2}}|K_{2}$ and let $\tilde{\Omega}_{I\backslash _{2}^{r}}$ be the
component of $f^{-s_{t}}(\Omega_{I\backslash }.’)$ containing $I\mathrm{f}_{i}\cap\omega(a)$ . Let $s_{i}’\leq s_{i}$ be the positive integer
such that $B_{K}|I\iota_{i}’=f^{s_{i}’}$ , where $B_{I\backslash ^{r}}$. is the box mapping associated to $K$ .
Lemma 2.2 There is a constant $\delta_{\mathrm{I}3}>0$ such that

diam$( \bigcup_{j=0}^{r}D_{j}-\Omega_{L\{’})\leq\delta_{13}$ .

proof. Any component $E$ of $D_{j}-\Omega_{I\backslash }$. is a topological disk whose boundary is
contained in $\partial D_{j}\cup\partial O?nega_{K}$ . Since $l(\partial D_{j})$ is bounded from above uniformly, so is
the diameter of $E$ . Since $\partial E\cap\partial\Omega_{I\mathfrak{i}^{-}}\neq\emptyset$ , the proof is completed. qed of lemma

Continuation of proof of Proposition 2.6:
Case 1. For any Ilonnegative integer $k,$ $d(f^{k}(x), \partial\Omega_{I\mathrm{s}’})>\delta_{13}$ .
In $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\iota 1\mathrm{l}\mathrm{a}\mathrm{r}$ this means that for any $k\geq 0$ ,

$f^{k}(x) \not\in(\bigcup_{j=0}^{r}D_{j}-\Omega_{K})$ .

This case can be done using a similar argument as in case I.

Case 2. There is a nonnegative integer $k$ such that $d(\partial\Omega_{I\backslash }\cdot, f^{k}(x))\leq\delta_{13}$ .
In this case we shall show that there is a univalent branch $h$ of $f^{-k}$ defined on

$\Omega=\Omega_{K}$ or $\tilde{\Omega}_{L}\mathrm{s}\iota$ ch that $d_{e}(a, h(\Omega))\leq\delta_{14}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{\mathrm{e}}(h(\Omega))$ .
Let us call a topological disk $D$ admissible if $\partial D\cap omega(a)=\emptyset$ and there is an

admissible interval $I$ such that $D\cap\omega(a)=I\cap\omega(a)$ . Let $P_{1},$ $P_{2}$ be two admissible
topological disks and $k$ be a nonnegative integer, we say that the triple $(k, P_{1}, P_{2})$

is bounded by a consiant $C>0$ if

$d(f^{k}(x), \partial P_{i})\leq C,$ $1(\partial P_{i})\leq C$

for $i=1,2$ .
Convention: For a Jordan curve we always give it the anticlockwise orientation.
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Lemnua 2.3 Let $P$ be a topological disk such that $\partial P\cap\omega(a)=\emptyset$ and $k$ be a non-
negative integer. Let $\rho\subset C-\omega(a)$ be a path with initial point $f^{k}(x)$ and endpoint
$u)\in\partial P$ such that if we denote $\rho’$ the lift of $\rho$ under $f^{k}$ with initial point $x$ and $z$

the endpoint of $\rho’$ , then the lift of $\partial P_{f}$ considered as a loop based at $w$ , with initial
point $z$ is a closed Jordan curve. Suppose

$l(p)\leq C,$ $C\geq l(\partial P)\geq\epsilon,$ $l_{e}(\partial P)^{2}\leq Carea(P)$

and the injecticity radi $\mathrm{t}\iota s$ of $f^{k}(x)$ in $C-\omega(a)$ $is\geq\eta$ , where $C>0,$ $\epsilon>0$ and
$\eta>0$ are constants.

Then there is a constant $C’$ depending only on $C,$ $\epsilon$ and $\eta$ and a unival,$ent$ branch
$h:Parrow C$ of $f^{-k}$ such that

$d_{e}(x, h(P))\leq C’diam_{e}(h(P))$ .

proof. Let $\gamma$ denote the lift of $\partial P$ with initial point $z$ and let $D$ denote the
topological disk bounded by $\gamma$ , then $f^{k}$ : $Darrow P$ is a conformal mapping. Let $h$

denote the inverse of this conformal mapping. $h$ has an analytic continuation along
the path $\rho^{-1}$ .

Since $\rho\cup\partial P$ has diameter bounded from above in the hyperbolic metric of
$C-\omega(a)$ and the point $f^{k}(x)$ has injectivity radius bounded from zero, there is
a constant $\eta_{1}>0$ depending only on $C$ and $\eta$ such that each point in $\xi\cup\partial P$

has injectivity radius $\geq\eta_{1}$ . Consequently, $\rho\cup\partial P$ can be covered by finitely many
embedded disks in $C-\omega(a)$ and the number of these disks is bounded from above.
So it follows from Koebe’s distortion theorem that $h|(\rho\cup\partial P)$ has bounded distortion,
where we measure $|h’|$ in the $\mathrm{F}_{\lrcorner}\mathrm{u}\mathrm{c}\mathrm{l}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{n}$ metric. Since $h$ is conformal on $P$ , it has
bounded distortion on $P$ . So $l_{e}(\partial h(P))^{2}/\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{a}_{e}(h(P))$ is bounded from above, and
hence $l_{e}(\partial h(P))/\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{e}(h(P))$ is bounded from above.

Since the injectivity radius is bounded from zero on $\rho\cup\partial P$ and diam$(\rho\cup\partial P)$

is bounded from above, by Koebe’s distortion theorem the ratio of the Euclidean
metric to the hyperbolic metric is comparable on the set. So $l_{e}(\rho)\leq C_{1}l_{\mathrm{e}}(\partial P)$ and
hence

$d_{e}(x, h(P))\leq l_{e}(\rho’)\leq C_{2}l_{e}(\partial h(P))\leq C’\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{e}(h(P))$ .

qed of lemma 2.3.

Corollary 2.7 Let $T_{i}$ be a small symmetric nice interval and $P_{i}$ be an admissible
topological disk such that $P_{i}\cap\omega(a)=T_{i}\cap\omega(a),$ $i=1,2$ . Assume that $T_{1}\cap T_{2}=\emptyset$ .
Let $k$ be a positive integer such that the triple $(k, P_{1}, P_{2})$ is bounded by a constant
$C>0$ . Then there is a constant $m(C)$ depending only on $C$ and an $i\in\{1,2\}$ such
that one of the following holds:

(1) A univalent branch $h$ of $f^{-k}$ can be defined on $P_{i}$ such that $d_{e}(x, h(P_{i}))\leq$

$C’diam_{e}(h(P_{i}))$ ; or
(2) $Tl\iota e\iota’ e$ are two interval $T_{i,1)}T_{i,2}$ , two topological disk $P_{i,1y}P_{i,2}$ a positive

integer $k’<k$ such that
$($2. $i)$ .$f(T_{i,1})=f(T_{i,2})_{f}f(P_{i,1})=f(P_{i,2}),$ $f^{k-k_{1}}(P_{i,1})=P_{i\mathfrak{j}}$

$(\mathit{2}.ii)T_{i,j}\cap\omega(a)=P_{i,j}\cap\omega(a)\neq\emptyset,$ $j=1,2$ ;

54



$(\mathit{2}.iii)$ the triple $(k’, P_{i},, {}_{1}P_{i,2})$ is bounded by $m(C)$ ;
$(\mathit{2}. iv)$ for each $j=1,2_{f}$ there is a monotone maximal chain $\{G_{m}(j)\}_{m=0}^{k-k’}$ such

$tl\iota atG_{m}(j)=T_{i}$ and $G_{0}(j)=T_{i,j}$ .

Proof. First let us show that the injectivity radius of $f^{k}(x)$ . is bounded from zero.
Since $l(\partial P_{1})\leq C,$ $d(\gamma_{T_{1}}, \partial P_{1}))$ is bounded from above, and therefore $d(\gamma_{T_{1}}, f^{k}(x))$

is bounded from above. Since $l_{h}(\gamma_{T_{1}})$ is not too small, a point on $\gamma_{T_{1}}$ has injectivity
radius bounded from zero, and hence so does $f^{k}(x)$ .

Let $\xi_{i}$ denote the shortest geodesic (in the hyperbolic surface $C-\omega(a)$ ) from
$f^{k}(x)$ to $\partial P_{i},$ $i=1,2$ . Then

$l(\xi_{i})\leq C,$ $i=1,2$ .

Let $\xi_{i}’$ denote the lift of $\xi_{i}$ with initial point $x$ under $f^{k},$ $i=1,2$ . Let $z_{i}$ denote the
endpoint of $\xi_{i}’$ . Let $\zeta_{i}$ denote the lift of $\partial P_{i}$ under $f^{k}$ with initial point $z_{i}$ .

If either of $\zeta_{1}$ and $\zeta_{2}$ is a closed Jordan curve then we are in Case (1) by lemma
2.3 since $l(\partial P_{i})\geq l(\gamma_{T}.\cdot)$ is bounded from zero.

Assume we are not in this case. Let $k_{i}$ be the maximal integer such that $f^{k_{i}}(\zeta_{i})$

is not a closed Jordan curve. Without loss of generality, assume that $k_{1}\geq k_{2}$ . Let
$\triangle_{i}$ denote the domain bounded by $f^{k.+1}(\xi_{i}’)$ , then both $\triangle_{1}$ and $\triangle_{2}$ contains a critical
value of $f$ . It is not difficult to see that $f^{k_{1}+1}(\zeta_{1}\cup\zeta_{2}\cup\xi_{1}’\cup\xi_{2}’)$ has small diameter in
the Euclidean metric provided that both $|T_{1}|$ and $|T_{2}|$ are small. So we may assume
that $k_{1}>k_{2}$ . By the same reason, the set $f^{k_{1}}(\zeta_{1}\cup\zeta_{2}\cup\xi_{1}’\cup\xi_{2}’)$ is close to a critical
point $c$ which is contained in the set $\omega_{f}(x)$ . Let $U$ be a small neighborhood of $c$

such that $f|U:Uarrow f(U)$ is a brached covering with a unique critical point $c$ and
$\phi$ : $Uarrow U$ is the prime transformation of the branched covering such that the lift
of $\partial f(U)$ , considered as a loop based at $f(z)(z\in\partial U)$ , with initial point $z$ under $f$

is ended by $\phi(z)$ .
Let

$\rho=\xi_{2}*\xi_{1}^{-1}*\partial P_{1}*\xi_{1}$ .
$\rho$ is a piece smooth Jordan curve from $f^{k}(x)$ to $\partial P_{2}$ whose hyperbolic length is
bounded from above. Let $\rho’$ be the lift of $\rho$ with initial point $x$ under $f^{k}$ and $z’$ the
endpoint of $p’$ . The endpoint $f^{k_{1}}(z’)$ of $g^{k_{1}}(p’)$ is $\phi(f^{k_{1}}(z_{2}))$ . The lift of $\partial P_{2}$ with
initial point $\phi(f^{k_{1}}(z_{2}))$ is the Jordan curve $\phi(f^{k_{1}}(\zeta_{2}))$ , which bounds a topologica,1
disk $\phi(f^{k_{1}-k_{2}-1}(\triangle_{2}))$ .

Let $P_{2,1}=f^{k_{1}k_{2}1}--(\triangle_{2})$ and $P_{2,2}=\phi(P_{2,1})$ . Then $f(P_{2,1})=f(P_{2,2})$ . If $P_{2,2}\cap$

$\omega(a)=\emptyset$ , then the lift of $\partial P_{2}$ under $g^{k}$ with initial point $z’$ is obviously a closed
Jordan curve and hence by lemlna 2.3, we are in Case (1). So let us assume $P_{2,2}\cap$

$\omega(a)\neq\emptyset$ . Obviously both $P_{2,1}$ and $P_{2,2}$ are admissible topological disks, and the
only non-trivial part to be verified is $(2\mathrm{i}\mathrm{i}\mathrm{i})$ . It follows from the Schwarz lemma. qed
of Corollary 2.7

We can complete the proof of Proposition 2.6 now.
Contin $\mathrm{t}\iota ation$ of Proposition 2.6:
If $\tilde{\Omega}_{L}\cap\omega(a)=\emptyset$ , then it follows from lemma 2.3 that we can take $\Omega=\tilde{\Omega}_{L}$

to conclude the proof. So assume that $\tilde{\Omega}_{L}\cap\omega(a)\neq\emptyset$ . Then $\tilde{\Omega}_{L}$ is an admissible
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topological disk. Let $P_{1}=\Omega_{I\mathrm{t}^{r}}$ and $P_{2}=\tilde{\Omega}_{L}$ . Let $T_{i}$ be the admissible interval
such that $T_{i}\cap\omega(a)=P_{i}\cap\omega(a),$ $i=1,2$ . The triple $(k, P_{1}, P_{2})$ is bounded by
$C_{0}=\delta_{2}+\delta_{6}+\delta_{8}+\delta_{13}$ . Notice that $T_{1}=K$ and $T_{2}$ is a monotone pull back of $L$ .

Apply corollary 2.7 to the triple $(k, P_{1}, P_{2})$ , we have two possiblities. If we are
in Case (1) in that corollary, then the proof is completed. Assume that we are
in Case (2). Then we have $i_{0}\in\{1,2\}$ and another triple $(k_{1}, P_{i_{0}1}, P_{i_{0}2})$ which is
bounded by some constant $C_{1}=m(C_{0})$ . Let $T_{i_{0}j}$ be the admissible interval such
that $T_{i_{0}j}\cap\omega(a)=P_{i_{0}j}\cap\omega(a)\neq\emptyset,$ $j=1,2$ . Both of $T_{i_{0}1}$ and $T_{i_{0}2}$ are monotone pull
back of $T_{i_{0}}$ .

Apply corollary 2.7 to the triple $(k_{1}, P_{i_{0}1}, P_{i_{0}2})$ and so on. Either we complete
the proof within $N+1$ steps, or we will have $i_{0},$ $i_{1},$ $\cdots$ , $i_{N}\in\{1,2\}$ and admissible
intervals $T_{i},$ $T_{i_{0}}.$

”
$T_{i_{0}i_{1}j},$ $\cdots,$ $T_{i_{0}i_{1}\cdots i_{N}j},$ $j=1,2$ , intersecting $\omega(a)$ such that for any

$0\leq s\leq N,$ $T_{i_{0}i_{1}\cdots i_{*}1}.\neq T_{i_{0}i_{1}\cdots i_{s}2}$ are both monotone pull back of $T_{i_{0}i_{1}\cdots i_{*}}.\cdot$ For any
$i\in\{1,2\}$ , let $i’$ denote the element of $\{1, 2\}-\{i\}$ . Let

$\mathrm{S}=\{T_{i_{0}i_{1}’}, \cdots, T_{i_{0}i_{1}\cdots i_{N}’}, T_{i_{\mathrm{O}}i_{1}\cdots i_{N}1}, T_{i_{0}i_{1}\cdots i_{N}2}\}$ .

Then $\mathrm{S}$ has $N+1$ elements, which are all monotone pull back of $T_{i_{0}}$ . For each
$S\in \mathrm{S}$ , let $k(S)$ be the minimal positive integer such that $f^{k(S)}(c(S))\in S$ for some
$c(S)\in\{a, -a\}$ and let $T(S)$ be the pull back of $S$ along the orbit $\{f^{j}(c(S))\}_{j=0}^{k(S)}$ .
Then $T(S)$ is a unimodal pull back of $T_{1}=K$ (if $i_{0}=1$ ) or $L$ (if $i_{0}=2$). It is easy
to see that for $S,$ $S’\in \mathrm{S}$ with $S\neq S’,$ $T(S)$ and $T(S’)$ are different. So we know
that either $K$ or $L$ has at least $N+1$ children, which is a contradiction. $\mathrm{Q}.\mathrm{E}$ .D.

Corollary 2.8 For any $f$ -invariant line field $\mu,$ $\mu(x)=0$ or $\mu$ is not almost con-
tinuous at $x$ .

Proof. For any $I\in \mathcal{I}_{\delta}$ sufficiently short, we have proved in proposition 2.6 that
there exists a pull back $T\in \mathcal{I}_{\delta’}$ of $I$ and an admissible topological disk $\Omega$ such that

(1) $\Omega\cap\omega(a)=T\cap\omega(a)$ ; and
(2) there exists a univalent branch $h$ of some $f^{-k}$ defined on $\Omega$ such that

$d_{e}(x, h(\Omega))\leq Cdiam_{e}(h(\Omega))$ .

Let $T’$ be the maximal open interval containing $T$ such that $T’\cap\omega(a)=T\cap\omega(a)$

and let $D=C-(R-T’)$ . Then $h$ extends to a univalent function on $D$ . Also by
the possibilities of $\Omega$ we have that $\mathrm{m}\mathrm{o}\mathrm{d} (D-\overline{\Omega})$ is bounded from zero uniformly.

Let $T_{j},$ $j=0,1,$ $\cdots$ be the components intersecting $T\cap\omega(a)$ of the domain of the
first return map of $f$ to $T$ . By the existence of the bound $M$ , it is not difficult to
show that there exists $j_{0}$ such that $R|T_{j}$ is not monotone and $|T_{j_{0}}|$ is comparable to
$|T|$ . Let $s\in N$ be such that $R|T_{j_{0}}=f^{s}|T_{j_{0}}$ and let $\Omega_{0}$ be the component of $f^{-S}(\Omega)$

containing $T_{j_{0}}\cap P(g)$ . Then $\Omega_{0}\subset D$ and $f^{s}$ : $\Omega_{0}arrow\Omega$ is a proper map whose degree
is bounded from above uniformly and bounded from below by 2.

We can then $\iota \mathrm{s}\mathrm{e}$ pull back to define a sequence $\{h_{n} : U_{n}arrow V_{n}\}$ in $\mathcal{H}(f)$ such
that $U_{n},$ $V_{n}$ has uniformly “good shape”, $diam_{\mathrm{e}}(U_{n}),$ $diam_{e}(V_{n})arrow 0$ as $narrow\infty$ ,
$d_{\mathrm{e}}(x, U_{n})/diam_{\mathrm{e}}(U_{n}),$ $diam_{e}(x, V_{n})/dian?_{e}(V_{n})$ are uniformly bounded and such that
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after approriate rescaling, $h_{n}’ \mathrm{s}$ are uniformly linear. Thus the corollary holds.
$\mathrm{Q}.\mathrm{E}$.D. Since for $\mathrm{a}.\mathrm{e}$ . $x\in J(f),$ $\omega(x)=\omega(a)$ and $f^{k}(x)\not\in\{a, -a\}$ for any
$k\in N\cup\{0\}$ , we have

Corollary 2.9 If there is a positive constant $M$ such that for any nice interval $I$ ,

$\frac{d_{e}(\omega(a)\cap I,\omega(a)-I)}{dia\uparrow n_{e}(\omega(a)\cap I)}\leq M$,

$the\uparrow\iota,$ $J(f)$ carries no invariant line field.
Combined with Corollary 2.2, we have proved the main theorem.
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