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LP-boundedness of wave operators for
two dimensional Schrodinger operators

Kenji Yajima (BF &)
Department of Mathematical Sciences, University of Tokyo

3-8-1 Komaba, Meguro-ku, Tokyo, 153 Japan

1 Introduction, Theorems

This lecture is concerned with the boundedness in LP or Sobolev spaces of
the wave operators for the Schrodinger operators. Let Hy = —A be the free
Schrédinger operator on RY, d > 1, and H = Hy + V be its perturbation by
a multiplication operator with a real valued function V. It is well known .%
the spectral and scattering theory for Schrodinger operators([1], [4], [5], [6])
that if V is short range, viz. V(z) decays at infinity like ~ C|z|™!7¢, € > 0,
then:

1. The operator H is selfadjoint in the Hilber space L?(R?) with the
domain H?(R?), the Sobolev space of order 2.

2. The spectrum of H consists of non-positive eigenvalues and the abso-
lutely continuous spectrum [0, 00). The singular continuous spectrum

of H is absent.

wH o—itHoy, oxist.

3. The wave operators defined by the limits W,ou = tginoo e
The wave operators W, are unitary from L?(R?) onto the absolutely
continuous spectral subspace L2, (H) for H and intertwine Hy and the
absolutely continuous part HP,. of H: WyH,W} = HP,., where I—af;

is the projection onto L2 (H).
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It follows from the peoperty (3) that f(H)P,, = WL f(H,)W? for any Borel
function f on R! and the mapping properties of f (H) P, between LP spaces
or Sobolev spaces W*?(R?) may be derived from those of f(Hy) if W, and
W are bounded in the L? or Sobolev spaces. Note that f (Hp) is the convo-
lution operator by the Fourier transform K (z) of the function f (¢?) and the
L? — L7 continuity of f(H) may be derived by studying the function K (z )'.
In particular, we can obtain the following L — L7 estimates for the propa-

gator e P,(H) of the time dependent Schrodinger equations id,u = Hu
int
SWIVH b (Y of
vH

the wave equation with potential 0?u+ Hu = 0 by applying our theorems to

on the continuos spectral subspace and for the propagator

the well-known estimates for free equations:
le™ Po(H)ullz» < CJt| =210 |y]| .,

EE\;LH—/E . < Cl|= D2 |y o asaysma
both for2<pand 1/p+1/p =1.

When the spatial dimensions d > 3, we have shown in our previous pa-
pers ([15], [16]) that the wave operators W, are bounded in LP(R9) for all

1<p <o under suitable conditions. For small potentials, the following

P.(H)u

theorem([15]) covers rather general potentials and when d = 3, the wave
operator is bounded in L? for any 1 < p < oo when () V|2 is small for
some o > 1, (z) = (1 + 2?)!/2. We write d, = (d — 1)/(d — 2).

Theorem 1.1 Let d > 3. Suppose that F((z)°)V € L%(R?) for some
-0 > 2/d, and || F((z)°)V||pe. is sufficiently small. Then Wy are bounded
in LP(R?) for all 1 < p < co.

For larger potentials, we need an additional spectral condition for W to

be bounded in L” and we obtain the following theorem([16]).



Theorem 1.2 Let d > 3. Suppose that there exists a constant C > 0 such
that, for some p > d/2, V satisfies

IV lze(z—yi<1y < C(1+ |ml)“(3d+2+e)/2.

Suppose, in addition, that zero is neither eigenvalue nor resonance of the

operator H. Then, the wave operators Wy are bounded in LP(R?) for all
1 <p<oo. |

Here, zero is said to be a resonance of H if the equation —Au+V(z)u(z) =0
has a solution u such that (z)~'~*u € L?(R¢) but v ¢ L?(R%). It is well know
that 0 is not a resonace for H. If 0 is a resonance or eigenvalue of H, itis

;
known that the wave operators cannot be bounded in L? for all 1 < p < oo.

Remark 1.3 If D*V, |o| = 0,1,...,4, satisfy the conditions of Theorem
1.1 or Theorem 1.2, then the wave operators W are bounded in the Sobolev

space W*P(RY) for all1 <p < ooandk=0,1,...,£. See[15] for the details.

In the lower dimensions d = 1 and d = 2, however, the high singularities
of the resolvent (Hy—z)~! at z = 0 prevents us to apply the analysis valid for
higher dimensions. The one dimensional case, however, can be treated as fol-

lows by writing the wave operators in terms of the generalized eigenfunctions

in the form
Wou(z \/_ / (3, K)i(k)dk.
We estimate the integral kernel

1 ) , .
K@y)= o= [ e™gu(a,k)dk

by using the information on the eigenfunctions obtained in the ODE theory,

and then appply standard L? estimates for the sihgular integral operators on
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the line. In this way, we can prove the following theorem([3]). We denote by
f+(z, k) the solution of — f”+V f = k2f which satisfies | f1(z, k) —e="*| — 0
as £ — too. We say that V is of generic type if [f,(z,0), f-(z,0)] # 0, aud
of exceptional type if [f,(z,0), f_(z,0)] = 0, where [u,v] = uv'v — uv' is the

Wronskian.

Theorem 1.4 Suppose (z)3V € L'(R') if V is of generic‘type and (z)*V €
LY (RY) if V is of exceptional type. Then, the wave operators W, are bounded
in LP(R?) for all 1 < p < 0.

Remark 1.5 The decay conditions on the potential has been relazed by Weder
[14] to (z)2V € LY(R') or to (z)*V € L'(R') in respective cases. Moreover,
Wy are bounded in the Hardy space H'(R?) and BMO space. See, [14] for
the details.

The purspose of this lecture is to extend these results to two dimensions.

We assume that V' is bounded and satisfies the following decay condition.

 Assumption 1.6 The potential V() satisfies |V (x)| < C{z)~°, = € R? for
some 6 > 6. '

For stating the main result, we need some notation which we introduce
now. For s € R and integral k > 0, H**(R*) = {f: }_ |[(z)°*D*f|l> < oo}

la|<k
is the weighted Sobolev space, and L?*(R?) = H%*(R?). For Banach spaces

X and Y, B(X,Y) is the space of bounded operators from X to Y, B(X) =
B(X, X). We denote the boundary values on the positive reals of the resol-
vents Ry(z) and R(z) = (H — 2)~! by

Ri(\) = Jim Ro(X  e), R*(X) = lim R(\ £ ie).

e—+0
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These limits exist in B(L?°(R?), H>7°(R?)), 0 > 1/2 and they are locally
Hélder continuous with respect to A € (0,00) (cf. [1]). In two dimensions,
R¥(k®) has the logarithmic singularities at k¥ = 0 and has the following
asymptotic expansion as a B(L?*(R?), H>~*(R?))-valued function, s > 3:

RE(K?) = ¢t (k) Py + Gy + O(k* log k), (1.1)

2 2 k?
where ct(k) =1+ i=y+ z;log 5 is the Euler number, P, is the rank
71. N

one operator defined by

Pou(z) :/ u(x)dz

R2

and Gy is the minimal Green function of —A:
-1
Gou(z) = 5 [ (log|z — yl)u(y)dy

We write ¢p = /V(ac)d:v and set Vp(z) = c5'V(z), P=PRVoand Q = 1— P.
We have P? = P and Q% = Q. We assume

Assumption 1.7 ¢y # 0 and 1+QGoV Q is invertible in L>~*(R?) for some
l<s<éd—1.

The main theorem in this lecture may be stated as follows:

Theorem 1.8 Suppose that Assumption 1.6 and Assumption 1.7 are satis-
fied. Then, for any 1 < p < oo, there exists a constant C > 0 such that

Weull, < Cpllully,  u e L*(R*) N LP(R?)
where the constant C > 0 is independent of u.

Some remarks are in order:
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Remark 1.9 If Assumption 1.7 is satisfied, then 1 + QGoV Q is invertible
in L2=5(R2) for all1 < s < 6—1 (cf. [7]). Assumption 1.7 is satisfied if and
only if there are no non-trivial solutions u € HZ (R?) of —Au+V(z)u =0
which satisfy the asymptotic behaviour at infinity

8"‘ ( b1331 + bgﬂ?z
—a —

dze 2

for some € > 0, where a,b; and by are constants. If at least one of the

PRI 0o, el <1 (12

constants a, b, and by does not vanish, then u is called a resonant solution or
a half bound state and 0 is the resonance of H. If all these constants vanish,

then u is an eigenfunction of H and 0 is an eigenvalue of H.

Indeed, if u € L?~° satisfies u+QGoVu = 0, then u = Qu and —Au+Vu = 6
since —AQ = —A. Moreover, u € L>»~*(R?) for any s > 1 and letting
|z| = oo in the integral expression GoVu(z) = _—1/10g |z — y|V (y)u(y)dy
and using Pu = /VO (z)dz = 0, we see that u satisfies (1.2)(cf. [2]). On
the other hand if u satisfies —Au+V(z)u = 0 and (1.2), then, by comparing
the singularities at £ = 0 of the Fourier transforms F(Vu)(¢) and £2Fu(f),
we have F(Vu)(0) = 0 or Qu = u. And, in virtue of (1.2), the limit as
R — oo of the boundary integral in the right hand side of

. —1
lim —— [ (=Au)(y)log | - yldy
)

R—o0 27 Jly|<R
1 ou dlog |z — y
= u(z) + lim — / log | — IORIT YN g
o)+ im o [ (Gewole - ol - utn) ")
converges to the constant —a. It follows that GoVu = —u(z) + a and

QGoVQu + u =0, since Qa = 0.

Remark 1.10 As in the higher dimensional case, we can prove by applying

the commutator method of [15] that W, are bounded in the Sobolev space



WkP(R?) for any 1 < p < co and k = 0,...,€ if V satisfies |D*V (z)| <
Colz)™? for |a| < £ and Assumption 1.7. |

Remark 1.11 Likewise, if z = 0 is a resonance or an eigenvalue of H, W

cannot be bounded in LP(R?) for all1 < p < co. Indeed Murata [7] has shown

that e 7 P,  in this case satisfies
Jim |(logt)e ¥ Poe f — Cofllp2-s =0, s> 3, (1.3)

where Cy # 0 is an explicitly computable finite rank operator. This clearly
contradicts with the LP boundedness of W because the latter would imply

(log t)e ™ Py f||r2-e < ||(log t)Wie “HoW fl|1»
< Gl fll o (log t)t~2/271/P) 5 0 (t — 00)

for sufficiently large p > 2 and p' = p/(p—1) and because L>~* N LP is dense

in L>s,

In what follows we deal with W, only. W_ may be treated similarly. We
use the following notation and convention. D; = —id/0z;, j = 1,2, and
we use the vector notation D = (Dy, Dy), (D) = (1 + D*)Y2. ||ul|, is the
L? norm of u, 1 < p < co. ¥ is the unit circle S' C R? and dw denotes
the standard line element of X. fu(f) = 4(¢) = —2-17_r /R . e ¢y (z)dz is the
Fourier transform of u, Various constants are denoted by the same letter
C if their specific values are not important, and these constants may differ
from one place to another. We take and fix throughout this paper the cut-off
functions x(¢t) € CP(RY) and x(t) € C®°(R}Y), x(t) + %(t) = 1, such th-¢
x(B) = (), 0 < x(&),%(#) < 1, x(t) = 1 for |¢| < ¢ and x(t) = 0 for
|t| > 2¢, where 0 < ¢ < 1 is the sufficiently small constant to be specified

below. We note that x(Hp) is the convolution operator with the Fourier
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transform of x(¢?) € C§°(R?) and x(H,) and x(H,) are bounded operators
in L”(R2 for any 1 < p < oo. For f and g in suitable function spaces,

)= [ f(2)
2 Outline of the Proof

We outline the proof of Theorem 1.8. The basic strategy is similar to the one
employed in [15] and [16] for proving the corresponding property in higher
dimensions d > 3: We start from the stationary representation formula ([6]):
1 00
Wiu=u-— — R~ (K*)V{R{ (k?) — Ry (k?)}kudk (2.4)
0

and expand W, into the sum of a few Born terms and the remainder
)
W+ - Z W+] + Wg+1

by successively replacing R~ (k?) by R™(k®) = Ry (k*) — Ry (k*)VR™(k?) in
the right of (2.4): W(O) = I is the identity operator and for j = 1,...,¢,

Wy, = & 1) / Ry (K)V)H{Rf (k?) — Ry (k?)}kudk, (2.5)

_1)8+1

Wesru = /0 " Ry (R)VE(R){RE (k) — By (k) }eudk,  (2.6)

m
where Fp(k?) = (Ry (k?)V)“ 1R~ (k?)V. We prove that the Born terms W)
are bounded in LP(R?) for all 1 < p < oo by showing that they are superpo-
sitions of compositions of essentially one dimensional convolution operators;
the remainder term Wy, has the integral kernel K (x,y) which satisfies the
condition of Schur’s lemma

sup | |K(z,y)|dy <oo, sup [ |K(z,y)|ldr < oo
zeR? /R? yeR? /R2



and, therefore Wy, is bounded in L?(R?) for all 1 < p < co. We explain
here the difficulties which we encounter in this approach, in two dimensions in
particular, and the ideas how to overcome these difficulties. As the difficulties
are of different kinds in the low energy part and the high energy part, we
split W, into the high W, x(H,) and the low energy parts W, x(H,) by using
the cut-off functions introduced above.

First, we prove that the first two Born terms W) and W@ x(H,) are
bounded in LP(R?) for any 1 < p < co. We write W) = W1)(V) when we

want to make the dependence on V' explicit.

Lemma 2.12 The operators W) and W® may be written in the form

W(l) = ——/ dw/ (t + 2zw, w)u(z + tw)dt; (2.7)

W(2)u($) =C : dQ) 0.00)2 Kz(tl, to + 2zw,, Wy, wg)u(:c + tiwy + tzwz)dtldtg,
2 0,00

(2.8)

where C = (i/47)?, dQ = dw,dw, and
K(t,w) = /000 V (rw)e/?dr, (2.9)

Kg(tl, tz, Wi, wz) fe / ei(tl51+t252)/2V(81w1)V(82W2 hand Slwl)d81d82. (210)

[0,00)?

Proof. By writing V() = (27)™* / eV (€)dé we have

EWOuE) = - [ o ([ G al(e ~ 0 - Nide - min)

Computing the Fourier inverse transform in

zmgv )u g )
1) 77 n
W u(z 27r .// 26-n—n2+10 dnd¢
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we obtain (2.7). For obtaining (2.8), we repeat similar computations. See the
proof of Proposition 2.2, Lemma 2.3 and Lemma 2.4 of [15] for the details. y

When d > 3, the similar computation produces expressions (2.7) and
(2.8) for W) and W® with K € L'(R x X) and K, € L'(R? x £2). Hence,
the classical Minkowski inequality implies that W) and W(® are bounded
in LP(R?) for any 1 < p < oo if d > 3. If d = 2, this is obviously not the
case, however, we can show

Ki(t,w) = K(t,w) — 2V(0)x(t) /it € L*(R x %)
1Kl < Cl{z) V]2, s> 1

and that the integral operator which arises when K is replaced by x(t)/it in
(2.7) is a superposition /Equ(z)dw over w € ¥ of

Xt+2zw

t. 2.11
T omm u(z + tw)d ( )

After rotating the coordinates by w, we estimate F,, u(z) as follows separately

for ;1 > 0 and for z; < 0:
ugu@mggmm)/whﬂﬁﬁﬂﬁ
0

0 t+ Iy
ey [ L)

dt + 0(—
oo [t + ] (=21)

0
A %%%m*
We then apply LP boundedness theorem for the one-dimensional Hardy-
Littlewood operators on the half lines (0, +00) to the first two integrals on
the right and for one dimensional singular integral operator of the Calderon-
Zygmund type to the third, and conclude that {F, : w € X} is a family of

uniformly bounded operators in L? for any 1 < p < oo. In this way, we

obtain the estimate

||W(1)(V)u||p < Cpsll{z)°V|2||u|lp, for any s > 1. (2.12)
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The proof of the L” boundedness of W?)x(H,) is a bit more involved.
We write R’z as a sum of three functions Ko + Koo + Kog;

Ky € Ll(:R,2 X 22),
Ky = C(x(t1)/t1) x K(t2,ws),
with K (t,w) being defined by (2.9), and
K23 = (X(tg)/tz) X K'(tl,wl) K' € LI(RI X Z)

We show that the operators which are produced by replacmg K, in (2. 8) by

K,; are bounded in LP for any 1 < p < oo as follows.

1. The operator arising from K»; can be estimated by using the Minkowski

inequality.

2. If we denote by M the convolution operator with X(|z|)/|z|?, then the
operator arising from Kj, is of the form WM M. The operator M x(Hp)
is bounded in L? by Calderon-Zygmund theory;

3. The operator arising from K3 may be written in the form

[z /ooo K'(t1,w1) (/Z(szu) (z + tlwl)dwz) dw,dty

and the estimate for (2.11) mentioned above and the Minkowski in-

equality imply that this also is bounded in L”.

We then prove that the high energy part W3x(Hy) of the remainder W:’;
is bounded in L for any 1 < p < oo by showing that its integral kernel
T(z,y) is bounded by a constant times (x)~'/2(y)~1/2(|z| — |y|)~2. We write
F(k) = Ry (k*)V R~ (k?). Because Ry (k?) is the convolution operator with
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G*(z, k) = (&i/4)H (k|z|), where Hf (2) = (gj)(z) is the 0-th order Hankel
function of the j-th kind, £ corresponding to (—1)/*! (cf. [12]), T'(z,v) is
given as T'(x,y) =T (z,y) — T (,y):
T*(z,y) = —% / TFR)WVGE(y — - k), VGH(z — -, k) R(k)kdE. (2.13)
0

Cetit' i

N

In virtue of the classical estimate for Hankel functions Hi (k|x|) ~

and the decay property of the resolvent at high energy
(=)=~ (d/dk)' F (k)(z) ™" || p(z2) < Ck~?

for j = 0,1,2 and o > 1/2, the integral (2.13) is absolutely convergent.
However, a simple minded estimate by using these facts only would yield
|T*(z,y)| < C{x)~Y/?(y)~'/? which is far from being sufficient to conclude
that W3x(Ho) is bounded in L? for all 1 < p < oo. This difficulty can be
resolved by exploiting the old method in [15] and [16]: We write G*(x —
y, k) = eX*=IG; () so that

T*(z,y) = —% 0°° e =Fk(P(k)VGE,, VG ) kx(k?)dk, (2.14)
and apply the integration by parts twice to the k-integral in the right by
using the identity

1+ i(|e] F [y)(0/0K) italziyie _ ,~ilatvlol
1+ (|| * [y])

This yields the desired estimate

IT*(z, y)| < C{|z| F |y)2(z)"Y2(y) V2.

The estimate of the low energy part of the wave operator W, x(Hp) is a

little more involved. Here we write

R™(K*)V = Ry (K*)V(1 + Ry (K*)V)~!



in (2.4) and investigate the low energy behavior of (1+ Ry (k2)V)~! following
the argument in [7] and [2]. We find that, for 0 < k < 2¢, ¢ being a sufficiently
small constant, which is the constant to be used for defining the cut off x,

(1+ Ry (k*)V)~! can be written as the sum
(1+ Ry (k)V)~! Zd VK; + N(k).

1. For 0 < j < 4, Kj is an integral operator with the integral kernel
K(z,y) which satisfies for some s > 1

/R2 [[{2)*V Kjyll2dy < oo, Kiy(z) = Kj(z,z — y). (2.15)

2. d;(k) satisfies |(0/0€)*d;(I€])| < Calé|™1el.

3. The remainder N (k) is an operator valued function which satisfies t! ¢

estimate for j = 0,1, 2:

(d/dk)! N (k)||p(r2-+) < Cjk* 7 |logk|, s> 3,

(Actually do(k) =1 and K for 1 < j < 4 are rank one operators.)

The operator which is produce by inserting Ry (k*)V N (k)x(k?) in place of
R~ (k?)V in (2.4) is an integral operator with the kernel T (x,y) — T (z, ),
T*(z,y) being given by the right hand side of (2.14) with N(k)x(k%) in
place of F(k)V%(k?). The method employed for estimating 7%(x,y) applies

because N(k) vanishes at k = with derivative, and yields

[T5(z,y)| < C{Je] = lyl) ()™ (4)~72

and the operator in question is bounded in LP for any 1 < p < oo. The

operator produced by inserting Ry (k?)Vd;(k) K in place of R~ (k?)V in (2.4)
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may be written as

-1 00

= [7 Ry RV E;d;(W{RS (#%) - By (k) bx(KD)kudk.  (2.16)

Observing that
d;(k){Rg (k") — Ry (k*)} = {R§ (¥*) — Ry (k*)}d;(| D))

and that the integral operator may be written as

/ Az, y)u(y)dy = / Az, z - y)u(z — y)dy = / Ay(x)TyU(w)dy,

viz. the superposition of the composition of the multiplication by A,(z) =

A(z,z — y) and the translation 7, by y, we rewrite (2.16) in the form

—1 o ~

Joo Gor [ Bo OV IG5 (02) = Ry (R)}kak) s (D] x (B
(2.17)
The operator in the parenthesis is nothing but W) (VK},) and, in virtue of

(2.12), the LP-norm of (2.17) may be estimated as follows:
| WO W R, (D
< Cllullold;(DDXH) sy [, 142V Kyl

Because Fourier multipliers d;(|D|)x(Ho) are bounded in LP by the well

known theorem in the Fourier analysis and because (2.15) implies that the
integral in the right is finite, the operators arising from d;j(k)K;, 7 =0,... ,4

. H
are all bounded in L” for any 1 < p < co. Combining these all, we completes

the proof of Theorem 1.8.
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