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Abstract
We are interested in random fields $X(C)$ with parameter $C$, where $C$ runs through the class

$\mathrm{C}=$ { $C;C\in C^{2}$ , diffeomorphic to $S^{1}$ }.

Referring to the canonical representation theory of Gaussian processes, developed by T. Hida,
we generalize the theory to the case of Gaussian random fields.

1 Introduction

We are interested in the representation of random field $X(C)$ , where
$C$ runs through a class

$\mathrm{C}=$ { $C$ ; diffeomorphic to $S^{d-1}$ , convex}.
In particular, we consider a Gaussian random field $X(C);C\in \mathrm{C}$ ,

with a representation in terms of $R^{d}$-parameter white noise.
First we breifly recaU the canonical representation theory of Gaus-

sian processes, developed by T. Hida (1960).
We give the definition of the canonical representation of Gaussian

random field following the definition of canonical representation of
Gaussian process $X(t)$ , mentioned above. And the canonical criterion
for Gaussian randon field is established in this note.

Canonical representation and non-canonical representation of Gaus-
sian random fields are illusrated by examples.
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2 Canonical representation of Gaussian processes

Let $X=\{X(t);t\in I\}$ be a Gaussian process. Denote by $B_{t}(X)$ be

the $\sigma$-field generated by the $X(s),$ $s\leq t$ .

Definition 2.1 Let $X$ be a Gaussian process. Assume that there exists
a Gaussian process $B=\{B(t);t\in I\}$ with independent increments
such that

$B(t)=(B_{i}(t), 1\leq i\leq N;B_{j}^{l}(t),$ $1\leq l\leq L_{j},$ $1\leq j\leq L_{J})$ (2.1)

with $B_{i}(0)=0,1\leq i\leq N,$ $N\leq\infty,$ $L_{j}\leq\infty,$ $J\leq\infty$ , satisfying the
following conditions.
1. Each $B_{i}(t)$ has independent increments and $E(|dB_{i}(t)|^{2})=m_{i}(dt)$

defines a continuous measure. In addition, $m_{i+1}\mathrm{t},S$ absolutely con-
tinuous with respective to $m_{i}$ : $m_{i}(dt)\gg m_{i+1}(dt)$ for every $i$ .

2. Each $B_{j}^{l}(t)$ is a process of the form
$B_{j}^{l}(t)=B_{j}^{l}$ , $t>t_{j}$ (or $t\geq t_{j}$ ), and $=\mathit{0},$ $othe7wise$

where each $B_{j}^{l}$ is subject to the standard Gausian distribution $N(0,1)$ .

3. The Gaussian processes $B_{i}$ and the $B_{j}^{l}$ are independent.

4. For every $t,$ $X(t)$ has the same $distr\dot{\mathrm{v}}bution$ as $\overline{X}(t)$ given by

$\overline{X}(t)=\sum_{i=1}^{N}\int_{0}^{t}F_{i}(t, u)dB_{i}(u)+\sum_{t_{j}\leq t}\sum_{l=1}^{L_{j}}b_{j}^{l}(t)B_{j}^{l}(t_{j})$ . (2.2)

where the kemel functions $F_{i}(t, u)$ satisfy the condition

$\int F_{i}(t,u)^{2}m_{i}(du)<\infty$ , $i=1,2,$ $\cdots N,$ $\forall t$ ,

and where the function $b_{j}^{l}(t)$ vanishes for $t_{j}<t$ and satisfies

$\sum_{t_{j}\leq t}\sum_{l=1}^{L_{j}}b_{j}^{l}(t)^{2}<\infty$ , for every $t$ .

Then $\{F_{i}(t, u), B_{i}(u);b_{j}^{l}(t), B_{j}^{l}(t)\}$ is called a representation of $X$ .

Definition 2.2 The representation (2.2) is called a generalized canon-
ical representation, if

$E[X(t)|B_{s}(X)]= \sum_{i=1}^{N}\int^{s}F_{i}(t, u)dB(u)+\sum_{t_{j}\leq s}\sum_{l}b_{j}^{l}(t)B_{j}^{l}(t_{j})$ . (2.3)
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holds for all $s\leq t$ .

To fix the idea, assume that $N=1$ and that there is no discrete
part of the spectrum. Thus the representation

$X(t)= \int^{t}F(t,u)dB(u)$ (2.4)

is called the canonical representation if

$E[X(t)|B_{s}(X)]= \int^{S}F(t, u)dB(u)$ .

The kernel $F(t, u)$ is called a canonical kernel.

Definition 2.3 The canonical representation (2.4) is called proper
canonical representation if

$B_{t}=B_{t}(X)$ , for every $t\in T$, (2.5)

where $B_{t}$ is the $\sigma$-field generated by $\{B(S), s\leq t\}$ .

There are many important cases which suggested to claim that $B(t)$

in the above expression is a standard Brownian motion, so that $dB(u)$

may be written as $\dot{B}(u)du$ , where $\dot{B}(u)$ is a white noise.

3 Canonical representation of Gaussian random fields

Consider Gaussian random fields {X $(C);C\in \mathrm{C}$ } where

$\mathrm{C}=$ { $C;C\in C^{2}$ , diffeomorphic to $S^{1},$ $(C)$ is convex},
$(C)$ : being the domain enclosed by $C$.

Assume that

1. $X(C)\neq 0$ for every $C$ , and $E[X(C)]=0$ .
2. $E[X(C)^{2}]\neq 0$ for every $C$.
In particular, we consider the Gaussian random field $\{X(C);C\in$

$\mathrm{C}\}$ with the assumption of causality. That means $X(C)$ can be ex-
pressed by a representation

$X(C)= \int_{(C)}F(C, u)x(u)du$ , (3.1)
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in terms of $R^{2}$ -parameter white noise $x(u)$ and $L^{2}(R^{2})$ -kernel $F(C, u)$

for every $C$.

I. Uniqueness of canonical representation

Definition 3.1 Let $\mathrm{B}_{C’}(X)$ be the sigma field generated by {X $(C),$ $C<$

$C’\}$ . The representation (3.1) is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ a canonical representation if

$E[X(C)|B_{C’}(X)]= \int_{(C’)}F(C, u)x(u)du$, (3.2)

holds for any $C’<C$.

Theorem 3.1 The canonical representation is unique if it exists.

Proof. Take the variance of the conditional expectation, given in
(3.2).

$E \{E[X(C)|\mathrm{B}_{C’}(X)]^{2}\}=\int_{(C’)}F(C,u)^{2}du,$ $C’<C$. (3.3)

We should note that the variance depends only on the probability
distribution of {X $(C)$ } and is independent of the choice of represen-
tation.

If the representation is not unique, there are two canonical kernels
$F$ and $F^{*}$ and then

$\int_{(C’)}F(C, u)^{2}du=\int_{(C’)}F^{*}(C,u)^{2}du$

holds for any $C’<C$. Hence we have

$F(C, u)=\epsilon(C, u)F^{*}(C, u)$ ; $|\epsilon(C, u)|=1$ , (3.4)

where $\epsilon$ is a measurable function of $u$ .
According to the two kernek $F$ and $F^{*}$ , the covariance of (3.2) is
obtained as the covariance

$E[E[X(C)|B_{C’’}(X)]E[X(C’)|B_{C’’}(X)]]= \int_{C},,$ $F(C, u)F(C’, u)du$ .

On the other hand, we obtain

$E[E[X(C)|B_{C’’}(X)]E[X(C’)|B_{C’’}(X)]]= \int_{C},,$ $F^{*}(C, u)F^{*}(C’, u)du$

$= \int_{C},,$ $F(C, u)F(C’, u)\epsilon(C, u)\epsilon(C’$ ,

by (3.5).
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Similarly for any $C”’\in \mathrm{C};C’’’<C’$ . we have
$\int_{C},,,$ $F(C,u)F(C’, u)du= \int_{C},,,$ $F(C, u)F(C’, u)\epsilon(C,u)\epsilon(C’, u)du$ .

Thus the equality

$F(C, u)F(C’,u)=F(C,u)F(C’,u)\epsilon(C,u)\epsilon(C’,u)$ ,

holds almost everywhere.
We can see that

$\epsilon(C, u)\epsilon(C’, u)=1$ , on $C’$ .
Fix $C=C_{0}$ , and determine $\epsilon(C_{0}, u)(=.\pm 1)$ as a function of $u$ .

Thus
$\epsilon(C’, u)=\frac{1}{\epsilon(C_{0},u)}=\epsilon(C_{0}, u),$ $\forall C’$ .

It means that $\epsilon(C, u)$ is independent of $C$.
Thus it is proved that $F(C, u)$ is unique up $\mathrm{t}\mathrm{o}\pm 1$ .

II. Kernel criterion for canonical representation

We now give the kernel criterion for canonical representation.

Assume that
1. $X(C)$ has a causal representation
2. there is no open set $G$ such that $\int_{G}F(C, u)\varphi(u)du=0$ for any $\varphi$

with $supp\{\varphi\}\subset G$ .

Theorem 3.2 A random field $X(C)_{\mathrm{z}}$, satisfying the above assumption,
has canonical representation if and only if $\forall C\subset C_{1};C_{1:}$ fixed,

$\int_{(C)}F(C, u)\varphi(u)du=0\Rightarrow\varphi(u)=0$ a.e.on $(C_{1})$ .

Proof First we should note that $E[X(C)|B_{C_{0}}]$ is the projection of
$X(C)$ down to the closed linear space spanned by $\{X(C);C<C_{0}\}$ ,
since we are concerned with Gaussian.

Let $M_{C_{0}}(X)$ and $M_{C_{0}}(x)$ denote the closed linear spaces spanned
by $\{X(C);C<C_{0}\}$ and $\{x(u);u\in C_{0}\}$ respectively.
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Claim that
$M_{C_{0}}(X)\subset M_{C_{0}}(x)$

since $X(C_{0});C\leq C_{0}$ is a (linear) funcion of $x(u);u\in C_{0}$ .

If $M_{C_{0}}(X)\neq M_{C_{0}}(x)$ then there exist $\varphi\neq 0$ such that $\int_{C_{0}\varphi(u)x(u)du}$

is orthogonal to $X(C);C<C_{0}$ . It contradicts to the assumption. Thus

the assertion is proved.

The $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{s}$ are the examples for canonical representation.

Example 1. $X(C)= \int_{(C)}x(u)du,$ $C\in \mathrm{C}$ , given in (3.1) is a canonical
representation.

Example 2. Consider a random field $X(C);C\in \mathrm{C}$ , where $\mathrm{C}$ is a

family of circles, with the representation

$X(C)=X_{0} \int_{(C_{0})}e^{-k\rho(C,u)}\partial_{u}^{*}\nu(u)du$ ,

where $\rho$ denotes the distance, $k$ is a constant, $\varphi$ and $\iota^{y}$ are given con-
tinuous functions. We can prove that it is a canonical representation.

Indeed it is the solution of Langevin equation,

$\delta X(C)=-X(C)\int_{C}k\delta n(s)ds+X_{0}\int_{C}\nu(s)\partial_{s}^{*}\delta n(s)ds$ ,

where $C\in \mathrm{C}_{0}$ .

We give the example for non-canonical representation in the foUow-
$\mathrm{i}\mathrm{n}\mathrm{g}.$ .

Example 3. Let $\{C_{R}, R\in \mathrm{R}\}$ be a family of concentric circles with

center at origin. Then

$X(C)= \int_{C_{R}}(3R-4|u|)x(u)du$

is a canonical representation of $X(C)$ , since there is a function $\varphi(u)=$

$|u|\neq 0$ such that

$\int_{C_{R}}(3R-4|u|)\varphi(|u|)du=0$ .
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4 Multiple Markov Gaussian random fields

In this section we shall deal with the multiple Markov Gaussian ran-
dom fields. Thus we recall the definition of Multiple Gaussian random
field, given in $[6],[7]$ and [8].

Definition For any choice of $C_{i}$ ’s such that $C_{0}\leq C_{1}<\cdots<C_{N}<$

$C_{N+1}$ , if
1. $E[X(C_{i})|B_{C_{0}}(X)],$ $i=1,2,$ $\cdots,$

$N$ are linearly independent and
2. $E[X(C_{i})|B_{C_{0}}(X)],$ $i=1,2,$ $\cdots$ , $N+1$ are linearly dependent

then $X(C)$ is called N-ple Markov Gaussian random field.
Theorem 4.1 If $X(C)$ is N-ple Markov and if it has a canonical

representation, then it is of the form
$X(C)= \int_{(C)}\sum_{1}^{N}f_{i}(C)g_{i}(u)x(u)du$ , (4.1)

where the kemel $\Sigma f_{?}\cdot(C)g_{i}(u)$ is a Goursat kemel and $\{f_{i}(C)\},$ $i=$

$1,$ $\cdots$ , $N$ satisfies
$\det(f_{i}(C_{j}))\neq 0$ , for any Ndifferent $C_{j}$ (4.2)

and $\{g_{i}(u)\},$ $i=1,$ $\cdots$ , $N$ are linearly independent in $L^{2}$ -space.
Proof. See [8].

Corollary. If $N=1_{f}$ then it is a (simple) Markov.

Proof. It can be easily seen ffom the expression of canonical repre-
sentation.

Remark. For a particular case of $N$-ple Markov Gaussian random
field $X(C)$ , where $C=C_{r}$ is a circle with radius $r$ and center origin,
the representation of $X(C_{r})$ can be expressed in the form

$X(C_{r})=X(r)= \int_{0}^{r}\sum_{1}^{N}f_{i}(r)g_{i}(u)x(u)du,$ $u\in R^{2}$ (4.3)

This representation can be expressed in terms of a one dimensional
parameter white noise as a stochastic integral.
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