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1. Introduction

We consider the nonlinear differential equation with catalytic $\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}^{4,12,16}$ . This is a rather
new type of equation where the coefficient function of the nonlinear term is given by the so-
called catalyst process. The purpose of this paper is to discuss the existence of the catalytic
superprocess associated with the equation and establish the exponential moment formula
(cf. (5.1) in Theorem 5.1, Sec.5). Based on this, we give a probabilistic interpretation of
solutions for the nonlinear equation with catalytic noise. Furthermore, as its application,
we derive the large deviation principle for superprocesses.

More precisely, we consider the following nonlinear reaction diffusion equation with cat-
alytic noise:

$\partial$

$\overline{\partial^{\vee}s}u(s, y)+\prime v\overline{2}^{\Delta u(}s,$ $y)+\psi(s, y)=X_{t}(\omega)u2(s, y)$ . (1.1)

Here we mean by the catalytic noise $X_{t}$ a super-Brownian motion (or Dawson-Watanabe
$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{p}_{\Gamma \mathrm{O}\mathrm{C}\mathrm{e}\mathrm{S}\mathrm{s}})^{\mathrm{s},2}8$ with a simple branching rate functional which is given by the Lebesgue
measure multiplied by a constant (cf. Remark 2.1 in Sec.2). So that, it turns out to be
that the system govemed by the above equation describes its time evolution in a catalytic
medium12. In Section 3 we treat the nonlinear differential equation with catalytic noise and
discuss the existence and uniqueness of its solutions (see Theorem 3.2 and Theorem 3.3).
Next we construct the Brownian collision local time (BCLT) $L=L_{[W,\rho]}$ (cf. Proposition 4.3
in Sec.4) and study some basic properties that the BCLT should satisfy (cf. Proposition
4.4 in Sec.4). The catalytic superprocess is constructed in Section 5 that is associated with
the nonlinear equation with catalytic noise (see Theorem 5.1). In other words, the integral
of the nonlinear term of the equation relative to the BCLT $L$ provides with a rigorous
expression of the corresponding $\log$-Laplace equation (cf. (5.2) in Sec.5). This enables us to
establish the Laplace functional formalism for the catalytic superprocess. On this account,
we can derive the probabilistic representation of solutions for the nonlinear equation with
catalytic noise (cf. Theorem 5.2). As its application, we discuss in Section 6 the large
deviation and prove the large deviation principle (LDP) for the catalytic superprocess.
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This is the main result in this paper (cf. Theorem 6.7). The proof of weak large deviation

principle, which is the key result for LDP, will be given in the succeeding section (see

Sec.7). For other related results on LDP, see Refs. 7, 9, 22, 24 and 27 (see also Ref. 6

for large deviation techniques). Furthermore, we study in Section 8 some scaling property

for catalytic processes in question and derive a certain type of limit theorem for those

processes.
Let $p$ be a positive number such that $p>d$ where $d$ is the space dimension. Define the

reference function $\varphi_{p}$ by

$\varphi_{p}(y):=(1+|y|^{2})^{-}p/2$ for $y\in R^{d}$ . (1.2)

We denote by $B^{p}\equiv B^{p}(R^{d})$ the space of real-valued Borel measurable functions $f$ on $R^{d}$

such that
$|f(x)|\leq C(f)\cdot\varphi_{\mathrm{P}}(_{X})$

holds for every $x$ in $R^{d}$ , for some positive constant $C(f)$ depending on the function $f$ . The

space $B_{+}^{p}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}_{\mathrm{S}}\mathrm{t}_{\mathrm{S}}$ of all positive elements in $\mathcal{B}^{p}$ . For a time interval $I$ in $R_{+},$
$\beta^{p,I}$ denotes

the space of the functions $f=f(s, x)$ in $B(I\cross R^{d})$ such that there is a positive constant
$C(f)$ depending on $f$ satisfying

$|f(s, \cdot)|\leq C(f)\cdot\varphi_{p}$ for $s\in I$ .

$C^{p}\equiv C^{p}(R^{d})$ is the space of real-valued continuous functions $f$ on $R^{d}$ such that $|f(X)|\leq$

$C(f)\cdot\varphi_{p}(x),$ $\forall X\in R^{d}$ for some positive constant $C(f)$ depending on $f$ . Both $B^{p}$ and $C^{p}$

are equipped with the norm $||f||:=||f/\varphi_{p}||_{\infty}$ , where $||\cdot||_{\infty}$ is the uniform norm. Likewise,
$C_{+}^{p}$ (resp. $C^{p,I}$ ) is the counterpart of $B_{+}^{p}$ (resp. $\beta^{p,I}$ ) for continuous functions.

Let $\mathcal{M}_{p}\equiv \mathcal{M}_{p}(R^{d})$ be the set of all locally finite non-negative measures $\mu$ on $R^{d}$ , such

that
$|| \mu||_{p}:=\langle\mu, \varphi_{p}\rangle=\int_{R^{d}}\varphi_{p}(y)\mu(dy)<\infty$. (1.3)

$\mathcal{M}_{p}$ is the set of tempered measures on $R^{d}$ with the $I\succ$-vague topology. While, $M_{F}=$

$M_{F}(R^{d})$ is the set of all finite measures on $R^{d}$ . We denote by

$W^{\kappa}:=\{W^{\kappa}, \Pi^{\kappa}s\geq SS,a’ R0, a\in\}d$ (1.4)

the $d$-dimensional Brownian motion with generator $\kappa\Delta/2$ and the canonical path space $\Omega$

$=C(R_{+}; Rd)$ . We write $W_{s}^{\kappa}(\omega)=\omega(s),$ $\omega\in\Omega$ for its canonical realization. Especially

when $\kappa=1$ , we call it the standard Brownian motion and suppress the parameter $\kappa=1$

in its notation. For convention in the theory of measure-valued processes, we would rather

use the notation $P[X]$ for the mathematical expectation than the usual $E[X]=E^{P}[X]=$

$\int_{\Omega}XdP$ .

2. Preliminaries
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According to e.g. Ref. 3, we may use the Brownian motion $(\mathrm{B}\mathrm{M})$ with generator $\frac{1}{2}\Delta$ (as
an underlyong process) to define the super-Brownian motion (SBM) (or Dawson-Watanabe
superprocess) in terms of the martingale problem formulation (see also Ref. 10). That is
to say, for each initial measure $\mu$ in $M_{F}$ , there exists a probability measure $P_{\mu}$ on $(\Omega’, \mathcal{F}’)$

with $\Omega’=C(R_{+}; M_{F})$ such that $X_{0}=\mu,$ $P_{\mu^{-}}\mathrm{a}.\mathrm{s}.$ ,

$M_{t}( \psi):=\langle X_{t}, \psi\rangle-\langle\mu,\psi\rangle-\int_{0}^{t}\langle X_{s}, (\frac{1}{2}\Delta)\psi\rangle dS$ , $\forall t>0$ , $\psi_{\in \mathrm{D}}\mathrm{o}\mathrm{m}(\Delta/2)$ ,

is a continuous $(\mathcal{F}_{t}’)$-martingale under $P_{\mu}$ , where the quadratic variation process $\langle M(\psi)\rangle_{t}$

is given by
$\langle M. (\psi)\rangle_{t}=2\gamma\int_{0}^{t}\int_{\Omega}\psi(\eta)^{2}x(d\eta S)ds$ , $\forall t>0$ , $P_{\mu}-a.s$ .

In connection with application to the succeeding section, we shall introduce an alternative
formulation of SBM. We begin with the nonlinear parabolic equation and determine the
superprocess by making use of its solution, via the Laplace functional. In fact, we consider
the following nonlinear reaction diffusion equation in backward formulation (of convenience
for later discussion) with the terminal condition:

$- \frac{\partial v}{\partial s}=\frac{1}{2}\Delta v-\gamma\cdot v^{2}$ , $v|_{s=t\varphi\in}=C^{p}+$
’ (2. 1)

where $\gamma$ is a positive constant. It is well known (e.g. Ref. 20) that the solution $v\equiv v(\cdot, t, \cdot)$

of the $\log$-Laplace equation

$v(s, t, a)= \Pi s,a[\varphi(W_{t})-\int_{s}^{t}v^{2}(r,t, Wr)\gamma dr]$ , $0\leq s\leq t,$ $a\in R^{d}$ (2.2)

uniquely solves (2.1) in the backward formulation.

Remark 2.1. It is interesting to note that the second term at the right-hand side in (2.2)
can be regarded as an integral with respect to the branching rate functional $K$ (cf. \S 2.2
in Ref. 4 and \S 4 in Ref. 16) of the special $\mathrm{c}$as$\mathrm{e}$ , namely, $K(dr)=\gamma dr$ . Heuristically,
this simply corresponds to the event that each corresponding $X$-particle branches with the
constant rate $\gamma>0$ , on a phenomenal $\mathrm{b}\mathrm{a}s$is.

Now we introduce the super-Brownian motion (SBM) as a catalyst process, which is used
to describe the catalytic medium in the next section. According to Dynkin’s approach,$2$

there exists an $\mathcal{M}_{p}$-valued critical SBM (or Dawson-Watanabe superprocess) $X=X^{K}$ with
branching rate functional $K(dr)=\gamma dr$ with the Laplace transition functional

$P_{s,\mu}\exp\langle x_{t}^{K}, -\varphi\rangle=\exp\langle\mu, -v^{[\varphi]}(s, t, \cdot)\rangle$ $0\leq s\leq t$ , (2.3)

for $\mu$ in $\mathcal{M}_{p}$ and $\varphi\in B_{+}^{p}$ , where $v^{[\varphi]}(s, t, \cdot)$ is a solution of the nonlinear reaction diffusion
equation (2.1). In fact, $X=X^{K}=X^{\gamma dr}$ is a time-homogeneous Markov process. From
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now onward, for the super-Brownian motion as a catalytic noise, we would rather use the

notation $\rho^{\gamma}$ than $X^{K}$ with $K(dr)=\gamma dr$ . We call it the catalyst process, as the naming is

originally due to Dawson-Fleischmann.4
Consequently, the solution $v(s, t, \cdot)\equiv v^{[\varphi]}(s, t, \cdot)$ of (1) may be expressed by

$v(S, t, a)=-\log PS,\delta_{O}[\exp\langle\rho^{\gamma}t’-\varphi\rangle]$ , $t\geq s,$ $a\in R^{d},$ $\varphi\in C_{+}^{p}$ . (2.4)

This is nothing but a probabilistic representation of solutions of the nonlinear reaction
diffusion equation. This probabilistic interpretation is, for instance, due to $\mathrm{E}.\mathrm{B}$ . Dynkin17
(see also Ref. 11).

3. Nonlinear Differential Equation with Catalytic Noise

Let $\rho^{\gamma}=\{\rho_{t}^{\gamma}; t\geq s\}$ be the catalyst process defined in the previous section. The principal
object of this section is the following nonlinear reaction diffusion equation with catalytic
noise:

$\mathcal{L}u\equiv\frac{\partial u}{\partial s}+\frac{\kappa}{2}\Delta u+\psi-\rho_{S}\gamma 2u=0$ , $u|_{s=t}=\varphi$ . (3.1)

Here we can regard the noise term $\rho_{S}^{\gamma}$ as a $\mathcal{M}_{p}$-valued continuous path since we have a
modification $\tilde{X}^{K}$ of the SBM $X^{K}$ with continuous paths (e.g. Refs. 4, 16). The existence
of solutions to (3.1) can be attributed to the problem for generalized cumulant equation,
which is actually associated with a more general equation than (3.1).

Before discussing the cumulant equation, we need to introduce some notations. Let $\{T_{t)}^{\kappa}$

$t\geq 0\}$ be the semigroup with generator $\kappa\Delta/2$ , and set

$(U^{\kappa}f)(S, \cdot):=\int_{s}^{t}T_{r-}^{\kappa}fs(r, \cdot)dr$ , for $f\in C^{p,I},$ $s\in I=[L,T]$ .

Definition 3.1. We say that a continuous additive functional (CAF) $A=A_{[W^{\kappa}]}$ of the

Brownian motion $W^{\kappa}$ belongs to the class $\mathcal{K}$ if $A$ is locally admissible, i.e., if

$\sup_{a\in R^{d}}\Pi_{s,a}^{\kappa}\int_{s}^{t}\varphi_{p}(W_{r}\kappa)A[W^{\kappa}](dr)$

vanishes as $s,$ $t$ tends to $r_{0}$ for some positive $r_{0}$ .

For $f\in C^{p,I}$ and $s\in I=[L, T]$ , define

$(Z^{\kappa}[A]f)(s, \cdot):=\Pi_{s,a}^{\kappa}\int_{s}^{t}f(r, W_{r}\kappa)A[W\kappa](dr)$, $A\in \mathcal{K}$ .

For convention, we write it formally as $\int[s,t]\tau^{\kappa}(f(r, \cdot))A[r-SW^{\kappa}](dr)$ . We introduce the func-
tional

$F(\kappa, \varphi,\psi,\rho,u\gamma):=u-T_{t_{-}}^{\kappa}.\varphi-U^{\kappa}\psi+Z^{\kappa}[A](u)2$ (3.2)
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defined for $\{\kappa, \varphi, \psi, \rho^{\gamma}, u\}\in R_{+}\cross C^{p}\cross C^{p,I}\cross C(R_{+}; \mathcal{M})p\cross C^{p,I}$ . We will study the following
generalized cumulant equation

$F(\kappa, \varphi,\psi, \rho^{\gamma}, u)=0$ (3.3)

which covers (3.1). The purpose of this section is to solve (3.3). A routine work for the
functional equation theory allows us to obtain the uniqueness of solutions to (3.3).

Theorem 3.2. (Uniqueness) Let $A\in \mathcal{K}$ be locally bounded characteristic. For each initial
data $\{\kappa, \varphi, \psi,\rho^{\gamma}\}$ in $R_{+}\cross C^{p}\cross C^{p,I}\cross C(R_{+}; \mathcal{M})p$

’ there exists at most one element $u\in C^{p,I}$

in the sense $of||\cdot||$ which solves the generalized cumulant equation $F(\kappa, \varphi, \psi, \rho^{\gamma}, u)=0$ .

Proof. Assume that there are two elements $u,$ $v\in C^{p,I}$ such that $F(\kappa, \varphi, \psi, p^{\gamma},u)--F(\kappa$ ,
$\varphi,$

$\psi,$ $\rho^{\gamma},$ $v)=0$ for $\{\kappa, \varphi, \psi, \rho^{\gamma}\}\in R_{+}\cross C^{p}\cross C^{p,I}\cross C(R_{+}; \mathcal{M}_{p})$ . From (3.2) we readily
obtain

$||u(S)-v(s)||\leq||Z^{\kappa}[A](u^{2})(S)-Z^{\kappa}[A](v^{2})(s)||_{C\mathrm{p}}$ . (3.4)

Recall that $C^{p}$ and $C^{p,I}$ are Banach algebra with respect to the pointwise product of func-
tions. Moreover, (3.4) may be estimated majorantly by

$\sup_{s\in I}||u(s)+v(S)||\cdot||\int_{s}^{t}T\kappa(u(r)-v(r))\varphi_{p}(\cdot)AW\kappa](dr)|r-s[|$

$\leq C_{I}||\int_{s}^{t}T_{r}^{\kappa}-S\varphi p[AW^{\kappa}](dr)||$ (3.5)

because linear operators $\{T_{t}^{\kappa}\}$ acting in $C^{p}$ are uniformly bounded over the bounded region
of $t,$ $\kappa$ , and we have only to pay attention to finiteness of the upper bound $\leq C_{\kappa,I}||\varphi \mathrm{P}(\cdot)||_{\infty}$

of (3.4). By local admissibility we can choose small $\epsilon>0$ which gives the upper estimate
of (3.5), and the required result yields from reductio ad absurdum together with the above
estimate. Q.E.D.

Moreover, resorting to functional analysis, we can prove the existence of solutions to
(3.3) by emplying the implicit function theorem and the standard iteration scheme. Now
we state the assertion with the proof divided into two parts, which will be given separately
below.

Theorem 3.3. (Existence) Suppose the same assumptions on $A$ as in Theorem 3.2. For
each initial data $\{\kappa, \varphi, \psi, \rho^{\gamma}\}$ in $R_{+}\cross C^{p}\cross C^{p,I}\cross C(R_{+};\mathcal{M})p$

’ there exists a solution $u$ in
$C^{\mathrm{p},I}$ of (3.3).

Proof. Note that we can choose an approximating sequence $\{A^{(n)}\}_{n}$ of $A\in \mathcal{K}$ such that
with probability one $A^{(n)}(J)\nearrow A(J)$ as $narrow\infty$ for all open intervals $J$ of $R_{+}$ (cf. Remark
3.6 below). Assume that there exists a unique nonnegative bounded solution $u_{n}$ of (3.3)
with $A_{[W^{\kappa}]}$ replaced by $A_{[W]}^{(n)}\kappa$ for each $n$ . Then we readily obtain

$0\leq u_{n}(s, a)\leq c_{\kappa,I\varphi_{p}}.(a)$ , $s\in I$ , $a\in R^{d}$ ,
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because both $T^{\kappa}\varphi$ and $U^{\kappa}\psi$ satisfy the locally bounded characteristic property. So that,

the solution $\{u_{n}\}$ are uniformly dominated. Then the pointwise limit $u(\geq 0)$ of $u_{n}$ as $narrow$

$\infty$ is also dominated. The passage to the limit $narrow\infty$ of $F(\kappa, \varphi, \psi, \rho^{\gamma}, u_{n})=0$ leads to

the required result, if we can show that

$Z^{\kappa}[A(n)](u)2n(s, a)arrow Z^{\kappa}[A](u^{2})(s, a)$ (as $narrow\infty$ ) (3.6)

for each $(s, a)\in I\cross R^{d}$ . In fact, we get

(i) $|Z^{\kappa}[A(n)](u)2-nZ^{\kappa}[A^{(}n)](u)2| \leq\sup_{r}||u_{n}(r)+u(r)||\cdot||u_{n}-u||C\kappa,I\varphi_{p}(a)arrow 0$

(as $narrow\infty$ ) and also

(ii) $|Z^{\kappa}[A^{(n})](u)2-z^{\kappa}[A](u^{2})|\leq\Pi_{s,a}^{\kappa}|\langle(A^{(n)}-A)[W\kappa],u^{2}(\cdot, W_{r}\kappa)\rangle|arrow 0$

(as $narrow\infty$ ). To get (3.6) we have only to combine the above estimates (i), (ii). Therefore,

it remains to show the existence of solutions $u_{n}$ of $F(\kappa, \varphi, \psi, \rho, u\gamma)[A^{(n})]=0$. This will be

proved below shortly after introducing some preliminary results.

As to Proof of Existence (Theorem 3.3). To show the existence of solutions $u_{n}$ of
$F(\kappa, \varphi, \psi,p, u\gamma)[A^{(n})]=0$. Let $\mathcal{H}$ be the set of all those $\{\kappa, \varphi, \psi\}\in R_{+}\cross C^{p}\cross C^{p,I}$ such

that there exists an element $u:=u^{[\kappa,\varphi,\psi,\beta^{\gamma}]}\in C^{\mathrm{p},I}$ , with $P_{s,\nu}$-probability one, for which

$F(\kappa, \varphi,\psi, \rho^{\gamma},u)[A^{(n)}]=0$ , $P_{s,\nu}-a.s.$ , $A^{(n)}\in \mathcal{K}_{0}$ ,

where $\mathcal{K}_{0}$ is Dynkin’s Admissible Class, cf. Proof of Theorem 5.1 in Sec.5 (see also Remark

3.6). To assert the existence of solutions is equivalent to show that the set $\mathcal{H}$ is open. Note

that the mapping: $R_{+}\cross C^{p}\ni(\kappa, \varphi)\mapsto T_{T-(\cdot)}^{\kappa}\varphi\in C^{p,I}$ is continuous. By the domination

property, $\{T_{t}^{\kappa};t>0\}$ as $T_{t}^{\kappa}\in \mathcal{L}(c^{p};C^{p})$ are uniformly bounded over a bounded region of
$t,$ $\kappa$ . Hence, by the dominated convergence theorem we conclude that the mapping: $R_{+}\cross$

$C^{p,I}\ni(\kappa, \psi)\mapsto U^{\kappa}f\in C^{p,I}$ is continuous. On this account, it is easy to see that

Lemma 3.4. For $A\in \mathcal{K}_{0}$ given, $F(\cdot, \rho^{\gamma}, \cdot)[A]$ maps $R_{+}\cross C^{\mathrm{p}}\cross C^{p,I}\cross C^{p,I}$ continuovsly

into $C^{p,I},$ $P_{s,\nu^{- \mathrm{a}.\mathrm{s}}}$.

Furthermore, the Fr\’echet derivative of $F$ with respect to $u$ at each point is given by

$D_{u}F(\kappa, \varphi,\psi, p,u)\gamma(v)=v+2\cdot Z^{\kappa}[A^{(n)}](uv)$ , $v\in C^{p,I}$ . (3.7)

Proposition 3.5. For each $\{\kappa, \varphi,\psi,u\}\in R_{+}\cross C^{p}\cross C^{p,I}\cross C^{p,I},$ $P_{s,\nu}- \mathrm{a}.\mathrm{s}.$ ,
(a) $D_{u}F(v)$ is linear in $u$ ;
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(b) $D_{u}F(v)i\dot{s}$ continuous in $\{\kappa, \varphi, \psi,u\}$ ;
(c) the operator $D_{u}F(\cdot)$ : $C^{p,I}arrow C^{p,I}$ is bounded linear and bijective.

Proof. (a), (b) are trivial. A similar estimate in the proof of Theorem 3.2 leads to that
$D_{u}F$ is an injective operator. To complete the proof, we need to find $v\in C^{p,I}$ with

$v(s)+2 \int_{S}^{\tau_{T_{r}^{\kappa}(}}-S(r)v(r))A_{[]}^{()}n(W\kappa dr)u=w(s)\in C^{p,I}$ , $s\in I$ , $P_{s,\nu}-a.s$ .

However, the usual principal theorem for linear operator equations in Banach spaces may
take care of this problem with an iteration scheme and induction argument (cf. Ref. 29).
Q.E.D.

To go back to the proof of Theorem 3.3, assume that $F(\kappa_{0}, \varphi 0, \psi_{0},\rho^{\gamma}, u_{0})=0,$ $P_{s,\nu^{-}}$

$\mathrm{a}.\mathrm{s}$ . for a fixed point $\{\kappa_{0}, \varphi_{0\psi_{0},u_{0}},\}$ . An application of the implicit function theorem (cf.
Theorem 4. $\mathrm{B}$ in Ref. 29) with Theorem 3.2 and (3.7) provides the existence of an open
neighborhood $U_{0}$ of $\{\kappa_{0}, \varphi_{0}, \psi 0\}$ in $R_{+}\cross C^{p}\cross C^{p,I}$ such that there exists a unique map :
$\{\kappa, \varphi, \psi\}-\rangle u^{[\psi,\rho]}\kappa,\varphi,\gamma$ defined on $U_{0}$ with

$F(\kappa, \varphi, \psi, \rho^{\gamma[\varphi},u)\kappa,,\psi,\rho]\gamma 0=$ , $P_{s,\nu}-a.s.$ , (3.8)

because we employed Proposition 3.5. Thus we attain that the non-empty set $\mathcal{H}$ previously
defined is open. This concludes the required assertion. Q.E.D.

Remark 3.6. For example, we can take an approximate $A^{(n)}$ as

$A^{(n)}( \cdot)=\int_{(\cdot)}(n\varphi_{p}\wedge 1)(W_{r}^{\kappa})A_{[}W^{\kappa}](dr)$ , $n\geq 1$ . (3.9)

It is interesting to note that $\{A^{(n)}\}$ belongs to the Dynkin AF Class $\mathcal{K}_{0}$ in Section 3.3.3,
Ref. 20. In fact, $\mathcal{K}_{0}$ is dense in $\mathcal{K}$ (cf. Remark 1 in Ref. 4).

Remark 3.7. Dawson and Fleischmann have treated in Ref. 4 only the special case $\kappa=1$

and $\psi\equiv 0$ of (3.1). So our result is an extension of their existence and uniqueness theorem.
Moreover, the method we have adopted here is based upon nonlinear functional analysis
and is a more general approach to nonlinear equations than what they used in Ref. 4.

4. Regular Path and Collision Local Time

First we introduce a certain class of measure-valued continuous paths, which is suitable for
defining the corresponding collision local time. See Remark 4.8 below.

Definition 4.1. The path $\eta$ is said to be an element of the Regular Path Class $R_{\varphi}$ if $\eta\in$

$C(R_{+}; \mathcal{M}_{p})$ and for all $N>0$ ,

$0 \leq s_{R}a\in\sup_{\leq_{d}N}\int^{S+}S’ d\xi\langle\eta_{r}, \varphi_{p}\cdot p(\kappa r-Sa, \cdot)\rangle rarrow 0$
(as $\epsilonarrow 0$)
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where $p^{\kappa}$ is the transition density function of the BM with generator $\kappa\Delta/2$ .

Roughly speaking, that $\eta$ is regular means that $\epsilon$-accumulated densities of the finite
measure-valued path $\varphi_{p}\cdot\eta$ vanishes uniformly on $[0, N]\cross R^{d}(\forall N>0)$ as $\epsilon$ tends to zero.

Remark 4.2. The original idea for branching rate functional is due to Dynkin’s additive

functional approach.$2$ However, the theory is not directly applicable to the catalytic reac-
tion diffusion equations. So Dawson-Fleischmann4 extended it to cover the catalytic case
(see also Ref. 16). Of course, our definition of regular paths and the following results are
extensions of their work.

Let $\epsilon\in(0,1]$ . Suggested by Ref. 4, we define $L^{\epsilon}=L_{[}^{\epsilon_{W^{\kappa},\rho^{\gamma}]}}$ by

$L_{[,\beta]}^{\epsilon_{W^{\kappa}}}\gamma(dr):=\langle\rho_{r}^{\gamma},p^{\kappa}(\epsilon, W_{r}^{\kappa}, \cdot)\rangle dr$. (4.1)

Then, $L^{\epsilon}$ is a continuous additive functional (CAF) of the Brownian motion $W^{\kappa}$ in the sense
of Dynkin.$2$ Here $L^{\epsilon}$ is also the collision local time (CLT) of $\rho^{\gamma}\equiv X^{K}$ with the $\epsilon$-vicinity
of the Brownian path $W^{\kappa}$ in the sense of Barlow-Evans-Perkins1. It is not difficult to show

the following proposition. All through this section we may consider only the special case
$\kappa=1$ for the proofs of the propositions without loss of generality as far as the existence of

collision local time is concerned.

Proposition 4.3. Let $d\leq 3$ . If $\eta\in R_{\varphi}$ , then there exists an additive functional $L=$

$L_{[W^{\kappa},\eta]}$ of the Brownian path $W^{\kappa}$ such that, for every $\psi\in C_{+}^{p}’[0,N](N>0)$ ,

$0 \leq Sa\in R\sup_{N\leq_{d}}\Pi_{s,a}^{\kappa}\sup|s\leq t\leq N\int s[\psi(r, W^{\kappa})rW,\eta tL^{\epsilon}\kappa](dr)-\int_{s}^{t}\psi(r, W_{r}^{\kappa})L_{[W^{\kappa},\eta]}(dr)|^{2}$
(4.2)

vanishes as $\epsilon$ approaches to zero.

Proof. Set $A^{\epsilon}(dr)=\langle\psi(r, \cdot)\eta_{r},p(\epsilon, Wr’\cdot)\rangle dr$. Then note that

$a \in Rs\leq N\sup_{d}\int_{S}s+e\int\psi(r, b)p(r-s, a, b)\eta r(db)drarrow 0$
(as $\epsilon\downarrow 0$ ), $N>0$ .

By virtue of the regularity of $\eta$ , the assertion immediately follows from a slight modification
of the proof of Proposition $6.(\mathrm{a})$ in Ref. 4 and Theorem 4.1 (on the general convergence
of CAF’s) in Ref. 23, together with the aforementioned fact. Actually, $L$ is given by the
limit of $A^{\epsilon}$ divided by $\psi$ . Q.E.D.

Since it is true that the path $p^{\gamma}(\omega)\equiv X^{K}(\omega)$ is contained in $R_{\varphi}$ with probability one,
we can apply Proposition 4.3 for the case $\eta=\rho^{\gamma}$ . Consequently, there is the $\mathrm{s}\mathrm{c}\succ \mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{d}$

Brownian collision local time $L\equiv L_{[W^{\kappa},]}\rho^{\gamma}$ of the catalyst process $\rho^{\gamma}=\rho(\gamma)$ . It is easy to
show the following properties that this limit $L$ possesses.
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Proposition 4.4. Let $\delta>0,$ $d\leq 3$ and $\xi\in(0,1/4)$ . The Brownian collision local time $L$

$\equiv L_{\delta}=L_{[W^{\kappa},]}\beta_{6+(\cdot)}^{\gamma}$ satisfies the following properties:
(a) $L_{\delta}$ is continuous, $i.e.$ , it does not carry mass at any single point;
(b) $L_{\delta}$ is locally admissible, $i.e.$ , as $s,$ $tarrow r_{0},$ $(r_{0}\geq 0)$

$\sup_{a\in R^{d}}\Pi_{s}^{\kappa},a\int_{s}^{t}\varphi_{p}(W_{r}^{\kappa})L_{[]}W^{\kappa}\rho^{\gamma})\delta+(\cdot)(dr)arrow 0$; (4.3)

(c) for each $N>0$ , there exists a positive constant $C_{\kappa_{)}N}$ such that

$\Pi_{s,a}^{\kappa}\int_{s}^{t}\varphi_{p}(W_{r}\kappa)^{2}L_{[}W^{\kappa},\rho_{s}\gamma]+(\cdot)(dr)\leq C_{\kappa,N}|t-s|\xi\varphi_{p}(a)$ (4.4)

for $0\leq s\leq t\leq N$ and $a\in R^{d}$ .

Proof. Only the property (c) does matter. The same discussion as in the second step of
the proof of Theorem 4 in Ref. 4 together with the domination property of the heat flow
(e.g. $\mathrm{E}\mathrm{q}.(2.10)$ in Ref. 4) provides with an estimate

$\Pi_{s,a}\int_{s}^{s+\epsilon}\varphi_{pW,\rho}^{2}(W_{r})L[\gamma](dr)\leq c_{\epsilon^{\xi}\varphi_{p}}(a)$ .

This concludes the assertion. $\mathrm{Q}.\mathrm{E}$ .D.

From (a) in the above, we know that the BCLT $L_{\delta}$ lies in the class $\mathcal{K}$ . We say that the
continuous additive functional $A$ belongs to the class $\mathcal{K}^{\xi}$ if $A$ satisfies the conditions (b),
(c) in Proposition 4.4 additionally. Notice that $\mathcal{K}^{\xi}\subset \mathcal{K}$ .

Remark 4.5. We assume tacitly that the parameter $\delta$ is positive in the above proposition.
However, if $\delta=0$ , then some proper additional condition is required to let it make sense.

Indeed, we need to pose, for instance, the following condition for the case $\delta=0$ . The
mapping: $R_{+}\cross R^{d}\ni(r, z)\}arrow p_{0}^{\gamma}*q^{\kappa}(0, r, z)$ is locally $\xi$-H\"older continuous with H\"older

constant proportional to $||\rho_{0}^{\gamma}||_{p}$ , where the convolution is given by

$\rho_{0}^{\gamma}*q^{\kappa}(\mathrm{o}, r, z)=\int_{0}^{r}\int_{R^{d}}p^{\kappa}(s, a, z)\rho_{\mathrm{o}(}d\gamma)ad_{S}$ (4.5)

with $P_{0,\mu}$-probability one.

Remark 4.6. Since $p^{\gamma}$ is an $\mathcal{M}_{p}$-valued SBM, the quantity $|| \rho_{0}^{\gamma}||p:=\langle\rho_{0}^{\gamma}, \varphi p\rangle=\int\varphi_{p}p_{0}^{\gamma}(da)$

is finite in the above-mentioned condition.

Remark 4.7. Heuristically, the collision local time $L$ between a Brownian particle with
path $W^{\kappa}(\omega)$ and the catalytic medium $\rho^{\gamma}(\omega)$ is given by

$L \gamma[W^{\kappa},\rho]((S, t))=\int_{s}^{t}\int\delta_{b}(W_{r}^{\kappa})\rho_{r}\gamma(db)dr$ (4.6)
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(see e.g. \S 1.2 in Ref. 4). Here $\rho_{r}^{\gamma}(b)$ can be considered as the amount of catalyst present at

time $r$ at $b$ which is encountered by a reactant particle with path $W^{\kappa}$ , when $\rho_{r}^{\gamma}$ is a singular

measure (cf. Ref. 12). Hence, the term $\delta_{r}(W_{r}^{\kappa})\rho_{r}^{\gamma}(db)$ allows us to realize the intuitive

description at the microscopic level that a tagged Brownian particle with path $W^{\kappa}$ enjoys

branching according to a clock given by the additive functional $L=L_{[W^{\kappa},]}\rho^{\gamma}$ (cf. Ref. 16).

Remark 4.8. For the one-dimensional case with $\kappa=1$ , it is well-known3,12 that the

continuous SBM lies in the nicer space of absolutely continuous measures. Therefore,

there exists the Radon-Nikodym derivative $\rho_{t}(b)\equiv\rho_{t}(db)/db$ with respect to the Lebesgue

measure $db$ which is even ajointly continuous density field $\{\rho_{t}(b);t>0, b\in R\}$ (e.g. Ref.
26). So that,

$L_{[W,\rho]}(dr):= \{\int\delta_{b}(W_{r})db\}\rho_{r}(Wr)dr$ (4.7)

defines a continuous additive functional of $\mathrm{B}\mathrm{M}$ . For dimensions $d\geq 4$ , the Brownian colli-

sion local time $L=L_{[W,\rho]}$ degenerates to $0$ because the closure of the graph of the SBM $\rho$

never intersect with the graph of $W$ , by Barlow-Perkins (cf. Proposition 1.3 in Ref. 2). On
the other hand, the BCLT $L$ exists non-trivially in dimensions $d=2$ and $d=3$ (cf. Ref. 4),

although the random measures $\rho_{t}(db)$ are singular5 and we cannot use the abovementioned
expression for the definition of BCLT. By virtue of Theorem 4.1 in Ref. 21 together with
Proposition 4.7 in Ref. 21, we can show the similar result also for our case $L=L_{[W^{\kappa},\rho^{\gamma}]}$ .
Therefore, the restriction $d\leq 3$ is even essential for our theory.

5. Catalytic Superprocess and Exponential Moment Formula

In Section 2, according to Dynkin’s approach,$2$ we have introduced the Laplace functional
formalism with the $\log$-Laplace equation, whereby the Dawson-Watanabe superprocess $($

a finite measure-valued Markov process) can be determined. The purpose of this section
consists in reconstruction of the Laplace functional formalism with the $\log$-Laplace equation
to be adjusted for the catalytic superprocess associated with the nonlinear equation (3.1)

with catalytic noise. We now introduce some additional notation. In analogy to $\mathcal{M}_{p}$ , let
$\mathcal{M}_{p}^{I}$ be the set of all measures $\nu$ on $I\cross R^{d}$ such that

$\langle_{l\text{ノ}},\psi\rangle_{I}:=\int\int_{I\cross R^{d}}\psi(r, b)U(d[r, b])<+\infty$, $\forall$ $\psi\in B^{p,I}$

where we furnish $\mathcal{M}_{p}^{I}$ with the weakest topology such that the maps : $\nu\mapsto\langle\iota \text{ノ}, \psi\rangle_{I}$ are
continuous for all $\psi\in C^{p,I}$ . Here we use the same notation for extended functions even in
$C(I\cross R_{c}^{d})$ by the one point compactification if necessary.

Due to Dynkin’s AF approach with a slight modification of Theorem 1.1 in Ref. 17 and
other several results in Ref. 17 with minor change, we can derive the following formulation.
Here by the symbol $L^{\rho}=L(\rho)=L(\rho^{\gamma})$ we quote the BCLT $L$ from Section 4 instead
of $L_{\mathrm{f}]}W^{\kappa},\rho^{\gamma}$ . Now we are ready to introduce one of the principal results in this paper,
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which includes the exponential moment formula (5.1) of solutions for nonlinear differential
equation with catalytic noise.

Theorem 5.1. (Ref. 14) Let $d\leq 3$ . If the branching rate functional $K$ is given $P_{s,\nu}-\mathrm{a}.\mathrm{s}$ .
by the BCLT $L(\rho^{\gamma})$ of the $SBM\rho^{\gamma}$ , there exist a time inhomogeneovs $\mathcal{M}_{p}$-valued Markov
process

$X^{L}\equiv X^{L(\rho})\gamma=\{x_{tt}^{LL}=x(\rho^{\gamma})\mathrm{P}_{s}\kappa,\rho^{\gamma}, s>0, \kappa\in R_{+}, \mu\in \mathcal{M}_{p}\}$

and an $\mathcal{M}_{p}^{[s,t]}$-valued weighted occupation measure process $Y^{\rho}\equiv\{Y_{t}^{\rho}\}$ defined by

$\langle Y_{t’\psi}^{\rho}\rangle[s,t]:=\int_{s}^{t}\langle X_{r}^{L}(\rho^{\gamma}),\psi(r, \cdot)\rangle dr$, $\forall$ $\psi\in c_{\dagger}^{I}$

with Laplace transition functional
$\mathrm{P}_{s,\mu}^{\kappa,\rho^{\gamma}}\exp\{-(\langle X_{t}^{L(\rho^{\gamma})}, \varphi\rangle+\langle Y_{t}^{\beta}, \psi\rangle[S,t])\}=\exp\{-\langle\mu, u(s, t, \cdot)\rangle\}$ (5.1)

$P_{s,\nu}-\mathrm{a}.\mathrm{s}$ . for $0\leq s\leq t,$ $\mu\in \mathcal{M}_{p},$ $\varphi\in\beta_{t}^{p}$ and $\psi\in B_{t}^{p,I}$ . Here the function $u(\cdot, t, \cdot)\in C_{+}^{p,I}$ is
the unique $\mathit{8}oluti_{on}$ of the $log$-Laplace equation

$u(s,t, a)= \Pi^{\kappa}s,a[\varphi(W^{\kappa})t+\int_{s}^{t}\psi(r, W_{r}\kappa)dr-\int_{s}^{t}u^{2}(r, t, W_{r}^{\kappa})L(p^{\gamma})(dr)]$ . (5.2)

Proof. For $\mathcal{K}\ni L(\rho^{\gamma})$ , there exists an approximating sequence $\{L^{n}\}_{n}$ belonging to
Dynkin’s Admissible Class $\mathcal{K}_{0}(\subset \mathcal{K})$ , cf. \S 3.3.3 in Ref. 20. In fact, we can take $L^{n}$

$(\in \mathcal{K}_{0})$ as $L^{n}:= \int_{[\cdot]}(1\wedge n\varphi_{\mathrm{p}})(W_{r}^{\kappa})L(\rho^{\gamma})(dr),$ $n\geq 1$ . Then the existence of a time-
inhomogeneous $M_{F}\cross M_{F}$-valued Markov process $Z^{n}=\{X^{L^{n}}, Y^{L^{n}}\}$ with $\mathrm{P}_{s\mu\}},$ $s\geq 0$ ,
$\mu\in M_{F}$ satisfying

$\mathrm{P}_{s,\mu}\exp\{-\langle X_{t}^{L^{n}}, \theta\varphi\rangle-\langle Y^{L}, \zeta\psi\rangle_{[,t}S]\}t=n\exp\langle\mu, -v(\mathit{8}, t, \cdot)\rangle$ , (5.3)

for $0\leq s\leq t,$ $\mu\in M_{F},$ $(\varphi,\psi)\in \mathcal{B}_{+}^{p}\cross Bp\dotplus,$$\theta[0,t]\geq 0,$ $\zeta\geq 0$ , and

$v(s, t, a)= \theta\cdot f(_{S}, a)+\zeta\cdot g(s, a)-\Pi^{\kappa}s,a\int_{s}^{t}v^{2}(r, t, W_{r}^{\kappa})L^{n}(dr)$ (5.4)

for fixed $t>0,$ $f,$ $g\in B_{+}^{\mathrm{P}_{)}}[0,t]$ is guaranteed by Dynkin’s additive functional theory (cf.
Theorem 1.4 in Ref. 18). Indeed, (5.3), (5.4) are the particular cases of (1.36), (1.37) in
Ref. 19. The domination property:

$\sup_{s\in I=[S,L]}T^{\kappa}-\varphi Ls(a)\leq c_{0}||\varphi||\varphi_{p}(a)$
, $\varphi\in \mathcal{B}_{+}^{p}$

allows us to extend it to $\mathcal{M}_{p}$-valued Markov process version $\tilde{Z}^{n}$ . The fact $L^{n}\nearrow L(p^{\gamma})$

and the monotone convergence $v_{n}\searrow v$ in (5.4) verifJ the convergence of the corresponding
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(5.3) with $v$ replaced by $v_{n}$ , for fixed $s,$ $t,$ $\mu$ . Note that the limit functional is continuous in
$(\varphi, \psi)$ and also that $v(s, t, a)$ vanishes if $(\varphi, \psi)$ tends to null functions. Hence, the limiting

functional is the Laplace functional of a random measure $\tilde{Z}=\{X^{L(\rho)}, YL(\rho)\}$ given by (5.3).

Moreover, we can construct the laws of vectors $\{Z_{t_{1}}, \cdots, Z_{t_{k}}\}$ by taking advantage of the

semigroup structure of the solutions for (5.4). On this account, the Markov process $\tilde{Z}$ in

question is determined by these compatible finite dimensional distributions. Note that the
Markov process $\tilde{Z}$ is independent of the choice of $\{L^{n}\}$ . On the other hand, it follows from
Kolmogorov’s moment method that $X^{L(\rho^{\gamma}}$ ) has continuous paths, since the corresponding
branching rate functional $(=\mathrm{B}\mathrm{C}\mathrm{L}\mathrm{T})L(\rho^{\gamma})$ is contained in $\mathcal{K}^{\xi}$ . Thus we attain the pathwise
definition of $Y^{\rho}$ as a measure on $[s, t]\cross R^{d}$ as indicated in the statement of Theorem 5.1.
With the help of the expectation formula for $Y^{\rho}$ , it is routine work to verify that $\tilde{Z}=$

$\{X^{L(\rho)}, Y^{\rho}\}$ satisfies (5.1), (5.2), namely, $f=T^{\kappa}\varphi$ and $g=U^{\kappa}\psi$ , see Theorem 3.1 in Ref.
19 (also see Ref. 17). Clearly $v$ solves the cumulant equation $F[A]=0$ with $A_{[W^{\kappa}]}$ replaced

by $L(\rho)$ . Q.E.D.

In the above theorem $\mathrm{p}_{s,\mu}^{\kappa,\rho},$
$\kappa\gamma\in R_{+},$ $s\geq 0,$ $\mu\in \mathcal{M}_{\mathrm{p}}$ is the quenched distribution of

$X^{L}$ given $\rho^{\gamma}$ . The existence and uniqueness of the solution to the $\log$-Laplace equation
(5.2) are guaranteed by Theorem 3.2 and Theorem 3.3 in Section 3. We call $X^{L}=X^{L(\rho^{\gamma}}$ )

the catalytic superprocess in the catalytic medium $\rho^{\gamma}$ . By the same argument in Ref.
17 we readily obtain the probabilistic representation of solutions for (3.1) which realizes
a probabilistic interpretation of the nonlinear equation with catalytic noise in terms of
catalytic superprocess.

Theorem 5.2. Let $u$ be the unique solution to (3.1). Then it may be $expres\mathit{8}ed$ by

$u(s, y)\equiv u^{[\kappa,\varphi,\psi_{\rho^{\gamma}}}’(])s,$$y=V[\varphi, \psi]$

$:=-\log \mathrm{P}^{\kappa_{\delta_{y}}}’\rho \mathrm{x}\mathrm{e}\mathrm{p}\mathit{8},\gamma\{-(\langle X_{t’\varphi}^{L}\rangle+\langle Yt\psi\rho.\rangle[S,t])\}$, $P_{s,\nu}-a.s$ . (5.5)

for $(s, y)\in I\cross R^{d},$ $I=[L, T],$ $L<T$ , and $(\varphi, \psi)\in C_{+}^{p}\cross C^{pI}\dotplus\cdot$ Here $P_{s,\nu^{-}}a.$ s. means almost
all catalyst process realizations.

Proof. To get (5.5) from (5.2), it suffices to choose, in particular, $\mu=\delta_{y}$ . Q.E.D.

Remark 5.3. The study to derive the probabilistic representation of the $\log$ type like (5.5)
from the exponential moments is originally due to Dynkin.17 For other similar expressions
for nonlinear elliptic equations and distinct probabilistic representations in terms of path-
valued process, see Ref. 11.

6. Large Deviation Principle for Catalytic Processes

Recall that $C_{p}$ is a separable Banach space. Let $(C_{p}^{*}, ||\cdot||_{*})$ denote the dual Banach space rel-
ative to $(C_{p}, ||\cdot||)$ . Then note that we can regard $\mathcal{M}_{\mathrm{p}}$ as a convex subset of $C_{p}^{*}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}_{\mathrm{P}\mathrm{p}\mathrm{e}\mathrm{d}}$ with
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the $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-*\mathrm{t}\mathrm{o}\mathrm{p}_{0}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$. The pvague topology in $\mathcal{M}_{p}$ is equivalent to the induced topology
in $\mathcal{M}_{p}$ by the $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}^{*}-\mathrm{t}\mathrm{o}_{\mathrm{P}}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$ in $C_{p}^{*}$ . We have

Lemma 6.1. The duality pairing $\ll.,$ $\cdot\gg$ between $\mathcal{M}_{p}$

. and $C^{p}$ is $continuo\iota Ls$ in both
$component_{\mathit{8}}$ , and in particular

$||\mu||_{*}=|\mu|_{p}(:=\langle\mu, \varphi_{p}\rangle)$ , $\mu\in \mathcal{M}_{p}$ . (6.1)

Proof. It suffices to note that the estimate

$|\ll\mu,$ $\varphi\gg|\leq||\varphi||\langle\mu, \varphi_{p}\rangle$ , $\varphi\in C^{p}$ , $\mu\in \mathcal{M}_{p}$ (6.2)

holds. From (6.2) the continuity follows immediately. The equality (6.1) yields from (6.2),
too, by the definition of $||\mu||_{*}$ . Q.E.D.

Now we introduce a metric $d_{p}$ in $\mathcal{M}_{\mathrm{p}}$ . Denote by $\kappa_{K}$ the space of all positive elements
$f$ in $C_{K}(R^{d};R)$ with compact support, equipped with uniform convergence topology.

Definition 6.2. The meric $d_{p}$ in $\mathcal{M}_{p}$ is defined by

$d_{p}( \mu, \nu):=n\sum\frac{1}{2^{n+1}}\infty=0(1-\exp\{-\frac{|\ll\mu,f_{n}\gg-\ll\nu,fn\gg|}{||f_{n}||}\})$

for $\mu,$ $\nu\in \mathcal{M}_{p}$ and some sequence $\{f_{n}\}_{n}\subset C_{+}^{p}$ .

Then the followings are well known results in connection with this metric.

Lemma 6.3. (Ref. 25) (a) There exists a sequence $\{f_{n}\}_{n\geq 1}$ of functions in $\mathit{1}^{X_{K}}$ such that,
with $f_{0}=\varphi_{p},$

$d_{p}(\cdot, \cdot)$ is a translation-invariant metric on $\mathcal{M}_{p}$ , which $generate\mathit{8}$ the $I\succ v.ague$

topology.
(b) $\mathcal{M}_{\mathrm{p}}$ is a separable metric space with respect to the metric $d_{p}$ .

We define the open ball $B(\nu,r)$ in $\mathcal{M}_{p}$ with center $\nu$ and radius $r$ by

$B^{d_{\mathrm{p}}}(\nu;r):=\{\mu\in \mathcal{M}_{p}). d_{p}(\mu, \nu)<r\}$ , $\nu\in \mathcal{M}_{p}$ , $r>0$ .

Lemma 6.4. (Ref. 22) Each open ball $B^{d_{\mathrm{p}}}(\nu;r),$ $\nu\in \mathcal{M}_{p},$ $r>0$ is a convex $\mathit{8}ubset$ of $\mathcal{M}_{p}$ .

Set $R_{c}^{d}:=R^{d}\cup\{\infty\}$ with an isolated point $\infty$ . $\varphi_{p}^{*}$ denotes the extension of $\varphi_{p}$ to $R_{c}^{d}$ by
setting $\varphi_{p}^{*}(\infty):=1$ . Define $\mathcal{M}_{p}^{*}$ as the set of all measures $\mu$ on $R_{c}^{d}$ satisfying $\langle\mu, \varphi_{p}^{*}\rangle<\infty$ .

51



So that, we can define the p–vague topology in $\mathcal{M}_{p}^{*}$ as in the case $\mathcal{M}_{p}$ . Then the following

gives a criterion for relative compactness in $\mathcal{M}_{p}^{*}$ .

Lemma 6.5. (Ref. 23) Let $A$ be a subset of $\mathcal{M}_{p}^{*}$ . Then $A$ is relative compact if and only

if there is some $k\in \mathrm{N}$ such that $A\subset\{\mu\in \mathcal{M}_{p}^{*};\langle\mu, \varphi_{p}^{*}\rangle\leq k\}$ .

Let $\mathcal{U}$ be the system of all those non-empty subsets of $\mathcal{M}_{p}$ which are open and convex.
Define

$S_{\mu,t}(A):=- \lim\Lambdaarrow\infty\frac{1}{\Lambda}\log \mathrm{P}0,\Lambda\kappa,\rho^{\gamma}\mu(x^{L(\rho}t/)\Lambda\gamma\in A)$, $P_{0,\nu}-a.s$ . (6.3)

for all $A\in \mathcal{U},$ $\mu\in \mathcal{M}_{p},$ $t\geq 0$ . We set

$I_{\mu,t}( \nu):=\lim_{rl0}S(\mu,tB^{d_{\mathrm{p}}}(\nu;r))$ , $(\nu\in \mathcal{M}_{p})$ (6.4)

for $\mu\in \mathcal{M}_{\mathrm{p}}$ and $t\geq 0$ . Now we are in a position to state one of the main results in this

paper, which provides the weak large deviation principle (LDP) for catalytic superprocesses
given in the previous section.

Theorem 6.6. (Weak $\mathrm{L}\mathrm{D}\mathrm{P}^{13}$) The family { $\frac{1}{\Lambda}\log^{\mathrm{p}_{0’}},\mu(\kappa_{\Lambda}\rho^{\gamma}X_{t}L/\Lambda\in(\cdot))$ ; A $>0$} $\mathit{8}atisfieS$ a
weak large deviation principle with convex rate functional $I_{\mu,t}$ . In other words, the following

two types of estimates hold: for every $t\geq 0$ and $\mu\in \mathcal{M}_{p}$ ,

(I) $\lim_{\Lambdaarrow}\inf_{\infty}\frac{1}{\Lambda}\log \mathrm{P}_{0’}\kappa_{\Lambda},\rho^{\gamma}\mu(x^{L(}t\rho^{\gamma})/\Lambda\in c)\geq-\inf_{G\lambda\in}I_{\mu},t(\lambda)$ , $P_{0,\nu}-O.S.$ ,

for $\forall$ open $G\subset \mathcal{M}_{p}$ ; and

(II) $\lim_{\Lambdaarrow}\sup_{\infty}\frac{1}{\Lambda}\log \mathrm{p}_{0}\kappa_{\Lambda},’\rho^{\gamma}\mu(x^{L(}t\rho^{\gamma})/\Lambda\in c)\leq-\inf_{c\lambda\in}I_{\mu},t(\lambda)$, $P_{0,\nu}-a.s.$ ,

for V compact $C\subset \mathcal{M}_{p}$ .

This is the key result for derivation of the full large deviation principle (Theorem 6.7
below), which is one of the main results in this paper. The proof of Theorem 6.6 shall be

given in the next section (see Sec.7). For $\mu\in \mathcal{M}_{p},$ $t>0$ , we denote by $C_{t}^{p}[\mu]$ the largest

open set of all those functions $\varphi\in C^{p}$ such $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}---(\mu, t, \varphi):=\log^{\mathrm{p}_{0,\mu}^{\kappa,\rho}}\gamma\exp\langle X_{t}^{L}(\rho), \varphi\rangle<$

$+\infty$ .

Theorem $6.7.(\mathrm{F}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{L}\mathrm{D}\mathrm{P}^{1}5)$ The family $\{\frac{1}{\Lambda}\log \mathrm{P}^{\kappa_{\Lambda}},’(0^{\rho}\mu/X_{t}L\Lambda\gamma\in(\cdot));\Lambda>0\}$ satisfies the full
large deviation principle with good rate functional $I_{\mu,t}$ .

Proof. Take $\mu\in \mathcal{M}_{p},$ $t>0$ and $\varphi\in C_{t}^{p}[\mu]$ and fix them. Since $C_{t}^{p}\lfloor\mu\rfloor$ is open, we can find
$\theta>0$ such that $(1+\theta)\varphi\in C_{t}^{p}[\mu]$ . Set the event $A:=\{\langle x_{t}^{L(\rho)}/\Lambda, \varphi\rangle>N\}\subset\Omega$. A simple

calculation reads

$\frac{1}{\Lambda}\log \mathrm{P}_{0}\kappa_{\Lambda},’\rho^{\gamma}\mu[\exp\langle X^{L}t’\varphi\rangle(\rho);A]\leq---(\Lambda\mu, t, (1+\theta)\varphi)/\Lambda-\theta N$ , (6.5)
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$\Lambda,$ $N>0$ . The branching property (see e.g. Ref. 20) implies that $—(\Lambda\mu, t, \varphi)=\Lambda$ .
$—(\mu.t.\varphi)$ , hence the right-hand side in (6.5) proves to be finite. Letting first $\Lambdaarrow\infty$ and
then $Narrow\infty$ , we obtain

$\lim_{Narrow\infty\Lambda}\lim_{\inftyarrow}\log^{\mathrm{p}_{0}}\kappa,’\rho^{\gamma}\Lambda\mu[\exp\langle X_{t}^{L(\rho}), \varphi\rangle;A]=-\infty$ . (6.6)

For $\theta>0$ small enough, we can deduce from (6.6) that

$\lim_{Narrow\infty}\lim_{\Lambdaarrow\infty}\frac{1}{\Lambda}\log \mathrm{P}_{0,\Lambda\mu}\kappa,\rho\gamma(\langle X_{t}^{L(\rho)}/\Lambda, \theta\varphi_{p}\rangle\geq N)=-\infty$ . (6.7)

By taking (6.1) and Lemma 6.5 into consideration, for each $M>0$ we can find a compact
subset $C_{M}$ of $\mathcal{M}_{p}$ such that

$\lim_{\Lambdaarrow}\sup_{\infty}\frac{1}{\Lambda}\log \mathrm{P}^{\kappa,\rho^{\gamma}}0,\Lambda\mu(x_{t}^{L(\rho)}/\Lambda\in(C_{M})^{c})\leq-M$, (6.8)

as far as we reinterpret measure and distribution as those on $R_{c}^{d}$ (or on $\mathcal{M}_{p}^{*}$ ) respectively.
(6.8) implies that $\{X_{t}^{L(\rho)}/\Lambda;\Lambda>0\}\subset \mathcal{M}_{p}^{*}$ is exponentially tight.6 Hence the assertion
immediately yields from Lemma 2.1.5 in Ref. 8 together with Weak LDP (Theorem 6.6).
Q.E.D.

7. Proof of Weak Large Deviation Principle

For $t>0,$ $\mu\in \mathcal{M}_{p}$ , and a convex subset $A\in B(\mathcal{M}_{p})$ (fixed), we define the function

$F(\Lambda):=\mathrm{P}_{0,\Lambda}^{\kappa}’\rho^{\gamma}\mu(Xt/L(\rho)\Lambda\in A)$ , $\Lambda>0$ . (7.1)

Then we have

Lemma 7.1. (Supermultiplicativity) The inequality

$F(\Lambda+\Lambda’)\geq F(\Lambda)F(\Lambda/)$ (7.2)

holds for any $\Lambda,$ $\Lambda’>0$ .

Proof. Let $\Lambda,\Lambda’>0$ and fixed. Suppose that $\{X_{t}^{L,1}, X_{t}^{L,2}\}$ be distributed according to
the product measure $\mathrm{p}_{0^{\rho}}^{\kappa},’\Lambda\mu\cross \mathrm{P}_{0^{\rho}’}^{\kappa},’\Lambda\mu$ . Then it follows that

$F(\Lambda)F(\Lambda’)=(\mathrm{P}_{0,\Lambda\mu}^{\kappa}’\beta\cross \mathrm{p}_{0,\Lambda\mu}^{\kappa}’\rho,)(x_{t}^{L,1}/\Lambda\in A, X_{t}^{L,2}/\Lambda’\in A)$ .

Recall that $A$ is convex in $\mathcal{M}_{p}$ , so that, the convex combination $(\Lambda+\Lambda’)1(\lambda_{\iota}’L,1+X_{t}^{L,2})$

lies in $A$ if both $X_{t}^{L,1}/\Lambda$ and $X_{t}^{L,2}/\Lambda’$ are contained in $A$ . Therefore we get immediately

$F(\Lambda)F(\Lambda’)\leq(^{\mathrm{p}_{0^{\rho}}^{\kappa_{)}}},\Lambda\mu \mathrm{X}\mathrm{p}0,\Lambda’\mu)\kappa,\rho((\Lambda+\Lambda’)-1(x^{L,1}t+X_{t}^{L}’)2\in A)$ .
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While, the exponential moment formula (5.1) in Theorem 5.1, Sec.5 yields the branching

property directly. Hence the law of the sum $X_{t}^{L,1}+X_{t}^{L,2}$ is given by $\mathrm{P}_{0()\mu}^{\kappa,\rho}\Lambda+\Lambda’$ . Thus we
attain the required inequality. Q.E.D.

For $\mu\in \mathcal{M}_{p},$ $t>0$ , and $A\in \mathcal{U}$ , we set

$\Phi(\Lambda):=-\log^{\mathrm{p}}\mathrm{o}\kappa_{\Lambda\mu},’\rho(X_{t}^{L}/\Lambda\in A)$ , $R>0$ . (7.3)

An application of supermultiplicativity (Lemma 7.1) concludes that the function $\Phi(\Lambda)\in$

$R_{+}\cup\{\infty\}$ is subadditive. We need the $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{i}_{0}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$ result.

Proposition 7.2. Suppose that $A$ is an open convex Borel subset of $\mathcal{M}_{p}$ . If there $i\mathit{8}$ some
positive number A such that $F(\Lambda)>0$ , then $F$ is bounded away from $0$ on $\mathit{8}ome$ non-trivial
open interval.

Proof. The result follows from the branching property, the translation invariance of the

metric $d_{p}$ (Lemma 6.3) and the supermultiplicativity. In fact, the standard routine argu-
ment takes care of it with Lemma 6.4. The whole proof is quite longsome but easy, hence

omitted. Q.E.D.

Then we can conclude from Proposition 7.2 that $\Phi$ is either bounded on some non-
empty open interval, or $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}+\infty$ . Consequently, we know that the subadditivity of
$\Phi$ guarantees the existence of all limits $S_{\mu,t}(A)\in[0, +\infty],$ $A\in \mathcal{U},$ $(\mu\in \mathcal{M}_{p}, t\geq 0),$ by
repeating the discussion in Lemma 4.2.5 in Ref. 8. Moreover, by virtue of monotonicity
we obtain

Lemma 7.3. For $\pi\in \mathcal{M}_{p}$ , the value $I_{\mu,t}(\pi)$ is equal to $\sup\{S_{\mu,t}(A);\pi\in A\in \mathcal{U}\}$ .

since all open balls $B^{d_{\mathrm{p}}}(\nu;r),$ $\nu\in \mathcal{M}_{p},$ $r>0$ , belong to $\mathcal{U}$ by Lemma 6.4. Clearly, we have

Lemma 7.4. $I_{\mu,t}$ : $\mathcal{M}_{p}arrow[0, +\infty]i_{\mathit{8}}$ a lower semi-continuotLs $J\dot{u}$nctional.

The convexity of $I_{\mu,t}$ is obvious from the inequality

$I_{\mu,t}( \pi_{1})+I\mu,t(\pi_{2})\geq 2I_{\mu,t}(\frac{\pi_{1}+\pi_{2}}{2})$ , $\pi_{1},$ $\pi_{2}\in \mathcal{M}_{p}$ . (7.4)

The above inequality follows from a direct computation together with the branching $\mathrm{p}\mathrm{r}\mathrm{o}_{\mathrm{I}}\succ$

erty and Lemma 7.3. On this account, the first type estimate (I) in Theorem 6.6 is derived
immediately from (6.3), (6.4), and Lemma 7.3. On the other hand, we can deduce the

second type estimate (II) in Theorem 6.6 from compactness, by employing the similar
argument in \S 3.1 of Ref. 8. Summing up, we complete the proof of weak LDP.
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8. Scaling Property and Limit Theorem

In this section we treat only the case $\psi\equiv 0$ in (3.1) of Section 3 for simplicity. We first
consider some scaling property for the catalytic superprocess $X^{L}=\{x_{t}^{L(}\rho^{\gamma}), t\geq 0\}$ . In what
follows we fix a measure $\mu\in \mathcal{M}_{p}$ , a nonnegative constant $c(\geq 0)$ , and a time parameter
$t>0$ . $\mathcal{L}(X)$ denotes the law of the random variable $X$ . We use the same notation $\mathrm{p}_{s,\mu}^{\kappa,\rho}\gamma$ ,
$\kappa\in R_{+},$ $s\geq 0$ , which was introduced in Section 5 as the quenched distribution of $X^{L}$ $($

$P_{s,\nu}-\mathrm{a}.\mathrm{s}$ . ) given the catalyst process $\rho^{\gamma}$ .

Proposition 8.1. If $X^{L}$ has the law $\mathcal{L}(x^{L})=\mathrm{p}_{0_{\mu}^{\rho}}^{\kappa},’\gamma$ , then $cX^{L}$ is $di\mathit{8}t\dot{n}buted$ according to
the law $\mathcal{L}(cx^{L})=\mathrm{P}_{0,c\mu}^{\kappa,c\rho^{\gamma}}$ .

Proof. Let $C_{-}^{p}$ be the space of all continuous functions on $R^{d}$ such that $-f\in C_{+}^{p}$ . Recall
that we have the following Laplace transition functional

$\mathrm{P}_{s,\mu}^{\kappa,\rho}\gamma\exp\langle X_{t}^{L}\rho^{\gamma}), \varphi\rangle(=\exp\langle\mu, u^{[0}(\kappa,\varphi,,\rho^{\gamma}]-(t-s))\rangle$ , (8.1)

where $t\geq s,$ $\varphi\in C_{-}^{p}$ (cf. (5.1)). The arguments in Section 3 and Section 5 $\mathrm{y}.$.ields that $u$

$\equiv u^{[\kappa,\varphi_{)}\rho^{\gamma}}0,]$ solves the equation (cf. $(3.2),(3.3)$ and (5.2))

$\Pi_{0-,x}^{\kappa}\varphi(W_{-t}^{\kappa})=u(0-, t, X)+\Pi_{0-,x}^{\kappa}\int_{t}^{0}u^{2}(r, t, W_{r}^{\kappa})L(\rho^{\gamma})(dr)$ . (8.2)

We claim that the identity
$u^{[0,]}\kappa,c\varphi_{)}\rho^{\gamma}=c\cdot u^{[0}\kappa,\varphi,,C\rho^{\gamma}]$ (8.3)

for $\varphi\in C_{-}^{p}$ , by employing (8.1), (8.2) together with the Markov property. The assertion is
a direct result from (8.3). Q.E.D.

Moreover, based upon the above result we can derive the following limit theorem- $(\mathrm{c}\mathrm{f}$.
Theorem 8.4). Actually it is nothing but a version of law of large numbers (LLN) for the
scaled catalytic superprocesses. We derive by $U^{t,\kappa}(\mu)$ a neighborhood of $T_{t}^{\kappa}\mu,$ $\mu\in \mathcal{M}_{p}$ .
The elememt $T_{t}^{\kappa}\mu$ is defined by the duality

$\langle T_{t}^{\kappa}\mu, \varphi\rangle=\langle\mu,$ $T_{t\varphi\rangle}^{\kappa}$ . (8.4)

Lemma 8.2. We have

$\langle\mu, u^{[]}(\kappa,\varphi,0,0t)\rangle=\langle T_{t\mu}^{\kappa}, \varphi\rangle$, $\varphi\in C^{p}$ . (8.5)

Proof. Since $u^{[\kappa,\varphi,0,0]}(t)$ is expressed as $T_{t}^{\kappa}\varphi,$ $(8.5)$ directly follows from the duality (8.4).
Q.E.D.
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Lemma 8.3. For $\varphi\in C_{-}^{p}$ , we have

$\mathrm{P}_{0,\Lambda\mu t}^{\kappa,\rho}\gamma\exp\langle x^{L}(\rho\gamma)/\Lambda, \varphi\rangle=\exp\langle\mu,u([\kappa,\varphi,0,\rho^{\gamma}/\Lambda 1-t)\rangle,$ $p_{0,\nu}-a.s$ . (8.6)

Proof. By virtue of Proposition 8.1, we readily derive

$\mathrm{P}_{0,\Lambda\mu}^{\kappa,\rho}\gamma\exp\langle X_{t}^{L}\rho)/(\prime f\Lambda, \varphi\rangle=\mathrm{p}_{0},’\rho^{\gamma}\kappa/\Lambda \mathrm{x}\mathrm{e}\mathrm{p}\mu\langle X_{t}^{L}\rho^{\gamma}), \varphi\rangle$

( , $P_{0,\nu}-a.s$ . (8.7)

While, taking (8.1) into consideration, we obtain

$\mathrm{p}_{0,\mu}^{\kappa}’\rho^{\gamma}/\Lambda\exp\langle XtL(\rho)\gamma, \varphi\rangle=\exp\langle\mu,u[\kappa,\varphi,0,\rho’’/\Lambda](-t)\rangle$, $p_{0,\nu}-a.s$ . (8.8)

for any element $\varphi$ in $C_{-}^{p}$ . Hence the assertion (8.6) follows immediately from (8.7) and

(8.8). Q.E.D.

Lastly we introduce the main result in this section.

Theorem 8.4. (LLN) For all $neighb_{\mathit{0}}rhood_{\mathit{8}}Ut,\kappa(\mu)$ of $T_{t}^{\kappa}\mu$ ,

$\lim_{\Lambdaarrow\infty}\mathrm{P}_{0,\Lambda}^{\kappa,\rho^{\gamma}}\mu\{X_{t}^{L(\rho^{\gamma}})/\Lambda\in Ut,\kappa(\mu)\}=1$ , (8.9)

$P_{0,\nu}- \mathrm{a}.\mathrm{s}$ holds.

Proof. By virtue of Lemma 8.2 and Lemma 8.3, the assertion of Theorem 8.4 directly

yields from continuity property, because we have only to combine (8.5) to (8.6) with limiting

procedure of $\Lambdaarrow\infty$ . Q.E.D.
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