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DERIVATION OF STOCHASTIC OSCILLATOR OF
THE DUFFING TYPE FROM LORENZ EQUATION
AND IDENTIFICATION OF THE LIMIT PROCESS~

PN KFZETFR REEIE (Kiyomasa Narita)
Faculty of Engineering, Kanagawa University

Abstract Lorenz(1963) obtained numerical results by integrating a sim-
ple third order system of ordinary differential equations on a computer. These
equations were derived from a simple model of the weather and Lorenz was
trying to show that the solutions of ordinary differential equations could be
(in practice) unpredictable despite being deterministic. Here we consider the
system of stochastic differential equations of the Lorenz type where the drift
and diffusion coeflicients are allowed to be increasing functions in a small
parameter £ > 0. Then, by a space-time transformation, we derive a new
stochastic system from the Lorenz-like equations and show that this new
system tends to the stochastic Duffing oscillator as € — 0. This research is
motivated by a singular perturbation problem for stochastic oscillators, such
as the Duffing model, the Liénard model.

1 Lorenz Model and Duffing Oscillator

The Lorenz equations first arose in 1963 from a drastically over-simplified
model of thermal convection in a layer of fluid. In their ‘usual’ form they are

dzx

o = o(z —y),
dy

- — roe — .

i r—y—zx2,
dz _ b+

dt Ty

where the parameters o,b and r are real and positive. The values chosen by
Lorenz are

o =10, b:g and r = 28,

but in the context of bifurcation theory it is usual to treat o and b as fixed
and allow r to vary. In the original context, r acted as a measure of the
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imposed temperature difference between the bottom of the fluid layer and
the top, which is what was driving the convective motion. In the same vein,
x measured the flow speed, while y and z denoted certain broad features of

the temperature distribution (see Addison (1997, pp.125-126)).
The Lorenz equations are symmetric under the operation

(a:,y,z) — ( — T, — yaz)v

a fact that will be useful later and has stationary points at the origin (0,0, 0)
and at solutions of z = y (from dz/dt = 0) and bz = 2? (from dz/dt = 0)
and so

b(r— 1)z —z° =0 (from dy/dt =0).

Hence there are two other stationary points (see Glendinning (1994, p.359)
and Rasband (1990, p.96)),

Cy = (:l:\/b(r —1), £/b(r = 1), r — 1)

provided r > 1. A little linear analysis shows that the origin is stable if
0 <r <1 and loses stability in a pitchfork bifurcation at r = 1, creating the
two non-trivial stationary points which are (initially) stable. To determine
the stability of these points we look at the following Jacobian matrix:

— 0 o 0
r—z —1 —x

Y x —=b
This has eigenvalues given by the roots of
MNA(o+b+ )N +b(c+r)A+20b(r—1)=0

when evaluated at either C, or C_. Note that since C_ is the image of
C, under the symmetry the stability properties of the two stationary points
must be the same. We can look for bifurcations of the stationary points, i.e.
values of the parameters for which either A = 0 or A = iw are solutions of
the eigenvalue equation. The Jacobian matrix at the origin is

—0 o 0
r —1 0
0 0 —-b

and so there is one eigenvalue of —b with the z-axis as its associated eigenvec-
tor and the other eigenvalues Ay are the solutions of A2+ (o +1)A—0o(r—1) =
0, i.e.

Ar = — (o +1) %:I:—;—\/l——lla(l——r)/(a—i—lﬁ ,
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which gives A_ < 0 and Ay > 0. At r = 1 the eigenvalue A\_ = 0. So as r
passes through 1, there is a bifurcation with a change of stability.

Let us consider a schematic diagram of Rayleigh-Benard convection be-
tween two horizontal plates. The bottom plate is at a temperature Tj which
is greater than that of the top plate, 1. For small differences between the
two temperatures, heat is conducted through the stationary fluid between the
plates. However, when Ty — T} becomes large enough, buoyancy forces within
the heated fluid overcome internal fluid viscosity and a pattern of counter-
rotating, steady recirculating vortices is set up between the plates. Lorenz
noticed that, in his simplified mathematical model of Rayleigh-Benard con-
vection, very small differences in the initial conditions blew up and quickly
led to enormous differences in the final behaviour. He reasoned that if this
type of behaviour could occur in such a simple dynamical system, then it
may also be possible in much more complex physical system involving con-
vection: the weather system. Thus, a very small perturbation, caused for
instance by a butterfly flapping its wings, would lead rapidly to complete
change in future weather patterns. The system of the Lorenz equations has
two nonlinearities, the zz term and the zy term, and exhibits both periodic
and chaotic motion depending upon the values of the control parameters o,
and b. The parameter ¢ is the Prandtl number which relates the energy
losses within the fluid due to viscosity to those due to thermal conduction;
r corresponds to the dimensionless measure of the temperature difference
between the plates known as the Rayleigh number; and b is related to the
ratio of the vertical height of the fluid layer to the horizontal extent of the
convective rolls within it. Note also that the variables z,y and z are not spa-
tial co-ordinates but rather represent the convective overturning, horizontal
temperature variation, and vertical temperature variation respectively.

Now, consider the numerical case where

oc=10 and bzg.

The origin

is clearly an stationary point for all r, but it turns out to be stable according
to linear theory only for r < 1. If we increase r beyond 1 we find two ‘new’
stationary points



These exist, for all r > 1 but turn out to be linearly stable only for 1 < r <
24.74. No other stationary points exist. Some typical numerical solutions in
the case where r = 28 can be obtained by using the program C. The chaotic
nature of these solutions is evident, not just because of their irregularity,
but because of their extreme sensitivity to initial conditions. With an initial
difference of 1 part in 1000 the oscillation sequences are seen diverging as t
becomes greater than about 13. Moreover, even if we reduce the discrepancy
in the initial conditions by a factor of 100, to just 1 part in 100000, we
only manage to keep the solutions together for a little longer, till ¢ is about
16, after which they once again go their separate ways (see Acheson (1997,
pp.158-161)).

Lorenz saw this behaviour to be a general property of irregular oscilla-
tions in nonlinear systems; indeed, he realized that this extreme sensitivity
to the initial conditions was essentially the cause of irregularity. He realized,
too, the practical implications, remarking in his 1963 paper that

... When our results ... are applied to atmosphere, ... they indicate
that prediction of the sufficiently distant future is impossible by any method,
unless the present conditions are known exactly. In view of the inevitable
inaccuracy and incompleteness of weather observations, precise very-long-
range forecasting would seem to be non-existent.

If we view the Lorenz equations as a fluid flow in phase space, writing

u = —o(x —y) etc., the divergence of the flow is

ou dv OJw

e T o1 —b

Ox + Oy + 0z 7 ’ (")
which is negative; this value is estimated at — 132 in the particular case
where o = 10 and b = —g—. Consider, then, a small blob of phase fluid initially

centred on (5,5,5). Because this represents a whole set of slightly different
initial conditions, and because we know the outcome to be sensitive to these,
we know that the blob will become greately deformed and spread about all
over the attractor in quite a short time. Yet because of the result (f) the blob
must manage to do this while decreasing in volume all the time. Moreover, a
divergence of — 13.667 corresponds to a quite spectacular rate of shrinking.

A good introduction to the deterministic Lorenz system is given in Guck-
enheimer and Holms (1983), Sparrow (1983) and Lichtenberg and Lieberman
(1982) who discuss the derivation from fluid dynamics. Noise-driven oscilla-
tor analogue to the deterministic Lorenz equations are investigated by various
authors, who are, for example, cited in Schaffer and Truty (1989).

A simple forced, damped nonlinear oscillator is known as the Duffing

7
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oscillator, and has the equation of motion

d*z d
naz——{- d;+ﬁm = Ay cos wt.

Withoutloss of generality, we may simplify the equation of motion of the
Duffing oscilator by setting the mass, m, spring stiffness, 8, and the angular
frequency, w, to unity, to get

d*z dx

7} -I—k:l—{—lra: = Ay cos t.
We now have only two control parameters: a damping coefficient k, and
the amplitude of forcing, A;. By varying these two parameters we can locate
regimes of periodic and chaotic oscillations (see Addison (1997, pp.120-122)).

The above equation is a special case of the following equation:
d*z dx
-d-‘f—z—-!-k—gi‘—l-a.'ﬂ*{*ﬁﬁ' —-Af cos 1.

Let us consider the point mass m in a spring oscillator, which moves to and
fro under the action of a spring. Let z = 0 denote the equilibrium point, at
which the spring is neither extended nor compressed, and let the force exerted
by the spring be F(x) in the negative z-direction. In general, this will be a
complicated function of z, determined by the detailed elastic properties of
the spring, but we do know that F'(0) = 0, because the spring force must be
zero at the equilibrium pointz = 0. The above-cited equation arises quite
naturally from the forced oscillator problem of

d*z

with m = 1, if the spring behaves the same way in compression as it does
in extension, so that F( —z) = — F(z), i.e. F(z) is an odd function of z.
If we conﬁne attention to small values of |z|, so that the particle is close to
the equilibrium point, we may approximate F'(z) by the first two terms of its
Taylor series about « = 0 and then obtain F(z) = az + fz°, because there
can be no z? term. The coeflicient 3 = éF”'(O) may be positive or negative,
depending on the nature of the spring (see Acheson (1997, p.164)).

Our research is motivated by a singular perturbation problem for stochas-
tic oscillators as described in Narita (1993, 1994).
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2 Derivation of Stochastic Duffing Oscillator
from Lorenz System

Let (2, F, P) be a probability space with an increasing family {F,,t > 0}
of sub-o-algebras of F, and let W(t) = (wo(t),w;(t), ws(t)) be a three-
dimensional Brownian motion process adapted to F,. Then we consider the

following system of stochastic differential equations of the Lorenz type:

de(t) = —o[z(t) —y(t)]dt,
(2.1) dy(t) = [ra=(t) —y(t) — 2(t)2(t)] dt + 6, dw (1),
dz(t) = [ =bz(t) + z()y(t)] dt + &, dws(t)
with the family {o,r,b,8,,8,} of positive constants.

Definition 2.1 Let £ be a small parameter such that 0 < ¢ <« 1. For the
solution (x(t),y(t),2(t)) of (2.1), define *(¢), y*(¢) and 2°(¢) by

2(1) = o (\%) L () =y (%) . and 2(l) =2 (%) .

Then it is easy to see that (x°(t),y*(t),2°(t)) satisfies the following system
of stochastic differential equations:

dr(1) = — Vae[a(t) -y (1) ] dt,

(2.2) dyf (1) = %e [ (£) — Yo (1) — () 2°(8) | dt + (8 0= %) /2 dii (2),

d2* (1) = %5[ — b2 (8) + () (1) dt + (5,078 VE din(2).
Vo
Here and hereafter, w;(¢) and w,(t) are (new) one-dimensional Brownian
motion processes which are defined by

t 1 t
TEI(I‘) = 0'1/4 % wh (%) and 62(t) = 0'1/4 % W2 (6—\/3) y
so that they are adapted to F; and independent each other.
Definition 2.2. For the solution (z*(1), y*(t), 2°(t)) of (2.2), define £*(¢), °(t)
and ¢°(t) by :

() = \/ﬂ—ﬂf’s(i’), no(t) = — 7§(x€(t) —y°(1))
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and  ¢°(t) = e (a 25(t) — %—me(tf) :

o
Moreover, for the positive parameters o and b, define a, (3 and h by

b 20 —b oc+1

T B = Nz and h = Je

Then (£5(t), n°(t), ¢°(t)) satisfies the following system of stochastic differential

equations:

ae(t) = b,
(2.3) df(t) = — [(eh)ne() + &) +{(t) —*(r — 1)} ()] dt
' + (& o711) 52 (1),
(M) = [ - (Ea)g(t) + ()W) dt+ (5o 1) /2 diy(t).

Remark 2.1. In the system (2.3), the solutions £°(t) and ¢°(t) can be
regarded as the response to the stochastic Duffing oscillator and the Ornstein-
Uhlenbeck type process, respectively, as follows:

e d 5 ., di
L e et (gt} 6= (Soot) o G

and
dq _ 2 ~1/4\ _5/2 dw;
Y o (ca)at D+ (B TR
where 2L and %92 are the formal white noises.

dt dt
For the analysis we treat the case when r > 1 and allow the coeﬂiaents

8, and &, of the intensity of the fluctuation to blow up.
Assumption 2.1 In the original system (2.1), the coefficients r, d, and &,
depend on a small parameter 0 < &€ < 1 as follows:

(i) r=1+4+¢"%, thatis er—1=1.
(i) & = di(e) = & ek=5/2  with constants ¢; >0 and k> 0.
(iii) 8y = b2(€) = c2¢'~** with constants ¢; >0 and [2>0.
Assumption 2.1 implies the following circumstances:

o §;i(e) T oo and dy(e) T o0 asz—:i() ‘
provided that 0 <k < 2 and 0 <l<?
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® 61(e)}0 and d,(e) 0 ase | 0  provided that k > 2 and [ > 2.
® di(e) =c¢; and &y(e) = ¢,  provided that k=1= 3.

Under Assumption 2.1, the system (2.3) can be written by the following form:

dge(t) = n°(t)dt,

dp*(t) = = [(eh)n (1) +€@)° +{g (1) — 1} £(t)] dt
et (g ero™) din (1),

dr(t) = e[ —aq(t)+BE®R)] dt + ¢ (ca 07 14) divy(2).

(2.4)

Our goal is to obtain the limit processes of the above system (2.4) as
e — 0. For this purpose, taking € = 0 in (2.4), we can derive the following
system of reduced equations:

de(t) = n(t) dt,

(2:5) dn(t) = — [£0)° + {q(t) = 1} €(1)] dt + (k) (% ) o™/ didiy (1),

dq(t) = (1) (ea 071*) diy(2),
where

1 il k=0, [ =0,
(26) 90(’“):{0 it k>0 °nd ‘W)‘{o if 1> 0.

Remark 2.2 The solutions £(t) and ¢(t) of the above system (2.5) can be
regarded as the response to the stochastic Duffing oscillator and the Brownian
motion-like process, respectively, as follows:

e, L diny
o TEF(a—1)E = (k) (750 o o
and
dq _ dw,
— =9P(l) (o 1/4)#

with the formal white noises -‘%ﬂtl and 4:7”{2*.
The system (2.1) with §; = §, = 0 is the deterministic Lorenz model,
in which the Brownian motion processes do not appear; moreover, the ex-

pression of the limit system (2.5) with ¢; = ¢; = 0 is equivalent to that with
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@(k) = 0 and (l) = 0. The deterministic case when (k) = 0 and ¥(I) =
is formally obtained by Andreychikov and Yadovich (1981), that is intro-
duced by Neimark and Landa (1992, pp.15-16) without the proof. Our main
theorem corresponds to an extension of the above deterministic case to the
stochastic one with mathematically rigorous proof. In particular, Theorem
4.3 shows that the system (2.4) with § = 0 converges to the stochastic sys-
tem (2.5) in the sense of mean square as € — 0. This involves the asymptotic
behaviour of the system (2.1) with large parameters r, §; and , as described
in Assumption 2.1.

In Remark 2.2, the second-order stochastic differential equation for £(t)
can be interpreted as the equation of forced motion (without damping) of a
particle on a spring which provides a restoring force:

Ji
forcing term = F'(t) = (k) (_1_ 1 0*1/4) _1_0_1_,

V2 dt
coeflicient in restoring force = g¢(t) — 1.
e(k) ¥(I) Duffing oscillator ¢ = £(t) coefficient g = ¢(t)
0 | deterministic ( F'(¢ ) =0) q(t) = q(0) = constant

Brownian motion-like
q(0) = constant

(
1 | stochastic ( Fi(¢)=0) q(
0 || stochastic ( F(t) = white noise-like) | ¢(t
1 stochastic ( F'(t) = white noise-like) | ¢(

(I il

3 Stochastic Lorenz System

For the solutions x(t),y(t) and z(t) of SDE(2.1), define X(¢) by

X(t) = (x(t),y(2), 2(1))-

Assumption 3.1. Let Xy = (zg, Yo, 20) be any three-dimensional random
vector independent of the Brownian motion process W () = (wo(t), wq(t),wa(t))
for t > 0, such that

E[|Xo|™] <oo  foran integer m > 1.

Then we have the following theorems.
Theorem 3.1. Suppose that Assumption 3.1 holds for X,. Then there exists
a pathwise unique solution X (t) of SDE(2.1) with the initial state X(0) = Xo.
Moreover, for (,y,z) € R®, define V(z,y,z) by V(z,y,2) = 3 (e +y*> + 2?).
Then

E[(1+V(X®)))"] < E[(14+V(Xo))™]exp[C(m)t] forall ¢t2>0,

Brownian motion-like




83

where C(m) = m{ (o +7+6*)4+28(m—1)}, 6> =1(86%+6,%) and m is
the same integer as that in Assumption 3.1.

In the following we give the outline of the proof.

Let V = V(z,y,z) be the function as given in the hypothesis. Denote
by L the differential generator associated with SDE(2.1). Then it is easy to
see that

LV <(o+r)V+4§  foral (z,y,2)€ R

where 6> = 1(6,> + §,%). Note that the function V is radially unbounded,
namely

V(z,y,z) — o0 as (22 +y? + 2V — .

Then, according to nonexplosion criteria for solutions of SDEs by the Lya-
punov function method, as follows from Hasminskii (1980), McKean (1969)
and Narita (1982a,b), any solution of SDE(2.1) with the initial state X (0) =
Xy cannot explode. Hence SDE(2.1) has a pathwise unique solution. Ap-
ply Ito’s formula concerning stochastic differentials to the Lyapunov function
(14V)™ and take mathematical expectations. Then Gronwall’s lemma yields
the estimate of the moments of the solution.

Theorem 3.2. Let X(t) be the solution of SDE(2.1) with the initial state
X(0) = Xy. For any k > 0, set

D(k) = {(x,y,z):r:v2+y2+b(z_r)2 §c+§_},

where ¢ = br? 4 §% and §%2 = % (612 +6,%). Denote by D(k)° the complement
of D(k) in %, that is D(k)* = R*\ D(k).

Suppose that the initial state Xo = (2¢,%0,20) is deterministic and that
Xo € D(k)°. For such solution X (t), define the random time 7( D(k)®) by

T(D(k)*) =inf{t : X(t) ¢ D(k)°}. |
Then

Br(D(kb))] < ¢
where U(X) =1 (ra’+oy? +o(z — 2r)?)

U(Xo),

=5 for X = (z,y,2) € R
In the following we give the outline of the proof.
Let U = U(x,y, 2) be the function as given in the hypothesis. Denote
by L the differential generator associated with SDE(2.1). Then U satisfies

LU < —k for all (z,y,z) € D(k).
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Set 7 = 7( D(k)°). Apply Ito’s formula to the function U and take mathe-
matical expectations. Then, the above-cited inequality yields

O<E[U(X(TAt))] < U(Xo)—k-E[TAt],

1
namely, F[7At] < EU(XO) for any ¢ >0,
where 7 At = min{ 7, t}. Since { is arbitrary, the assertion of the theorem
holds.
Let z°(t),y°(t) and 2°(¢) of SDE(2.2) be the same processes as those in
Definition 2.1, so that they satisfy SDE(2.2). Set

X*(t) = (=°(1), y* (1), 2°(2))-

Then we have the following theorem.
Theorem 3.3. Let X°(t) be the solution of SDE(2.2) with the initial state
X°(0) = X, and suppose that X, satisfies Assumption 3.1. Then X*(?) is the
pathwise' unique solution of SDE(2.2). Moreover, for (z,y,z), € R®, define
the function V(z,y,z) by V(z,y,2) = 3 (z* + y* + 2%). Then

B V@)™ € BLOH VX)) Jexp | e+ Cm) ]

forall t>0,

where C(m) = m{(c +r+ &)+ 26 (m—-1)}, & = %(512 + 8,%) and m
appears in Assumption 3.1.

In the following we give the outline of the proof.

Denote by L® the differential generator associated with X¢(¢). Then, the
function V/(x,y, z) as given in the hypothesis of the theorem satisfies

LEV:(——lﬁe) LV < (\/—1&.—5) {(c +7)V + 6%}

for all (z,y,2) € R?,

where L is the differential generator associated with the solution X(t) of
SDE(2.1). Apply Ito’s formula to the function (14 V)™ and take math-
ematical expectations. Then Gronwall’s lemma yields the estimate of the
moments of the solution.

Let £5(t),n°(¢) and ¢°(¢) be the same processes as those defined in Defi-
nition 2.2. Set
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Then, by a straightforward calculation of stochastic differengtials we can
obtain the following theorem.
Theorem 3.4. The process x°(¢) satisfies SDE(2.3). In particular, suppose
that r,é; and §; depend on a small parameter € such that 0 < ¢ < 1,
satisfying Assumption 2.1. Then x°(t) satisfies SDE(2.4).

For the solutions £(t),n(t) and q(t) of SDE(2.5), set

x(t) = (&(t),n(t), a(t))-

Assumption 3.2 Let xo = (0,70, ) be any three-dimensional random
vector independent of the Brownian motion process, such that

E[lxo|"™] <oo  for an integer m > 1.

Then we have the following theorem.
Theorem 3.5. Suppose that Assumption 3.2 holds for x,. Then there exists
a pathwise unique solution x(t) of SDE(2.5) with the initial state x(0) = xo.

Moreover, for (£,7,q) € R?, define U(&,1,9) by U(€,n,q) = 2 &4+ 1n? +1 g%
Then

E[(14+U(x(t)))]<(1+E[U(xo0)]) exp[C(k,1)t] forall t >0,
where
Clk,l) = (3+69()o"?. &)
vy o fow g -ag) ).

In the following we give the outline of the proof.

Let T be the differential generator associated with the solution x(¢),
and let U(€,n, q) be the function as given in the hypothesis of the theorem.
Then U satisfies

I°U < AU + B(k,l)  forall (£,7,q) € B

with constants A(l) > 0 depending on ! and B(k,l) > 0 depending on k
and [. Namely, the radially unbounded function U satisfies the criterion of
nonoccurrence of an explosion, and hence the pathwise uniqueness holds for
the solution of SDE(2.5). Apply Ito’s formula to the function 1+ U and take
mathematical expectations. Then Gronwall’s lemma yields the estimate of
the moments of the solution.
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4 Identification of Limit Process

According to Theorem 3.4, the process x°(t) = (€°(t),n°(t),q°(t)) satisfies
SDE(2.4) under Assumption 2.1. The following theorem guarantees the path-
wise uniqueness for solutions to SDE(2.4).

Theorem 4.1. Let xo = (0,70, ) be the random vector satisfying As-
sumption 3.2. Suppose that the parameters o and b satisfy the relation

20 =b, namely, [=0.

Then there exists a pathwise unique solution x*(t) of SDE(2.4). Moreover,
fOI‘ (67777(1) € R37 set U(£’777 q) = %64 + %772 + %(]4 . Then

E[(1+U(x*)))] < E[(14U(xo0))]exp[K(e)t] forall ¢2>0,
where
K(e) = Ki(e) + Ks(e),

1 1 1
Ki(e) = 5 + 3 (52’“ '3 4. 3c§> o1/2

and K,(e) = 34+6e¥.2-07"2

In the following we give the outline of the proof.

By I° denote the differential generator associated with SDE(2.4), and
let U = U(¢, eta, q) be the same function as that in the hypothesis. Then if
is easy to see that

T°U < Ky(e) + Ko(e) U forall (€1,q) € R®

with the constants (&) and I,(¢) as given in the preceding. Namely, U is a
radially unbounded Lyapunov function that satisfies the sufficient condition
for nonoccurrence of an explosion, which guarantees the pathwise uniqueness
for the solution of SDE(2.4). Moreover, apply Ito’s formula to the function
1 4 U and take mathematical expectations. Then Gronwall’s lemma yields
the estimate of the moment of the solution.

Theorem 4.2. Let xo = ({o0,70,9) be the random vector independent of
the Brownian motion process, such that

1 1 1
E Z€3+§U§+qu] < oo0.

Let x°(t) and x(t) be the solutions of SDE(2.4) with # = 0 and SDE(2.5),
respectively, such that x*(0) = x(0) = xo. For any M > 0, define 73, and

v by
e =inf {t:]x°(&) > M} and Ty ={t:|x(¥)[>M}.



87

Further, for any ¢ > 0, set t5, = min{¢, 75, 7m } . Let T < oo be arbitrary
and be fixed. Then
E | x*(ty) — x(t30) 7] < H(e, T, M) exp[ (T, M)t]
forall 0<t<T,

where H(e, M,T) is a positive constant which depends on ¢,T and M, sat-
isfying

H(e,T,M)— 0 as -0,

and I(T, M) is a positive constant which depens only on 7" and M.

The above-mentioned theorem is obtained by an application of the trun-
cation procedure, Schwarz’s inequality and Gronwall’s lemma.
Theorem 4.3. Let xo = (éo,70, go) be any three-dimensional random vector
satisfying Assumption 3.2. Suppose that the parameters o and b satisfy the
relation

20 = b, namely, B =0.

Let x°(%) and x(t) be the solutions of SDE(2.4) and SDE(2.5), respetively,
such that x*(0) = x(0) = xo. Let T' < oo be arbitrary and be fixed. Then

E[| ()= x(t®) )] —0 as e—0

for every t <T.
In the following we give the outline of the proof.
Consider ¢ in the interval [0, T]. Then

XE(1) = x(1) = (x*(1) = x*(tar) ) + (X*(tar) — x(tar) ) + (x(thr) — x(2) ),

and so
E[Ix*() —x(®) ] < 3[E[Ix®) —x"(t) P] + E [ x*(t57) — x(t50) 7]
+E [ x(th) = x(®) IP]],

where 15, = min {t, 75,, Tm}, and 75, and Ty are the same random times as
those in Theorem 4.2. By Theorems 4.1 and 3.5, note that x°(t) and x(%)
cannot explode, so that

tyy — 1t as M — oo with probability 1,
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and hence

X(ty) — x°(t) as M — oo and x(ty) — x(t) as M — oo

with probability 1. Moreover, Theorem 4.1 and Theorem 3.5 imply that

E[| x(t5) I*] <o and E[| x(t3) |] < oo uniformly in M and e.
Therefore, by Theorem 4.2 we can obtain the conclusion of the theorem.
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