ON THE CAUCHY PROBLEM FOR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

WAICHIRO MATSUMOTO

1. INTRODUCTION

The well-posedness of the Cauchy problem in various function spaces for higher order linear scalar equations is well characterized. On the other hand, the results on the well-posedness for systems are rather poor. The reason is that the principal part of system has not been well caught. In this note, the author proposes the definition of the principal part on the Cauchy problem. In order to understand the structure of an usual matrix, the Jordan normal form and the determinant are very useful. The former includes almost all information on a matrix and the latter is very convenient. Our aims are to establish the corresponding theory for the matrices of differential operators and to give applications --- the necessary and sufficient conditions for the analytic well-posedness and C^∞ well-posedness ---.

Let us consider the following Cauchy problem:

$$
\begin{align*}
D_t u - \sum_{|\alpha| \leq m} A_\alpha(t, x) D_x^\alpha u &= f(t, x) , \\
u|_{t=t_0} &= u_0(x),
\end{align*}
$$

(1.1)

where, A_α is a $\mathbb{N} \times \mathbb{N}$ matrix of smooth functions ($|\alpha| \leq m$), u, u_0 and f are vectors of dimension \mathbb{N}, $D_t = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial t}$ and $D_x = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial x}$.

In Section 2, we explain the normal form of systems in the formal symbol class. In Section 3, we do the theory of the weighted determinant, so called p-determinant and introduce the notion of p-evolution. In Section 4, we give the necessary and sufficient condition for the analytic well-posedness (the Cauchy-Kowalevskaya theorem). We give a remark and a conjecture also on the C-K theorem of Nagumo type, relaxation of the regularity of coefficients. In Section 5, we give the necessary and sufficient condition for the C^∞ well-posedness assuming the constant multiplicity of characteristic roots and the real analyticity of coefficients (Levi condition). We give some remarks when the coefficients are not real analytic. The situations on the analytic well-posedness and C^∞ well-posedness in case of the constant multiplicity are very similar if coefficients are real analytic. However, the phenomena are very different when coefficients are non-quasianalytic.

Key words and phrases. normal form of systems, p-determinant of matrix of pseudo-differential operators, p-evolution, the Cauchy-Kowalevskaya theorem for systems, C^∞ well-posedness for systems.

This note is a short course of W. Matsumoto [22]. When the author writes this note, he has corrected the errors in the original [22]. The revised version of [22] can be also available claiming it to the author.
2. Normal form of Systems

We follow the results in W. Matsumoto [20] and [23]. From an arbitrary asymptotic expansion of a symbol of a pseudo-differential operator in an ultradifferentiable class, a true symbol of the same class can be constructed and the ambiguity is of class $S^{-\infty}$.

(See L. Boutet de Monvel and P. Krée [7], L. Boutet de Monvel [6] and W. Matsumoto [19].)

Therefore, in order to consider many problems on partial differential equations in a ultradifferentiable class, it is sufficient to consider asymptotic expansions, which we call here formal symbols. Let \mathbb{Z}_+ be $\mathbb{N} \cup \{0\}$. We use the followings for α and β in $\mathbb{Z}_+^{1+\ell}$: $|\alpha| = \alpha_0 + \cdots + \alpha_\ell$, $\alpha! = \alpha_0! \alpha_1! \cdots \alpha_\ell!$, $\alpha + \beta = (\alpha_0 + \beta_0, \ldots, \alpha_\ell + \beta_\ell)$ and we denote $\beta \leq \alpha$ when $\beta_i \leq \alpha_i$ for $0 \leq i \leq \ell$. Let us set $a(t, x, \xi)^{(\beta)}(\alpha) = D_t^{\alpha_0} D_x^{\alpha_1} \cdots D_x^{\alpha_\ell} \frac{\partial^\beta}{\partial \xi^\beta} a(t, x, \xi)$ for $\alpha \in \mathbb{Z}_+^{1+\ell}$ and $\beta \in \mathbb{Z}_+^{1+\ell}$.

We introduce a holomorphic formal symbol and a meromorphic one. We say that a set O in $C_1 \times C_2^\ell \times C_\xi^\ell$ is conic when $(t, x, \xi) \in O$ implies $(t, x, \lambda \xi) \in O$ for arbitrary positive λ and that a subset Γ in O is conically compact in O when Γ is conic and $\Gamma \cap \{ ||\xi|| = 1 \}$ is compact in $O \cap \{ ||\xi|| = 1 \}$, where $||\xi|| = \sqrt{\sum_{i=1}^\ell |\text{Re}\xi_i|^2 + |\text{Im}\xi_i|^2}$. We say that Σ is a subvariety of O if it is a zero set of a holomorphic function in O.

Definition 1. (Meromorphic and holomorphic formal symbol, [20])

I. We say that the formal sum $a(t, x, \xi) = \sum_{i=0}^\infty a_i(t, x, \xi)$ is a meromorphic formal symbol ($= m.f.s.$) on O when there exist a conic subvariety Σ in O and a real number κ such that

1) $a_i(t, x, \xi)$ is meromorphic in O, holomorphic in $O \setminus \Sigma$ and positively homogeneous of degree $\kappa - i$ on ξ, ($i \in \mathbb{Z}_+$).

2) For an arbitrary conically compact set Γ in $O \setminus \Sigma$, there are positive constants C, R and R' and we have

$$
|a_i^{(\beta)}(t, x, \xi)| \leq C R^i i! |\alpha|! |\beta|! |\xi|^{\kappa-i} \quad \text{on } \Gamma, \quad (i \in \mathbb{Z}_+, \alpha \in \mathbb{Z}_+^{1+\ell}, \beta \in \mathbb{Z}_+^{1+\ell}).
$$

II. The formal sum $\sum_{i=0}^\infty a_i$ is called a holomorphic formal symbol ($= h.f.s.$) when it is a meromorphic formal symbol with $\Sigma = \emptyset$.

Remark 2.1. We use ξ_1 as a holomorphic scale of order in case of a complex domain and Σ includes $\{ \xi_1 = 0 \}$. Of course, ξ_1 can be replaced by another ξ_i and Σ includes $\{ \xi_i = 0 \}$.

Remark 2.2. It is important that Σ is independent of i.

Now, we define a formal symbol of class $\{ M_n, L_n \}$ on a real domain. Let $\{ M_n \}_{n=0}^\infty$ and $\{ L_n \}_{n=0}^\infty$ be sequences of positive numbers. We assume that $\log M_n = \log L_n = O(n^2)$ (Differentiability condition) and $\{ M_n/n! \}_{n=0}^\infty$ and $\{ L_n/n! \}_{n=0}^\infty$ are logarithmically convex and non-decreasing. We say that a set O in $R_t \times R_x^\ell \times R_\xi^\ell$ is conic when $(t, x, \xi) \in O$ implies $(t, x, \lambda \xi) \in O$ for arbitrary positive λ and that a subset Γ in O is conically compact in O when Γ is conic and $\Gamma \cap \{ ||\xi|| = 1 \}$ is compact in $O \cap \{ ||\xi|| = 1 \}$, where $||\xi|| = \sqrt{\sum_{i=1}^\ell |\xi_i|^2}$.

Definition 2. (Formal symbol of class $\{ M_n, L_n \}$, [20])

We say that the formal sum $a(t, x, \xi) = \sum_{i=0}^\infty a_i(t, x, \xi)$ is a formal symbol of class $\{ M_n, L_n \}$ ($= f.s. \ of \ class \ \{ M_n, L_n \}$) on O when there exists a real number κ such that
1) $a_i(t, x, \xi)$ belongs to $C^\infty(O)$ and positively homogeneous of degree $\kappa - i$ on ξ, $(i \in \mathbb{Z}_+)$.

2) For an arbitrary conically compact subset Γ in O, there are positive constants C, R and R' and we have

\begin{equation}
|a^{(\beta)}_{i(\alpha)}(t, x, \xi)| \leq CR^{i} R^{(\alpha)+|\beta|} M_{l}^{i}L_{l}^{i+|\beta|} \xi^{i-1} \quad \text{on } \Gamma,
\end{equation}

\begin{equation}
(i \in \mathbb{Z}_+, \alpha \in \mathbb{Z}_+^{1+\ell}, \beta \in \mathbb{Z}_+^{\ell}).
\end{equation}

The number κ is called the order of the formal symbol a and denoted by "ord a". When $a_i = 0$ for $0 \leq i \leq i_o - 1$ and $a_{i_o} \neq 0$, $\kappa - i_o$ is called the true order of a and denoted by "true ord a". The order of 0 is posed $-\infty$. We set $S^\infty_M(O) = \{ \text{the m.f.s.'s on } O \text{ of order } \kappa \}, S^\infty_M(O) = \{ \text{the h.f.s.'s on } O \text{ of order } \kappa \}, S^\infty\{\{M_n, L_n\}(O) = \{ \text{the f.s.'s of class } \{M_n, L_n\} \text{ on } O \text{ of order } \kappa \}$, and $S_M(O) = \cup_{\kappa \in \mathbb{R}} S_M(O)$, etc. We denote one of these simply by $S(O)$.

Corresponding to the asymptotic expansion of the symbol of the product of pseudo-differential operators, we introduce the operator product of formal symbols.

Definition 3. (Operator product)

Let $a = \sum_{i=0}^{\infty} a_i$ and $b = \sum_{i=0}^{\infty} b_i$ be formal symbols. We set

\begin{equation}
a \circ b = \sum_{i=0}^{\infty} c_i(t, x, \xi) = \sum_{i_{1}+i_{2}+|\gamma|=i} \frac{1}{\gamma!} a_{i_{1}}(t, x, \xi) b_{i_{2}}(t, x, \xi)
\end{equation}

and call it the operator product of a and b.

By the operator product, S_H and $S\{M_n, L_n\}$ become non-commutative rings and S_M does a non-commutative field. S_H is a subring of S_M.

Let us consider a matrix $P = I_nD_t - A(t, x, \xi), A \in M_n(S^m)$, $(m \in \mathbb{N})$. In [20] and [23], we obtained the following theorem.

Theorem 1. (Normal form of system (1), [20])

We assume that every entry of A satisfies (2.2) (2.1 in case of m.f.s.) with $\kappa = m$ and that the each eigenvalue $\lambda_k(t, x, \xi)$ $(1 \leq k \leq d)$ of A_0 has the constant multiplicity m_k. Then, there exist finite disjoint open conical sets $\{O_h\}_h$ and $\cup_{h}O_h$ is dense in O. On each O_h, there exist natural numbers d_k and $\{n_{kj}\}_{j=1}^{d_k}$ $(\sum_{j=1}^{d_k} n_{kj} = m_k)$. For every point (t_0, x_0, ξ_0) in O_h, there exist a conically compact neighborhood Γ, $N(t, x, \xi) = \sum_{i=0}^{\infty} N_i(t, x, \xi) \in GL(\mathbb{N}, S(\Gamma))$, and $D_{kj}(t, x, \xi) = \sum_{i=0}^{\infty} D_{kji}(t, x, \xi)$ in $M_{n_k}(S^m(\Gamma))$, such that

\begin{equation}
N^{-1}(t, x, \xi) \circ P(t, x, D_t, \xi) \circ N(t, x, \xi) = \oplus_{1 \leq k \leq d} \oplus_{1 \leq j \leq d_k} P_{kj},
\end{equation}

\begin{equation}
P_{kj}(t, x, D_t, \xi) = I_{n_k}(D_t - \lambda_k(t, x, \xi)) - \sum_{i=0}^{\infty} D_{kji}(t, x, \xi)
\end{equation}

\begin{equation}
D_{kj0} = J(n_{kj})|\xi|^m,
\end{equation}

\begin{equation}
D_{kji} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \cdots \\ 0 \\ \cdots \\ 0 \end{pmatrix} \quad \text{homogeneous of degree } m - i \quad (i \geq 1),
\end{equation}
where $J(n) = \begin{pmatrix} 0 & 1 & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ & \cdots & \cdots & 1 \\ 0 & & & & & \end{pmatrix} : n \times n$. We set $\sum_{i=1}^{\infty} D_{kji} = \left(d_{kj}(1) \cdots d_{kj}(n_{kj}) \right)$.

In the case of meromorphic formal symbol, $\{O_{h}\}_{h}$ is composed by only one element and $O_{1} = O \setminus \Sigma'$ for a subvariety Σ'. N and D_{kj} belong to $GL(N; S_{M}(O))$ and $M_{n_{kj}}(S_{M}^{m}(O))$, respectively. In (2.4), we replace $|\xi|^{m}$ by ξ_{1}^{m}.

One may think that the assumption of the constant multiplicity is too strong. However, if we regard P as an operator of order $m + 1$ on D_{x}, the highest order part is the zero-matrix and has an unique eigenvalue zero of constant multiplicity N. Thus, under no condition on the structure, we can reduce P to the normal form.

Corollary 2. (Normal form of systems (2))

We assume that every entry of A satisfies (2.2) (2.1) in case of m.f.s.) with $\kappa = m$. There exist finite disjoint open conical sets $\{O_{h}\}_{h}$ such that $\text{\cup}_{h} O_{h}$ is dense in O. On each O_{h}, there exist natural numbers d and $\{n_{k}\}_{k=1}^{d}$ ($\sum_{k=1}^{d} n_{k} = N$). For every point (t_{o}, x_{o}, ξ_{o}) in O_{h}, there exist a conically compact neighborhood Γ, $N_{o}(t, x, \xi) = \sum_{i=0}^{\infty} N_{i}(t, x, \xi)$ in $GL(N; S_{\Gamma}(O))$ and $B_{k}(t, x, \xi) = \sum_{i=0}^{\infty} B_{k}(t, x, \xi)$ in $M_{n_{k}}(S_{M}^{m+1}(\Gamma))$ such that

$$N_{o}^{-1}(t, x, \xi) \circ P(t, x, D_{t}, \xi) \circ N_{o}(t, x, \xi) = Q = \oplus_{1 \leq k \leq d} Q_{k},$$

$$Q_{k}(t, x, D_{t}, \xi) = I_{n_{k}} D_{t} - \sum_{i=0}^{\infty} B_{k}(t, x, \xi),$$

(2.5)

$$B_{k0} = J(n_{k})|\xi|^{m+1},$$

$$B_{ki} = \begin{pmatrix} O \\ \cdots \\ \cdots \end{pmatrix} : \text{homogeneous of order } m + 1 - i, \quad (i \geq 1)$$

We set $\sum_{i=1}^{\infty} B_{k}\Xi = \begin{pmatrix} O \\ b_{k}(1) \cdots b_{k}(n_{k}) \end{pmatrix}$.

In the case of meromorphic formal symbol, $\{O_{h}\}_{h}$ is composed by only one element and $O_{1} = O \setminus \Sigma'$ for a subvariety Σ'. N_{o} and B_{k} belong to $GL(N; S_{M}(O))$ and $M_{n_{k}}(S_{M}^{m+1}(O))$, respectively. In (2.5), we replace $|\xi|^{m+1}$ by ξ_{1}^{m+1}.

Remark 2.3. $\{O_{h}\}_{h}$ and Σ' in Theorems 1 and Corollary 2 are different. In each case, $\{O_{h}\}_{h}$ has finite elements but can have countably many connected components in case of non-quasianalytic classes. This causes a difficulty on the Cauchy problem. (See Example 1 in Subsection 4.5.)

In case of non-quasianalytic classes, we stand on the following simple property;

For a continuous function $f(x)$ on an open set O, the set $\{x \mid f(x) \neq 0\} \cup \{x \mid f(x) = 0\}^{\circ}$ is open and dense in O, where A° is the open kernel of A.

By this property, we can also obtain the normal form in case of non-quasianalytic classes on an open dense set.
A higher order scalar equation

\[(\partial t)^m u + \sum_{j=1}^{m} \sum_{|\alpha| \leq m(j)} a_{\alpha j}(t, x)(\partial x)^\alpha (\partial t)^{m-j} u = f(t, x)\]

is reduced to a first order system on \(D_t\) for a suitable positive number \(p\):

\[D_t u - J(N)D_x^p u - B(t, x, D_x)u = f(t, x)\]

where the lower order term \(B\) has the form \(\begin{pmatrix} 0 & \ldots & \ldots \end{pmatrix}\). Therefore, Corollary 2 say that a system is reduced to a direct sum of some higher order scalar equations in an open dense set in \(\Omega \times \mathbf{C}^\ell \setminus \Sigma\) modulo \(S^{-\infty}\). Thus, if we can obtain a result microlocally and modulo \(S^{-\infty}\) and if such result on a dense open set implies the global one, we can apply the proof on scalar equations also to systems. In many cases, the necessary condition of the well-posedness has these properties. On the other hand, for the sufficiency, if we assume the real analyticity of coefficients, we can apply the maximum principle. (See, for example, the results in Sections 4 and 5.

In the normal forms in Theorem 1 and Corollary 2, the invariants are not clear. For example, \(d_k\) and \(\{n_{kj}\}_{j=1}^{d_k}\) in Theorem 1 and \(d\) and \(\{n_k\}_{k=1}^{d}\) in Corollary 2 are not invariant. Thus, we need the invariant theory and are led to the theory of determinant.

3. \(p\)-DETERMINANT OF MATRIX OF DIFFERENTIAL OPERATORS AND \(p\)-EVOLUTION

3.1. Definition of \(p\)-determinant.

On the matrix of partial differential operators, G.Hufford[10] first introduced the determinant applying the theory of J.Dieudonné[9], which is a determinant theory on a non-commutative field. M.Sato and M.Kashiwara[39] obtained the regularity property of the determinant. The algebraic structure of the determinant on the ring with Ore’s property is well characterized by K.Adjamaogo[2] and [3]. The determinant by G.Hufford and M.Sato-M.Kashiwara is homogeneous. However, in order to consider, for example, the parabolic equations and Schrödinger type equations, we encounter inhomogeneous principal parts and need an inhomogeneous determinant. In order to describe the Levi condition for \(C^\infty\) well-posedness, we also need an inhomogeneous determinant. Recently, the author has received a preliminary version of a paper by A.D’Agnolo and G.Taglialatela[8], where they define independently the same weighted determinant as mine. Their definition and consideration are more algebraically and systematic than mine.

First we consider \(S_M[D_t]\). This is a non-commutative integral domain with Ore’s property: for non-zero elements \(a\) and \(b\), we can find non-zero \(c\) and \(d\) such that \(ac = bd\). (See, for example, K.Adjamaogo[3].) Ore’s property is the necessary and sufficient condition for the existence of the quotient field. (See O.Ore[36].)

We fix a positive rational number \(p\). Let us take \(a(t, x, \xi, D_t) = \sum_{j=0}^{m} a^{<j>}(t, x)D_t^{m-j}\), \(a^{<j>} = \sum_{i=0}^{\infty} a_i^{<j>} \in S_M\). We reset the order of \(a^{<j>}\) to its true order. Let us set

\[p\text{-ord } a^{<j>}(t, x, \xi)D_t^{m-j} = \text{ord } a^{<j>} + p(m - j)\]
\[p\text{-ord } a = \max_{0 \leq j \leq m} p\text{-ord } a^{<j>}(t, x, \xi)D_{t}^{m-j} \]

and call them the \(p \)-order. By \(p \)-order, \(S_{M}[D_{t}] \) becomes a filtered ring. We set further

\[R^{(p)}(a) = \{ j : p\text{-ord } a^{<j>} > D_{t}^{m-j} = p\text{-ord } a \} \]

\[a_{p,pr}(t, x, \xi, \tau) = \sum_{j \in R^{(p)}(a)} a^{<j>}_{0}(t, x, \xi)\tau^{m-j} \]

and call the latter the \(p \)-principal symbol of \(a \). The set \(\cup_{p>0} \{ a^{<j>}_{0}(t, x, \xi)\tau^{m-j} \}_{j \in R^{(p)}(a)} \) has finite elements and composes the Newton polygon of \(a \).

Let us take \(c(t, x, \xi, \tau) = \sum_{j=0}^{m} c^{<j>}(t, x, \xi)\tau^{m-j} \) a polynomial of \(\tau \) whose coefficients are homogeneous on \(\xi \) respectively. We say that \(c(t, x, \xi, \tau) \) is a \(p \)-homogeneous polynomial of \(\tau \) when all \(\deg c^{<j>}(t, x, \xi)\tau^{m-j} \) coincide each other for \(0 \leq j \leq m \). For \(p \)-homogeneous \(c \), we call common \(\deg c^{<j>}(t, x, \xi)\tau^{m-j} \) the \(p \)-degree of \(c \) and denote it by \(p\text{-deg } c \). Let us set

\[Y = \{ \text{\(p \)-homogeneous polynomials on } \tau \} \].

\(Y \setminus \{ 0 \} \) is a commutative productive semigroup. The map \(\sigma^{p} \) from \(S_{M}[D_{t}] \setminus \{ 0 \} \) to \(Y \setminus \{ 0 \} \) defined by \(\sigma^{p}(a) = a_{p,pr} \) is a homomorphism of the productive semigroup. This is naturally extended to the map from \(S_{M}[D_{t}]^{Q} \setminus \{ 0 \} \) to \((Y \setminus \{ 0 \})^{Q} \) by \(\sigma^{p}(ab^{-1}) = a_{p,pr}/b_{p,pr} \) as a homomorphism of the productive group, where \(S_{M}[D_{t}]^{Q} \) is the quotient field of \(S_{M}[D_{t}] \) and \((Y \setminus \{ 0 \})^{Q} \) is the quotient productive group of \(Y \setminus \{ 0 \} \). (By virtue of Ore's property, if \(ab^{-1} = a'q^{-1} \), it holds that \(a_{p,pr}/b_{p,pr} = a'_{p,pr}/b_{p,pr} \) and the map \(\sigma^{p} \) is well defined on \(S_{M}[D_{t}]^{Q} \setminus \{ 0 \} \).) We put \(\sigma^{p}(0) = 0 \). Thus, we can obtain the weighted determinant theory by \(\sigma^{p} \) following J.Dieudonné[9]. (See also E.Artin[5] and K.Adjameko[2, 3].)

In the case of non-quasianalytic classes, we stand on the following simple property mentioned in Section 2;

For a continuous function \(f(x) \) on an open set \(O \), the set \(\{ x \mid f(x) \neq 0 \} \cup \{ x \mid f(x) = 0 \}^{o} \) is open and dense in \(O \), where \(A^{o} \) is the open kernel of \(A \).

By this property, for continuous \(\{ f_{j}(x) \}_{1 \leq j \leq d} \), we can find finite disjoint open sets \(\{ O_{h} \}_{h} \) such that the union is dense in \(O \) and that \(f_{j}(x) \neq 0 \) or else \(0 \equiv 0 \) on each \(O_{h} \). Using this property, we can define \(p \)-determinant for matrices with entries in \(S\{ M_{n}, L_{n} \}[D_{t}] \) on an open dense set. Of course, we can also take the space of the formal symbols of \(C^{\infty} \)-class instead of \(S\{ M_{n}, L_{n} \} \). The existence of the limit of \(p \)-determinant at the boundary of the open dense set is not clear.

Definition 4. (\(p \)-determinant)

We call the determinant by \(\sigma^{p} \) of a matrix \(A \) with entries in \(S[D_{t}] \) \(p \)-determinant of \(A \) and denote it by \(p \text{-det } A \).

Remark 3.1. 1-determinant is just Hufford and Sato-Kashiwara's determinant.
3.2. Properties of p-Determinant.

Following J. Dieudonné [9], we have obtained the elementary properties of p-determinant.

Theorem 3. (Elementary property of p-determinant)

We take $A = (a_{ij})_{1 \leq i, j \leq N}$ and B in $M_{N}(S[D_{t}])$.

1. p-det $AB = p$-det $A \cdot p$-det B.
2. p-det $A \oplus p$-det $B = p$-det $A \cdot p$-det B. (In this case, the sizes of A and B can be different.)
3. p-determinant is invariant under the similar transformation.
4. If there are real numbers m_{i} and n_{j} such that p-ord $a_{ij} \leq m_{i} + n_{j}$ and the ordinary determinant $\det(\sigma_{m_{i}+n_{j}}(a_{ij}))_{1 \leq i, j \leq N}$ does not vanish, then p-det $A = \det(\sigma_{m_{i}+n_{j}}(a_{ij}))$, where $\sigma_{m_{i}+n_{j}}(a_{ij})$ is a_{ij}^{pr} if p-ord $a_{ij} = m_{i} + n_{j}$, and is 0 if p-ord $a_{ij} < m_{i} + n_{j}$.

Here, on the matrix of the form $P = I_{d}D_{t} - A$, $A \in M_{N}(S^{m})$, we give the representation of p-determinant using the element of the normal form in Corollary 2.

Let us set

$$\text{true ord } b_{k}(h) = r_{h}^{k},$$

(3.1) \[M_{k}^{p} = \max_{1 \leq h \leq nk} \{ r_{h}^{k} + (m+1)(n_{k} - h) + p(h-1), \} \]

(3.2) \[R_{k}^{p} = \{ h : r_{h}^{k} + (m+1)(n_{k} - h) + p(h-1) = M_{k}^{p} \} \]

Applying the property (4) in Theorem 3, we have the following.

Proposition 3.1. (Relation between the normal form and p-determinant)

$$p$$-det $P = \prod_{k=1}^{d} p$$-det $Q_{k},$

\[
\begin{cases}
\tau^{n_{k}}, & (p_{mk} > M_{k}),
\tau^{n_{k}} - \sum_{h \in R_{k}^{p}} b_{k}(h)_{0}(t, x, \xi) |\xi|^{(m+1)(n_{k} - h)} \tau^{h-1}, & (p_{mk} = M_{k}),
\tau^{n_{k}} - \sum_{h \in R_{k}^{p}} b_{k}(h)_{0}(t, x, \xi) |\xi|^{(m+1)(n_{k} - h)} \tau^{h-1}, & (p_{mk} < M_{k}),
\end{cases}
\]

$$= \text{the highest } p$$-degree part of the ordinary determinant of Q_{k}

In case of m.f.s., $|\xi|^{(m+1)(n_{k} - h)}$ is replaced by $\xi^{(m+1)(n_{k} - h)}.$

Thus, p-det P is a polynomial of τ. On the determinant theory, the regularity property is important. In case of $S = S_{H}$, as the above P is a polynomial of τ, the meromorphy can occur in (t, x, ξ) space and the proof of Sato-Kashiwara is directly applicable. (We need not transform the pole set to $\xi_{1} = 0$.)

Theorem 4. (Regularity of p-determinant)

1. For $P = I_{d}D_{t} - A$, $A \in M_{N}(S_{H})$, p-det P is a polynomial of τ with holomorphic coefficients on (t, x, ξ).

2. For a matrix of partial differential operators with holomorphic coefficients on t and x, p-det P is a polynomial of τ and ξ with holomorphic coefficients on t and x.
A.D'Agnolo and G.Tagliialatela algebraically showed the regularity of p-determinant without using the normal form.

3.3. p-evolutive system and Kowalevskian system.

By Proposition 3.1, we have only two cases; 1) there is an unique p_0 for which p_0-det P has the term τ^n and other terms, 2) p-det P's are always τ^n for all $p > 0$. In the former case, we say that P is p_0-evolutive and define the principal part (on the Cauchy problem) of P by p_0-det P. In the latter case, we say that P is 0-evolutive and define the principal part by τ^n. 0-evolutive operator is essentially an ordinary differential operator. If P is p-evolutive for $p \leq 1$, we say that P is Kowalevskian. Our definition of "Kowalevskian system" is different from that in S.Mizohata and M.Miyake. On the other hand, for p-evolutive P ($p > 1$), if every root of p-det $P = 0$ has the positive imaginary part, we say that P is parabolic and if every root is real, we do that P is of Schrödinger type.

4. Cauchy-Kowalevskaya theorem for system

4.1. Short history.

In 1979, M.Miyake assumed that the coefficients are real analytic and the dimension ℓ of x-space is one and gave the necessary and sufficient condition for the analytic well-posedness on systems introducing the meromorphic formal solutions. H.Yamahara and the author obtained the necessary and sufficient condition for systems in the case of general ℓ. They introduced the formal fundamental solution and estimate it standing on the normal form of systems in the meromorphic formal symbol class. M.Miyake further showed that, when $\ell = 1$, one can reduce the analytically well-posed system to a first order one with real analytic coefficients enlarging the size of system.

On the other hand, as the algebraic analysis, M.Kashiwara considered the Cauchy-Kowalevskaya theorem for systems in 1971. He determined the structure of the solution space using the determinant of the matrices of pseudo-differential operators introduced by M.Sato and M.Kashiwara.

4.2. Complexification and a priori estimate.

We set $A(t, x, D_x) = \sum_{|\alpha| \leq m} A_\alpha(t, x) D_x^\alpha$ and $P(t, x, D_t, D_x) = I_gD_t - A(t, x, D_x)$. The problem (1.1) in the real analytic space is naturally extended to the problem in the holomorphic space in a complex domain. From now on, we consider the problem (1.1) in a complex domain $\Omega \subset C_{t, x}^{1+\ell}$ and assume that all coefficients of $P(t, x, D_t, D_x)$ are holomorphic there and continuous on its closure. Let Ω_{t_0} be $\{x \in C^\ell : (t_0, x) \in \Omega\}$.

Definition 5. (The Cauchy-Kowalevskaya theorem = the C-K theorem)

We say that the Cauchy-Kowalevskaya theorem (= the C-K theorem) for $P(t, x, D_t, D_x)$ holds in Ω (or that the Cauchy problem (1.1) is analytically well-posed in Ω) when for each (t_0, x_0) in Ω, every initial data $u_0(x)$ holomorphic in Ω_{t_0} and every right-hand side $f(t, x)$ holomorphic in Ω, there exists a neighborhood ω of (t_0, x_0) where the Cauchy problem (1.1) has a unique holomorphic solution $u(t, x)$.

We denote the ϵ-neighborhood of K by K_{ϵ}. We say that $v(t,x)$ is holomorphic on a compact set K when v is holomorphic in K^o and continuous on K, where K^o is the open kernel of K. The above proposition implies

Proposition 4.1. (Common existence domain)

For arbitrary compact set K in Ω and arbitrary positive ϵ, there exists a compact neighborhood K' of K determined by the operator and ϵ, such that the unique holomorphic solution exists on K' for arbitrary holomorphic initial data on $K_{\epsilon t_{\circ}}$ and arbitrary holomorphic right-hand side on K_{ϵ}.

When we prove the necessity for the C-K theorem, we need an a priori estimate. For a bounded domain ω in Ω, we set $H(\omega) = \{v(t,x) = (v_1(t,x), \cdots, v_N(t,x)) : v_j$ is holomorphic in ω and continuous on $\overline{\omega}$, $(1 \leq j \leq N)\}$. It is a Banach space by the norm $\|v\|_{\omega} = \max_{1 \leq j \leq N}\max_{(t,x)\in \overline{\omega}} |v_j(t,x)|$.

The following was essentially given in S. Mizohata.

Proposition 4.2. (A priori estimate, [32])

If the C-K theorem for P holds in Ω, for arbitrary compact set K and arbitrary positive number ϵ there exist a compact neighborhood K' of K and a positive constant C independent of u_\circ and f such that

\begin{equation}
||u||_{K'} \leq C(||u_{\circ}||_{K_{\epsilon t_{\circ}}} + ||f||_{K_{\epsilon}}),
\end{equation}

where u is the solution of (1.1).

4.3. Homogeneous problem and the formal fundamental solution.

Let us consider the homogeneous Cauchy problem:

\begin{equation}
P(t,x,D_t,D_x)u \equiv D_t u - A(t,x,D_x)u = 0 ,
\end{equation}

\begin{equation}
u(t_{\circ},x) = u_{\circ}(x) .
\end{equation}

If we can construct the fundamental solution which has an estimate uniform on t_{\circ}, the inhomogeneous problem (1.1) is solved by the Duhamel principle. Therefore, from now on, we consider the problem (4.2).

By the relation $D_tu = A(t,x,D_x)u$, $D^k_t u$ is represented by a linear combination of the derivatives on x of u:

\begin{equation}
D^k_t u = A[k](t,x,D_x)u , \quad (k \geq 0) .
\end{equation}

$\{A[k]\}_{k=0}^{\infty}$ satisfies the recurrence formula:

\begin{equation}
\begin{cases}
A[0] = I_N ,
A[k] = A[k-1] \circ A + (A[k-1])t , \quad (k \geq 1) ,
\end{cases}
\end{equation}

where $(A)_t$ is obtained by operating D_t to the coefficients of A.

The formal fundamental solution of the problem (4.2) is given by

\begin{equation}
U(t,x,D_x;t_{\circ}) = \sum_{k=0}^{\infty} \frac{(-1)^k(t-t_{\circ})^k}{k!} A[k](t_{\circ},x,D_x) .
\end{equation}
As $A[k]$ is differential operator and $A[k] = \sum_{t \geq 0} A[k]_t$ is a finite sum, when it satisfies (4.8) in Proposition 4.3 below, $\sum_{k=0}^{\infty} \{(\sqrt{1} (t - t_o))^k / k! \} A[k](t_o, x, D_x) u_o$ converges in a neighborhood ω of (t_o, x_o) for arbitrary u_o in $H(\Omega_{t_o})$ and $U(t, x)$ is the true fundamental solution in ω.

Now we announce our theorem on the Cauchy-Kowalevskaya theorem for systems.

Theorem 5. (Cauchy-Kowalevskaya theorem for systems, [27] and [28]) The following conditions are equivalent.

1) The Cauchy-Kowalevskaya theorem for $P(t, x, D_t, D_x)$ holds in Ω.

2) The lower order terms in the normal form (2.5) satisfy

(4.6) $\text{ord } b_k(h) \leq 1 - m(n_k - h), \quad (1 \leq h \leq n_k, 1 \leq k \leq d).$

3) $P(t, x, D_t, D_x)$ is reduced to a first order system through a similar transformation by an element in $GL(\mathbb{N}; S_M)$.

4) 1-det P is of degree \mathbb{N} : the size of P.

5) P is Kowalevskian in our sense, that is, p-evolutive for $0 \leq p \leq 1$.

6) There exists a natural number k_o such that

(4.7) $\text{ord } A[k](t, x, D_x) \leq k + k_o, \quad (k \in \mathbb{Z}_+).$

The equivalences between 2), 4) and 5) are obvious by virtue of Proposition 3.1. The proof from 1) to 2) is the main part of the proof of the necessity for the C-K theorem. The system is microlocally reduced to a backward heat equation of order greater than 1 for a new unknown. We obtain a microlocal energy estimate of this equation in a real domain, which contradicts the a priori estimate (4.1). From 2) to 3) is almost trivial. The proof from 3) to 7) below: more detailed version of 6) is the essential part of the proof of the sufficiency. By the estimate (4.8), the formal fundamental solution (4.5) converges and operates on the holomorphic functions. Thus, there exist ρ_o and δ ($\rho_o > 0, 0 < \delta < 1$) determined by the operator such that, for an arbitrary $\rho \leq \rho_o$, u_o in $H(B_{\rho}(x_o))$ and f in $H(B_{\rho}(t_o, x_o))$, the unique holomorphic solution u exists in $B_{\delta \rho}(t_o, x_o))$. This means that 7) implies 1). The proof from 7) to 6) is trivial and that from 6) to 2) is easy.

Proposition 4.3. (Estimate of $A[k](t, x, \xi)$, [27] and [28])
Condition 3) implies 7):
7) For an arbitrary compact set K in Ω, there exist a positive integer k_o and positive constants C, R and R_o independent of k, for which the following estimates hold on
$K \times C^\ell$

\[|A[k]_{i+\alpha}^{j+\beta}(t, x, \xi)| \leq CR_o k \sum_{h=0}^{k} R^{h+i-j} + |\alpha| + |\beta| (k-h)!! |\alpha|!! |\beta|!! ||\xi||k_0 + h - i - |\beta| \]

(4.8)

$(i \in \mathbb{Z}_+, \alpha \in \mathbb{Z}_{+}^1, \beta \in \mathbb{Z}_+^\ell)$

This Proposition is shown first in $K \times C^\ell \backslash \Sigma$ for a subvariety Σ. As $A[k]$ is holomorphic, the estimate (4.8) holds in $K \times C^\ell$ by the maximum principle.

4.5. Cauchy-Kowalevskaya theorem of Nagumo Type.

M. Nagumo[34] showed that one can obtain a unique solution, real analytic on x and of C^1-class on t, if $m \leq 1$ in (1.1) and the coefficients are real analytic on x and continuous on t. When $m \geq 2$, does the continuity on t of the coefficients and one of 2) to 6) in Theorem 5 assure the existence of a solution? The answer is No.

Example 1. (announced at ICM'98, [24])

\[P_6 = I_{\varphi} \partial t - \begin{pmatrix} 0 & 1 \\ \nu(t) & 0 \end{pmatrix} (\partial x)^m, \quad N \times N, \]

where $\mu(t)$ and $\nu(t)$ are non-negative and have the supports in $[0, \infty)$ and $\mu(t)\nu(t) \equiv 0$. More precisely, let us set $t_{2n-1} = t_{2n} = \sum_{j=n}^{\infty} j^{-1} (\log j)^{-2}$ (\{tn\} is a monotonically decreasing sequence with the limit zero) and take a natural number p,

\[
\mu(t) = \begin{cases}
(t_{2n-1} - t)^p (t - t_{2n})^p & t \in (t_{2n}, t_{2n-1}), \\
0 & \text{otherwise},
\end{cases}
\]

and

\[
\nu(t) = \begin{cases}
(t_{2n} - t)^p (t - t_{2n+1})^p & t \in (t_{2n+1}, t_{2n}), \\
0 & \text{otherwise}.
\end{cases}
\]

$(n \in \mathbb{N})$

$\mu(t)$ and $\nu(t)$ belong to $C^{p-1,1}(\mathbb{R})$, that is, the (p-1)-th derivatives are Lipschitzian. As $\mu(t)\nu(t) \equiv 0$, P_6 is 0-evolutive at every point.

For arbitrary small positive ϵ, we can find $t_{2q} \leq \epsilon$. Let us take $t_0 = t_{2n+2q}$. We can concretely solve the Cauchy problem for P_6 with the initial data $u_{0,i} = 0$ ($0 \leq i \leq N = 1$), $u_{0N} = \varphi(x) = \exp(\rho x)$ and the right-hand side $f(t, x) = 0$ from t_0 to t_{2q} and the solution u has the estimate

\[
|u_N(t_{2q}, 0)| \geq \rho^{mn} \prod_{j=q+1}^{n+1} j (\log j)^2 - (4p+N).
\]
On the other hand, if the Cauchy-Kowalevskaya theorem of Nagumo type holds, we have the same a priori estimate as Proposition 4.2 and the following must hold

$$ |u_{0}(t_{2}, 0)| \leq C \exp(K_{1}\rho). $$

Here, K_{2} and K_{1} are positive constants. If $mN > 2p + N$, taking $\rho = n$ and making n tend to infinity, the both estimates are not compatible. For the detail, see W. Matsumoto[24].

Thus, in order to assure the Cauchy-Kowalevskaya theorem of Nagumo type for P_{0}, we need the differentiability on t at least up to $(m - 1)N/4$.

The author propose a conjecture on the Cauchy-Kowalevskaya theorem of Nagumo type for systems. Let us take $\Omega = [T_{1}, T_{2}] \times \Omega'$. We denote the space of real analytic functions in Ω' by $A(\Omega')$.

Conjecture (Conjecture on C-K theorem of Nagumo type for systems)

If all coefficients of P belong to $C^{\infty}(\Omega)$, the assertion in Theorem 5 also holds.

The equivalences between 2), \cdots, 6) are rather easily seen. The assertion from 1) to 2) is also shown by the same way as the proof in Subsection 4.4, because the analyticity on x is essential but that on t is not required in the proof. Therefore, the sufficiency of 2) or 3) or \cdots or 6) is open. Recently, M. Murai, T. Nagase and the author[26] obtained an affirmative result for the most simple system but non-trivial case: $m = 2$ and $N = 2$. (The dimension of x space l is free.)

5. **Levi condition for the C^{∞} well-posedness**

We consider the Cauchy problem of a first order system of partial differential equations (1.1) with $m = 1$) with constantly multiple characteristic roots. If the first order part has only the zero characteristic root, the Levi condition is equivalent to 0-evolution, that is, essentially it is an ordinary differential operator of D_{t}. When coefficients are real analytic, this is necessary and sufficient for the C^{∞} well-posedness. On the other hand, in case of non-quasianalytic coefficients, even if the first order part has constant coefficients, this condition does not rest sufficient. (See W. Matsumoto [20], Remark 4.1. See also W. Matsumoto[16] and [18].)

Through this section, we assume the analyticity of all coefficients.

5.1. **p-determinant associated with a characteristic root.**

Let $\lambda_{k}(t, x, \xi)$ be the characteristic roots of constant multiplicity m_{k} ($1 \leq k \leq d$) of the first order part of P. By virtue of the assumption of the constant multiplicity, every characteristic roots is smooth. In order to describe the Levi condition in an invariant form, we introduce p-determinant associated with $\lambda_{k}(t, x, \xi)$.

Let p be a rational number such that $0 \leq p < 1$. As $S_{M}[D_{t}] = S_{M}[D_{t} - \lambda_{k}(t, x, \xi)]$, every $a(t, x, \xi, D_{t})$ is represented as $a(t, x, \xi, D_{t}) = \sum_{j=0}^{m} a^{<j>}(t, x, \xi)(D_{t} - \lambda_{k})^{m-j}$, $a^{<j>} = \sum_{i=0}^{\infty} a_{i}^{<j>} \in S_{M}$. We reset the order of $a^{<j>}$ to its true order. Let us set

$$ p\text{-ord}_{\lambda_{k}} a^{<j>}(t, x, \xi)(D_{t} - \lambda_{k})^{m-j} = \text{ord} a^{<j>} + p(m - j) $$

$$ p\text{-ord}_{\lambda_{k}} a = \max_{0 \leq j \leq m} p\text{-ord}_{\lambda_{k}} a^{<j>}(t, x, \xi)(D_{t} - \lambda_{k})^{m-j} $$
and call them the \(p \)-order associated with \(\lambda_k \). By \(p \)-order associated with \(\lambda_k \), \(S_M[D_t - \lambda_k] \) becomes a filtered ring. We set further

\[
R^{p}_{\lambda_k}(a) = \{ j : p - \text{ord}_{\lambda_k} a^{<j}(D_t - \lambda_k)^{m-j} = p - \text{ord}_{\lambda_k} a \}
\]

and call the latter the \(p \)-principal symbol of \(a(t, x, \xi) \) associated with \(\lambda_k \). The set

\[
\bigcup_{p>0} \{ a^{<j}(t, x, \xi)(\tau - \lambda_k)^{m-j} \}_{j \in R^{p}_{\lambda_k}(a)}
\]

has finite elements and composes the Newton polygon of \(a \) associated with \(\lambda_k \).

We define the \(p \)-homogeneous polynomial on \(\tau - \lambda_k \) by the same way in Subsection 3.1. Let us set

\[
Y_{\lambda_k} = \{ p \text{-homogeneous polynomials on } \tau - \lambda_k \}.
\]

\(Y_{\lambda_k} \) is a commutative productive semigroup. The map \(\sigma_{\lambda_k}^p \) from \(S_M[D_t - \lambda_k] \backslash \{0\} \) to \(Y_{\lambda_k} \backslash \{0\} \) defined by \(\sigma_{\lambda_k}^p(a) = a_{p,pr\lambda_k} \) is a homomorphism of the productive semigroup. This is naturally extended to the map from \(S_M[D_t - \lambda_k]^Q \backslash \{0\} \) to \((Y_{\lambda_k} \backslash \{0\})^Q \) by \(\sigma_{\lambda_k}^p(ab^{-1}) = a_{p,pr\lambda_k}/b_{p,pr\lambda_k} \) as a homomorphism of the productive group. We put \(\sigma_{\lambda_k}^p(0) = 0 \). Thus, we can obtain the weighted determinant theory by \(\sigma_{\lambda_k}^p \) following J.Dieudonné[9]. In case of non-quasianalytic classes, by the same reason as in Subsection 3.1, we can also obtain it on an open dense set.

Definition 6. (\(p \)-determinant associated with \(\lambda_k \))

We call the determinant of a matrix \(A \) with entries in \(S[D_t - \lambda_k] \), by \(\sigma_{\lambda_k}^p \) \(p \)-determinant of \(A \) associated with \(\lambda_k \) and denote it by \(p\det_{\lambda_k} A \).

We can obtain the corresponding properties in Theorem 3.

On the matrix of the form \(P = I_kD_t - A, A \in M_n(S^1) \) \((m = 1)\), we give the representation of \(p \)-determinant using the element of the normal form in Theorem 1.

Let us set

\[
\text{true order } d_{kj}(h) = r_{h}^{kj},
\]

\[
M_{kj}^p = \max_{1 \leq h \leq n_{kj}} \{ r_{h}^{kj} + (n_{kj} - h) + p(h-1) \},
\]

\[
R_{kj}^p = \{ h : r_{h}^{kj} + (n_{kj} - h) + p(h-1) = M_{kj}^p \}
\]

We have the following.
Proposition 5.1. (Relation between the normal form and p-determinant a.w. λ_k)

\begin{equation}
(5.2) \quad p \cdot \det_{\lambda_k} P = \prod_{i=1}^{d} \prod_{j=1}^{d_i} p \cdot \det_{\lambda_k} P_{ij},
\end{equation}

$p \cdot \det_{\lambda_k} P_{kj}$

\begin{align*}
&= \begin{cases}
(\tau - \lambda_k)^{n_{kj}}, & (p n_{kj} > M^p_{kj}), \\
(\tau - \lambda_k)^{n_{kj}} - \sum_{h \in R^p_{kj}} d_{kj}(h)_{0}(t, x, \xi)|\xi|^{n_{kj}-h}(\tau - \lambda_k)^{h-1}, & (p n_{kj} = M^p_{kj}), \\
- \sum_{h \in R^p_{kj}} d_{kj}(h)_{0}(t, x, \xi)|\xi|^{n_{kj}-h}(\tau - \lambda_k)^{h-1}, & (p n_{kj} < M^p_{kj}),
\end{cases}
\end{align*}

= the highest p-degree part a.w. λ_k of the ordinary determinant of P_{kj}

\begin{align*}
p \cdot \det_{\lambda_k} P_{ij} &= (\lambda_k - \lambda_i)^{n_{ij}} \quad (1 \leq i \neq k \leq d, 1 \leq j \leq n_{ij})
\end{align*}

In the case of m.f.s., $|\xi|^{n_{kj}-h}$ is replaced by $\xi_1^{n_{kj}-h}$.

In case of $S = S_{H}$, we can obtain the regularity of p-determinant associated with λ_k corresponding to (1) in Theorem 4.

By Proposition 5.1, we have only two cases; 1) There exists a unique p_o for which $p_o \cdot \det_{\lambda_k} P/\prod_{1 \leq i \leq d, i \neq k}(\lambda_k - \lambda_i)^{m_i}$ has the term τ^m_k and other terms, 2) $p_o \cdot \det_{\lambda_k} P/\prod_{1 \leq i \leq d, i \neq k}(\lambda_k - \lambda_i)^{m_i}$'s are τ^m_k for all $0 < p < 1$. In the former case, we say that P is p_o-evolutive with respect to λ_k and define the second principal part (on the Cauchy problem) of P by $p_o \cdot \det_{\lambda_k} P/\prod_{1 \leq i \leq d, i \neq k}(\lambda_k - \lambda_i)^{m_i} = \prod_{1 \leq j \leq d} p_o \cdot \det_{\lambda_k} P_{kj}$ and denote it by $p_o \cdot \det_{\lambda_k} P$. In the latter case, we say that P is 0-evolutive with respect to λ_k and define the second principal part by τ^m_k. 0-evolutive operator with respect to λ_k is essentially an ordinary differential operator along the bicharacteristic strip of λ_k.

5.2. Levi condition.

Let us make clear the definition of C^∞ well-posedness of the Cauchy problem. For the simplicity, we assume that Ω is bounded.

Definition 7. (C^∞ well-posedness)

We say that the Cauchy problem is C^∞ well-posed in Ω when for each (t_o, x_o) in Ω, there exists a neighborhood ω of (t_o, x_o) where every initial data $u_o(x)$ of C^∞-class in Ω, and every right-hand side $f(t, x)$ of C^∞-class in Ω, the Cauchy problem (1.1) has a unique solution $u(t, x)$ in $C^\infty(\omega)$.

We give an a priori estimate. For a bounded domain ω in Ω, we set $F(\omega) = \{ v(t, x) = t(v_1(t, x), \cdots, v_N(t, x)) : v_j \in C^\infty(\omega) , (1 \leq j \leq N) \}$. It is a Fréchet space by the semi-norms $||v||_{n, \omega} = \max_{1 \leq j \leq n} \sum_{|\alpha| \leq n} \max_{(t, x) \in \omega} |D^{\alpha}v_j(t, x)|$.

Proposition 5.2. (A priori estimate of C^∞ well-posedness)

If the Cauchy problem for P is C^∞ well-posed in Ω, for arbitrary q in \mathbb{Z}_+, there exist r in \mathbb{Z}_+ and a positive constant C independent of u_o and f such that
\[\|u\|_{q, \partial} \leq C(\|u_0\|_{r, \partial_0} + \|f\|_{r, \partial}),\]

where \(u\) is the solution of (1.1).

S.Mizohata showed that the following.

Proposition 5.3. (Hyperbolicity, [31])

In order that the Cauchy problem is \(C^\infty\) well-posed in \(\Omega\), the characteristic roots \(\lambda_k(t, x, \xi)\) \((1 \leq k \leq d)\) must be real.

Now we announce our theorem on the \(C^\infty\) well-posedness for systems.

Theorem 6. \((C^\infty\) well-posedness for systems, [20] Section 4 and [25])

We assume that every characteristic root \(\lambda_k(t, x, \xi)\) is real and has the constant multiplicity \(m_k\) \((1 \leq k \leq d)\). The following conditions are equivalent.

i) The Cauchy problem for \(P\) is \(C^\infty\) well-posed in \(\Omega\).

ii) The lower order terms in the normal form (2.4) with \(m = 1\) satisfy

\[\text{ord} d_{kj}(h) \leq -(n_k - h), \quad (1 \leq h \leq n_{kj}, 1 \leq j \leq d_k, 1 \leq k \leq d).\]

iii) \(P\) is reduced to a first order system with a diagonal first order part through a similar transformation by an element in \(GL(\mathbb{N}; S_M)\).

iv) \(P\) is 0-evolutive with respect to \(\lambda_k\) \((1 \leq k \leq d)\).

Remark 5.1. The conditions in Theorems 5 and 6 are similar each other and the proofs also similar in the case of real analytic coefficients. In the case of non-quasianalytic coefficients, the proofs on the necessity also hold. However, not only the proofs of the sufficiency loose the validity but also the phenomena themselves become different.

Remark 5.2. In the case of non-quasianalytic coefficients, under the equivalent condition ii), iii) or iv), the greatest space for the well-posedness of the Cauchy problem was studied by W.Matsumoto[18] for \(2 \times 2\) systems. It depends on the regularity of coefficients. For example, when coefficients belong to a Gevrey class, it is much bigger than the union of the Gevrey classes.

Remark 5.3. A.D'Agnolo and G.Taglialatela[8] also discussed another representation of the Levi condition using their determinant theory.

The equivalences between ii) and iv) is obvious by virtue of Proposition 5.1. The proofs from ii) to iii) is evident. The proofs from i) to ii) is rather easy and we need not assume the real analyticity of the coefficients. From iii) to i), we take four steps. First, we separate each eigenvalue and consider each block independently (W.Matsumoto[23] and T.Nishitani[35]). Second, we reduce the eigenvalue in each block to zero by a Fourier integral operator (H.Kumano-go[14]). Thus, each block becomes 0-evolutive, that is, essentially an ordinary differential system and we can obtain a similar estimate as 7) in Proposition 4.3 replacing \(\|\xi\|_{k_0 + h - i - |\beta|} \) by \(\|\xi\|_{k_0 + i - |\beta|}\). Third, we construct a true symbol from
This gives a parametrix acting on C^∞-functions. Finally, we obtain the fundamental solution from the parametrix. (See H. Kumano-go[13].)

REFERENCES

[26] W.Matsumoto, M.Murai and T.Nagase; On the necessary and sufficient condition for the Cauchy-Kovalevskaya theorem of Nagumo type - one of the simplest cases -, (to appear).

[29] M.Miyake; On Cauchy-Kovalevski’s theorem for general systems, Publ.RIMS, Kyoto Univ. 15 (1979), 315-337.

[34] M.Nagumo; Über des Anfangswertproblem partieller Differentialgleichungen Japan Jour.Math. 18 (1941-43), 41-47.

DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS
FACULTY OF SCIENCE AND TECHNOLOGY
RYUKOKU UNIVERSITY
SETA
520-2194 OHTSU
JAPAN

E-mail address: waichiro@rins.ryukoku.ac.jp