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ABSTRACT. The spectral problem for non-commutative harmonic oscillators is shown to
be equivalent to solve Fuchsian ordinary differential equations with four regular points in
a complex domain.

1. INTRODUCTION

We study the spectral problem of the $(2\cross 2)$ matrix-valued (ordinary) differential
operator

$A(- \frac{\partial_{x}^{2}}{2}+\frac{x^{2}}{2})+B(x\partial x+\frac{1}{2})=[_{a_{12}(b}-\frac{\partial_{x}^{2}a}{2}+\frac{x}{2}11(-\frac{\partial_{x}^{2}}{22,)}++\frac{x^{2}}{(X2})\partial_{x}+\frac{1}{2})$ $a_{12}(- \frac{\partial_{x}^{2}}{2}+\frac{x}{2}a_{22}(-\frac{2\partial_{x}^{2})}{2}+\frac{x^{2}}{2})-b(x\partial_{x}+\frac{1}{2})]$

where $A,$ $B\in \mathrm{M}\mathrm{a}\mathrm{t}_{2}(\mathrm{R}),$ $A={}^{t}A$ is positive definite, and $B=-^{t}B$ . An eigenfunction
$u\in L^{2}(\mathrm{R}^{2}, \mathrm{C}^{2})$ is a $\mathrm{C}^{2}$-valued $L^{2}$ -function on $\mathrm{R}$ , and $\mu\in \mathrm{C}$ represents the spec-
trum. The eigenvalue problem for this operator was first introduced and studied by
Parmeggiani and Wakayama [PW]. We assume that $\det A>\det B>0$ . In such a case,
as is seen below, the eigenvalues are all positive and form a discrete set with finite
multiplicity.

The operator above possesses two kinds of non-commutativity, non-commutativity
with respect to multiplication of the matrices and that with respect to differential op-
erators. The interaction of these two results in a non-trivial relation to the ‘connection
problem’ concerning an ordinary differential operator in a complex domain.
Theorem 1. The eigenvalue problem

(1.1) $u(x)=0$
is equivalent to the problem

(1.2) $P(_{Z,D_{z}})U(\mathcal{Z})=0$

for holomorphic functions $U(z)$ on the unit disk.
Here, $P(z, D_{z})$ is a third-order linear ordinary differential operator defined in terms

of $A,$ $B$ and $\mu$ . The definition of $P(z, D_{z})$ is given in Section 3.2.
We note that every solution $u(x)$ of the equation (1.1) is the sum of an even function

solution $u^{e}(x)$ and an odd function solution $u^{o}(x)$ since the differential operator is
invariant under changing of the variable $x\vdash\Rightarrow-X$ . We can make stronger statement
regarding the eigenvalue problem for $\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}/\mathrm{o}\mathrm{d}\mathrm{d}$ functions.
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Theorem 2. The eigenvalue problem (1.1) for an odd function is equivalent to the
problem

$H(w, D_{w})f(w)=0$ , $f\in \mathcal{O}(\Omega)$ ,

while that for an even function is equivalent to the problem

$P^{e}(w, D_{w})f(w)=0$ , $f\in \mathcal{O}(\Omega)$ .

Here $H(w, D_{w})$ is Heun’s differential operator (3.4), that is, a Fuchsian second-order
differential operator with four regular singularities. The operator $P^{e}(w, D_{w})$ is also a
Fuchsian differential operator with four regular singularities (of third-order) and has
an expression (4.1) in terms of Heun’s operator.

In [PW], they construct the eigenfunctions and eigenvalues in terms of continued
hactions determined by some three-term recurrence relation. Then this expression is
a limit in some Hilbert space and is functional-analytic. Our expression given above is
more complex-analytic, or even topological in the sense that the eigenvalues and eigen-
functions are determined by the monodromy representations of the Heun’s operator.

Notice that the non-commutative harmonic oscillator introduced here gives a coun-
terexample to the naive impression that an eigenfunction of the operator naturally
arising in representation theory can be expressed in terms of hypergeometric functions.
In fact, the Heun’s operator for general parameters is far from ‘hypergeometric’. For ex-
ample, its solution is not of hypergeometric type, and the structure of the monodromy
representation is different from that of hypergeometric equations.

This paper is organized as follows. In Section 2.1, we define coordinates in $\mathrm{C}^{2}$

appropriate for the investigation. This step is fairly easy, but the transformation in
Lemma $4(\mathrm{i}\mathrm{i})$ is a key to the analysis. In Section 2.2, we introduce several representa-
tions of the three dimensional simple Lie algebra $\mathfrak{s}\mathfrak{l}_{2}$ . We explain the transformation $T_{6}$

in detail, though these seem standard in representation theory of semisimple Lie alge-
bra, in order to give a formula for the inner product, which plays an important role in
determining the eigenfunction. Section 2.3 represents the standard process of obtaining
a single equation from a system of differential equations. In the final subsection, we
transform the third-order operator into a second-order operator. In the context of clas-
sical analysis, this transformation can be expressed in terms of the (modified) Laplace
transformation. In terms of the representations of $\epsilon \mathfrak{l}_{2}$ , the third-order operator exists
in the harmonic oscillator representation, while the second-order operator exists in the
flat picture of the principal series representation. This fancy terminology is explained
in Section 2.4.

In Section 3.1, we introduce Heun’s operator and its relation to the differential oper-
ator under consideration. In Section 3.2, the inhomogeneous second-order differential
equation (2.12) is proved to be equivalent to the third-order homogeneous equation
(1.2). In Section 3.3, which is central in this paper, we translate the $L^{2}$ -condition of an
eigenfunction $u$ into a holomorphicity condition of its Laplace transform \^u. The idea
here is fairly simple, and the task is to obtain a precise formulation. We next complete
the proof of Theorem 1. In the last subsection, we calculate the index of the operator.

In Section 4, we study the ordinary differential equation (1.2). We can state this
problem in several (equivalent) forms, but here we choose a formulation using Heun’s
operator. In Section 4.1, we summarize the properties of the operator $P^{e}(w, D_{w})$ , and
prove Theorem 2 for even eigenfunctions. In Section 4.2, we prove the equivalence of
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the eigenvalue problem and the connection problem. In particular, we find that the
spectrum is given by the zeros of the special connection coefficient $\eta_{ij}(\mu)$ of the ordinary
differential equation $P^{e}(w, D_{w})f(w)=0$ . In Section 4.3, we give a proof of Theorem 2
for odd eigenfunctions. In Section 4.4, we introduce a monodromy representation and
prove that the eigenvalue problem is equivalent to the problem of determining the set of
invariants of the restricted monodromy representation. This description of a spectrum
depends only on the topological data, the monodromy, of the ordinary differential
equations.

The author thanks Professor Masato Wakayama for fruitful discussions and helpful
comments.

2. SEVERAL EQUIVALENT FORMS OF THE PROBLEM

2.1. Parmeggiani and Wakayama’s trick. We begin with the eigenvalue problem

$[A(- \frac{\partial_{x}^{2}}{2}+\frac{x^{2}}{2})+B(x\partial x+\frac{1}{2})-\nu I]u(X)=0$.

We denote the standard generators of the simple Lie algebra $\mathfrak{s}\mathfrak{l}_{2}$ by

$H=,$$X^{+}=,$ $X^{-}=$ .

These satisfy the commutation relations

$[H, X^{+}]=2X^{+},$ $[H, X^{-}]=-2X^{-},$ $[X^{+}, X-]=H$.

Next we define the oscillator representation $\pi$ of $\epsilon 1_{2}$ by

(2.1) $\pi(H)=x\partial_{x}+1/2$ , $\pi(X^{+})=X^{2}/2$ , $\pi(X^{-})=-\partial^{2}x/2$ .

We also denote the algebra homomorphism from the universal enveloping algebra $U(\epsilon \mathfrak{l}_{2})$

to the ring $\mathrm{C}[x, \partial_{x}]$ of differential operators by the same character $\pi$ . Using this
representation, the problem (1.1) can be stated as

(2.2) $[A\pi(X^{+}+X^{-})+B\pi(H)-\mu I]u(x)=0$ .

Remark 3. Let us define the matrix

$J=$ .

Since $B$ is a skew symmetric matrix of order two, it is a multiple of $J$ :

$B=\mathrm{p}\mathrm{f}(B)J$,

where the Pfaffian $\mathrm{p}\mathrm{f}(B)$ is the lower-left entry of the skew symmetric matrix B. $We$

note $\mathrm{p}\mathrm{f}(gB^{t}\mathit{9})=(\det g)\mathrm{p}\mathrm{f}(B)$ .
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Lemma 4.
(i) Diagonalization of A. There is an orthogonal matrix $g_{1}\in SO(2)$ such that

$g_{1}Ag_{1}^{-1}$ is a diagonal matrix. Then we see that $g_{1}Bg_{1}^{-1}=B$ .
(ii) Parmeggiani and Wakayama’s trick [$\mathrm{P}\mathrm{W}$ , Corollary 4.2]. Let $g_{2}=(g_{1}Ag_{1}^{-1})1/2=$

$[_{0\sqrt{\beta}}^{\sqrt{\alpha}0}]$ for $g_{1}Ag_{1}^{-1}=$ . Then

$g_{2}^{-1}g_{1}Ag^{-1}1g_{2}^{-1}=I$, $g_{2}^{-1}Bg_{2}^{-1}= \frac{1}{\sqrt{\det A}}B$ , $g_{2}^{-1}Ig_{2}^{-1}=(g_{1}Ag_{1}-1)^{-}1$ .

(iii) Cayley transformation. Define a unitary matrix

$g_{3}:= \frac{1}{\sqrt{2}}\in U(2)$ .

Then
$g_{3}Jg_{\mathrm{s}^{1}}^{-}=-iH$ , $g_{3}g1A^{-1}g_{1}g_{3}-1-1=\delta$ .

Here we define $\delta:=\frac{1}{2}r\mathrm{b}(A^{-1})=\frac{\mathrm{T}\mathrm{r}(A)}{2\det A}$ , and $\epsilon:=-\frac{\mathrm{T}\mathrm{r}(g_{1}Ag1-1H)}{\mathrm{T}\mathrm{r}(A)}$ .

Now, since $\mathrm{h}(g_{1}Ag_{1}^{-}H1)^{2}=\mathrm{T}\mathrm{r}(A)^{2}-4\det A$ , we have the relations $\epsilon^{2}=1-\frac{4\det A}{\mathrm{T}\mathrm{r}(A)^{2}}$ ,
and $(1-\epsilon^{2})\delta 2\det A=1$ .

Corollary 5. Let us define

$s_{\pm}$ $:=X^{+}+x^{-} \pm i\frac{\mathrm{p}\mathrm{f}(B)}{\sqrt{\det A}}H\in\epsilon\iota_{2}$ .

Then the problem (2.2) is equivalent to

(2.3) $u^{(3)}(x)=0$ .

Here $u^{(3)}=g_{3}g_{2}g_{1}u$ .

As a corollary of this proposition, we prove the positivity of the eigenvalue, $\mu>0$ ,
in Section 4.5.

2.2. Inner automorphisms of $\epsilon \mathfrak{l}_{2}$ . We change the representation $\pi$ of the Lie
algebra $\epsilon 1_{2}$ into another representation appropriate for the purpose. Let us introduce
the parameter $\kappa$ defined by the relation $\mathrm{p}\mathrm{f}(B)/\sqrt{\det A}=\tanh\kappa$. In other words,
$\kappa=\frac{1}{2}\log(\frac{\sqrt{\det A}+\mathrm{p}\mathrm{f}(B)}{\sqrt{\det A}-\mathrm{p}\mathrm{f}(B)})$ . We consider

(2.4) $S_{\pm}=X^{+}+X^{-} \pm i\frac{\mathrm{p}\mathrm{f}(B)}{\det A}H=X^{+}+X^{-}\pm i(\tanh\kappa)H\in \mathrm{B}[_{2}$ .
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Lemma 6. We define

$g_{7}=,$ $g_{6}=,$$g_{5}=,$$g_{4}=$ .

Then, for $g=g_{7}g_{6}g_{5}g_{4}$ , we have

$gS_{-g^{-1}}=(\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\kappa)H$ , $gS_{+}g^{-1}=(\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\kappa)$ .

Proof. This can be obtained easily by using the relations

$igHg^{-1}=$ , $g(x^{+-)g^{-1}=}+X\cdot$ $\square$

We define the representations of $\epsilon \mathfrak{l}_{2}$ by

$\pi_{4}(?):=\pi(g4?g_{4}^{-1})$ ,
$\pi_{5}(?):=\pi(g_{5g_{4}g}?4-1g_{5})-1$ .

Then, we define the linear transformations $T_{4},$ $T_{5}$ : $L^{2}(\mathrm{R})arrow L^{2}(\mathrm{R})$ by

$(T_{4}f)(_{X}):=(\cosh\kappa)^{1}/4f(\sqrt{\cosh\kappa}x)$ ,
$(T_{5}f)(_{X}):=e^{i(\mathrm{s}}f\mathrm{i}\mathrm{n}\mathrm{h}\kappa)x/2(2x)$ .

The map $T_{4}$ corresponds to the matrix $g_{4}\in GL(2, \mathrm{R})$ , and represents the dilation of
the variable. The map $T_{5}$ corresponds to the matrix $g_{5}=\exp(i\sinh\kappa X_{+})\in GL(2, \mathrm{c})$ ,
and is equivalent to multiplication by the function $e^{i(\sinh\kappa)x^{2}/}2$ . The maps $T_{4}$ and $T_{5}$

preserve the standard inner product on $L^{2}(\mathrm{R})$ . We see that the map $T_{4}$ intertwines
the action of $\epsilon \mathfrak{l}_{2}$ with $\pi$ and $\pi_{4}$ . Similarly, $T_{5}$ does that with $\pi_{4}$ and $\pi_{5}$ . Graphically,
we have the commutative diagram

$L^{2}(\mathrm{R})$
$arrow T_{4}$

$L^{2}(\mathrm{R})$
$arrow T_{5}$

$L^{2}(\mathrm{R})$

$\pi(?)\downarrow$ $\pi_{4}(?)\downarrow$ $\pi_{5}(?)\downarrow$

$L^{2}(\mathrm{R})$
$arrow T_{4}$

$L^{2}(\mathrm{R})$
$arrow T_{5}$

$L^{2}(\mathrm{R})$ .

Next, we consider the transformation $T_{6}$ that corresponds to the matrix $g_{6}\in$

$SL(2, \mathrm{R})$ . In the space $L^{2}(\mathrm{R})$ , we have the inner product $(f, g)= \int_{-\infty}^{\infty}f(x)\overline{g(x)}dX$ .
We define the annihilation operator $\psi=(x+\partial_{x})/\sqrt{2}$ , and creation operator $\psi+=$

$(x-\partial_{x})/\sqrt{2}$ . Then we have $[\psi, \psi^{+}]=1$ . The function $\varphi_{0}(x):=e^{-x^{2}/2}$ is the ground
state, and by definition, $\psi\varphi_{0}=0$ . In general, we define $\varphi_{n}=(\psi^{+})^{n}\varphi 0$ . Then the set
$\{\varphi_{n}|n\in \mathrm{Z}_{+}\}$ constitutes an orthogonal basis with inner product $(\varphi_{n}, \varphi_{n})=\sqrt{\pi}n!$ .
We denote the set of all finite linear combinations of the $\varphi_{n}$ by $L^{2}(\mathrm{R}_{x})\mathrm{f}\mathrm{i}\mathrm{n}$ . We also
denote the set of all polynomials in one variable $y$ by $\mathrm{C}[y]$ .
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The transformation $T_{6}$ mentioned above is a linear map

$T_{6}$ : $L^{2}(\mathrm{R})\mathrm{f}\mathrm{i}\mathrm{n}arrow \mathrm{C}[y]$

and we defined it by $T_{6}(\varphi_{n})=y^{n}$ . We see that $T_{6}(\psi^{+_{\varphi}})=yT_{6}(\varphi)$ and $\tau_{6}(\psi_{\varphi})=$

$\partial_{y}T_{6}(\varphi)$ .
Recall the definition (2.1) of the representation $\pi$ of the Lie algebra $\mathfrak{s}\mathfrak{l}_{2}$ on $L^{2}(\mathrm{R})\mathrm{f}\mathrm{i}\mathrm{n}$

$\pi(H)=x\partial x+\frac{1}{2},$ $\pi(x^{+})=x/22,$ $\pi(X-)=-\partial_{x}2/2$ .

We define the representation of $\epsilon \mathfrak{l}_{2}$ on $\mathrm{C}[y]$ by

(2.5) $\pi_{6}(H)=y\partial_{y}+\frac{1}{2},$ $\pi 6(X^{+})=y^{2}/2,$ $\pi_{6}(x^{-)/2}=-\partial_{y}2$ .

Then, we calculate

$\{$

$\pi(g_{6}^{-1}Hg6)=\pi(x+X^{-)=}(x-\partial_{x}^{2})2/2=\psi+\psi++\frac{1}{2}$ ,

$\pi(g_{6}^{-1}x^{++-))}g6)=\pi(\frac{1}{2}(-H+^{x}-X=(\psi+)2/2$ ,

$\pi(g_{6}^{-1-_{g6}}x)=\pi(\frac{1}{2}(-H-x++x-))=-\psi^{2}/2$ .

This proves that
$\pi’(g_{6}?g6)-1\tau_{66}=\tau\pi(?)$ ,

which implies that
$L^{2}(\mathrm{R})\mathrm{f}\mathrm{i}\mathrm{n}$

$arrow T_{6}$
$\mathrm{C}[y]$

$\pi(?)\downarrow$ $\downarrow\pi’(g_{6}?g_{6}^{-1})$

$L^{2}(\mathrm{R})\mathrm{f}\mathrm{i}\mathrm{n}$

$arrow T_{6}$
$\mathrm{C}[y]$ .

Next, we introduce an inner product on $\mathrm{C}[y]$ such that the map $T_{6}$ is an isometry
with respect to this inner product. To be more explicit, the inner product should be
$(y^{m}, y^{n})=\delta_{mn}\sqrt{\pi}n!$ . This can be realized as

$(f, g)=(f(\partial_{y})\overline{g}(y))|_{}--0$ , $f,$ $g\in \mathrm{C}[y]$ .

If we denote the completion of $\mathrm{C}[y]$ with respect to this inner product by $\overline{\mathrm{C}[y]}$ , then
the map $T_{6}$ can be extended to the isometry between the Hilbert spaces $L^{2}(\mathrm{R})$ and
$\overline{\mathrm{C}[y]}$ .

Finally, we define the representation of $\mathfrak{s}\mathfrak{l}_{2}$ on $\mathrm{C}[y]$ by

$\pi_{6}(?):=\pi^{/}(g_{6}g_{5}g4$ ?$g^{-1}4g^{-}5g_{6}^{-})11$ ,
$\pi_{7}(?):=\pi’(g?g^{-1})$ , recall $g=g_{7}g_{6}g_{5}g_{4}$ ,

and the intertwiner $T_{7}$ : $\mathrm{C}[y]arrow \mathrm{C}[y]$ by

$(T_{7}f)(y):=f(\sqrt{\frac{i-\sinh\kappa}{\cosh\kappa}}y)$ .

The map $T_{7}$ corresponds to the matrix $g_{7}\in GL(2, \mathrm{c})$ and preserves the inner product
on $\mathrm{C}[y]$ . We thus obtain the commutative diagram

$L^{2}(\mathrm{R})\mathrm{f}\mathrm{i}\mathrm{n}$

$arrow T_{6}$
$\mathrm{C}[y]$

$arrow T_{7}$
$\mathrm{C}[y]$

$\pi_{5}(?)\downarrow$ $\pi_{6}(?)\downarrow$ $\pi_{7}(?)\downarrow$

$L^{2}(\mathrm{R})\mathrm{f}\mathrm{i}\mathrm{n}$

$arrow T_{6}$
$\mathrm{C}[y]$

$arrow T_{7}$
$\mathrm{C}[y]$ .
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Corollary 7. With the notation above, we have the expression

(2.6) $\{$

$\pi_{7(s_{-})}=(\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\kappa)\pi/(H)$ ,
$\pi_{7}(s_{+})=(\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\kappa)\pi’((\cosh 2\kappa)H-(\sinh 2\kappa)(X+-x^{-}))$.

The equation (2.3) is equivalent to

(2.7) $u^{(7)}(x)=0$ ,

where $u^{(7)}=\tau_{7}\tau_{6}\tau 5\tau_{4}u^{(3)}$ .

2.3. Reduction of a system of equations to a single equation. This is a
standard argument.

Lemma 8. Suppose $\epsilon\mu\neq 0$ . Then the system of differential equations (2.7),$=$,

is equivalent to the single differential equation

(2.8) $[(\pi_{7}(S+)-\mu\delta)(\pi 7(s-)-\mu\delta)-(\epsilon\mu\delta)^{2}]u_{-}^{(7})(x)=0$

Proof. $u_{+}=-(\pi 7(S_{-)}-\mu\delta)(u_{-})/(\epsilon\mu\delta).$
$\square$

Corollary 9. Let us define an element $R$ of the universal enveloping algebra as

$R:=(2(X+-x^{-)-}2( \coth 2\kappa)H+\frac{\mu\delta}{\sinh\kappa})(H-\mu\delta\cosh\kappa)+(\xi\mu\delta)2\mathrm{t}\mathrm{c}\mathrm{o}\mathrm{h}\kappa\in U(\mathfrak{s}\mathfrak{l}_{2})$.

Then, $(\pi_{7}(S^{+})-\mu\delta)(\pi 7(s-)-\mu\delta))-(\epsilon\mu\delta)^{2}=-(\tanh\kappa)\pi(\prime R)$

We define $\nu:=\mu\delta\cosh\kappa$ , for simplicity. Then the operator $R$ can be written as

(2.9) $R=(2(X^{+}-x^{-)(\kappa}-2 \coth 2)H+\frac{2\nu}{\sinh 2\kappa})(H-\nu)+\frac{2(\epsilon\nu)^{2}}{\sinh 2\kappa}\in U(\epsilon\downarrow 2)$ .

For convenience, we next give an expression for the coefficients of $R$ in terms of the
matrices $A$ and $B$ and the eigenvalue $\mu$ :

$\frac{2(1-6^{2})}{\sinh 2\kappa}=\frac{4(\det A-\det B)\sqrt{\det A}}{\mathrm{T}\mathrm{r}(A)^{2}\mathrm{p}\mathrm{f}(B)}$ , 2 $\coth 2\kappa=\frac{\det A+\det B}{\sqrt{\det A}\mathrm{p}\mathrm{f}(B)}$ , $\nu=\frac{\mathrm{T}\mathrm{r}(A)}{2\sqrt{(\det A-\det B)\det A}}\mu$ .

2.4. Laplace transform. We recall the realization given in (2.5):

We now introduce a second realization (representation) of the $\mathfrak{s}\mathfrak{l}_{2}$ -triple:

(2.10)

Here, $\theta_{z}=z\partial_{z}$ denotes Euler’s degree operator. The relation between these two real-
izations is given by the following.
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Proposition 10. We define the (modified) Laplace transform
\^u $(z):= \int_{0}^{\infty}u(yz)e-y^{2}/2ydy=z-2\int_{0}^{z\infty}u(y)e-y^{2}/(2z^{2})ydy$ .

This is a linear map from $y$ -space to $z$ -space with the following properties:
(i) It gives $y^{n} \vdasharrow\Gamma(\frac{n}{2}+1)(\sqrt{2}z)^{n}$ for any $n\in \mathrm{Z}_{+}$ . In particular, $1\vdasharrow 1$ .

(ii) Suppose the expansion $u= \sum_{n0}^{\infty}=u_{n}y^{n}\in \mathrm{C}[y]$ , then \^u $(z)= \sum_{n=0^{u\Gamma}}^{\infty}n(\frac{n}{2}+$

1) $(\sqrt{2}z)^{n}$ .
(iii) The Laplace transform almost $intertwine\mathit{8}$ the action of $\epsilon 1_{2}$ :

(2.11) $\{$

$(\pi’(H)u)\wedge$ $=\varpi(H)(\hat{u})$

$(\pi’(X^{+})u)^{\wedge}$ $=\varpi(X^{+})(\hat{u})$

$(\pi’(X^{-)}u)^{\wedge}$ $= \varpi(x-)(\hat{u})-\frac{1}{2}u(0)Z^{-2}$ .
(iv) If we define the inner product in z-8pace such that $\{z^{n}|n\in \mathrm{Z}_{+}\}$ forms an or-

thogonal $ba\mathit{8}is$ and $(Z^{n}, z^{n})= \Gamma(\frac{n+1}{2})/\Gamma(\frac{n}{2}+1)$ , then the Laplace transformation
is an isometry.

Proof. (iii) This is proved by the calculation

$( \pi’(x^{-)}u)^{\wedge}(_{\mathcal{Z}})=\int_{0}^{\infty}-\frac{1}{2}u(’/)yze-y/2y2dy=\frac{1}{2z}\int_{0}^{\infty}u’(yZ)(e^{-y^{2}/}y)/d2y$ ,

$- \frac{1}{2z}\partial_{z}\hat{u}(z)=-\frac{1}{2z}\int_{0}^{\infty}u’(yz)e^{-y/2}yd2y2$ ,

$\frac{1}{2z^{2}}$ \^u $(z)=- \frac{1}{2z^{2}}\int_{0}^{\infty}u(yz)(e^{-y^{2}})/2\prime dy$

$=- \frac{1}{2z^{2}}([u(yz)e-y/2]_{y0}\tau--\infty-2=\int_{0}^{\infty}zu(/)yZe-y^{2}/2dy)$ .

(iv) Since $(y^{n}, y^{n})=\sqrt{\pi}n!$ , we have

$(Z^{n}, z^{n})= \frac{\sqrt{\pi}n!}{2^{n}\Gamma(\frac{n}{2}+1)^{2}}=\frac{\Gamma(\frac{1}{2})\mathrm{r}(n+1)}{2^{n}\Gamma(\frac{n}{2}+1)^{2}}=\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2}+1)}$ . $\square$

Note that $\Gamma(\frac{n+1}{2})/\Gamma(\frac{n}{2}+1)=\frac{2}{\sqrt{\pi}}\int_{0}^{\pi/2}\sin^{n_{XdX}}$ . Since $\Gamma(z+a)/\Gamma(z+b)\sim z^{a-b}$ ,
asymptotically for large $n$ , we have $(Z^{n}, z^{n})\sim\sqrt{2}/n$.

The property (iii) means that the representations $\pi’$ and $\varpi$ do not intertwine, but
almost. The precise relation is given as follows. In fact, the Casimir operator $4X^{+}X^{-}+$

$H^{2}-2H\in U(\epsilon\iota_{2})$ takes the $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}-3/4$ in both representations. Let us denote the set
of all Laurent polynomials (finite linear combinations of $\{z^{n}|n\in \mathrm{Z}\}$ ) by $\mathrm{c}[z, z^{-1}]$ .
The subspace $\mathrm{C}[z^{2}, z-2]$ consists of the set of all even functions in $\mathrm{C}[z, z^{-1}]$ . The set of
even polynomials is written $\mathrm{C}[z^{2}]$ , while the set of odd polynomials is written $z\mathrm{c}[z^{2}]$ .

By the definition of $\varpi,$ $(2.10)$ , we see that the representation $(\varpi, \mathrm{C}[Z, Z^{-1}])$ has
a subrepresentation $(\varpi, \mathcal{Z}^{-2}\mathrm{C}[\mathcal{Z}^{-2}])$ . The representation $(\pi’, \mathrm{c}[y^{2}])$ is isomorphic to
the quotient representation $(\varpi, \mathrm{C}[z, z2-2]/z^{-2}\mathrm{C}[z^{-}]2)$ . In other words, the even part
$(\pi’, \mathrm{C}[y^{2}])$ is the Langlands quotient of the representation $(\varpi, \mathrm{C}[\mathcal{Z}, z^{-}]22)$ . On the other
hand, $(\varpi, z\mathrm{C}[z^{2}])$ is a subrepresentation of $(\varpi, \mathrm{C}[Z, z^{-}]22)$ . This subrepresentation is
isomorphic to the odd part $(\pi’, y\mathrm{C}[y]2)$ .
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Corollary 11. The operator $\pi’(R)$ satisfies the relation

$( \pi’(R)u)^{\wedge}=\varpi(R)(\hat{u})+(\frac{1}{2}-\nu)\hat{u}(\mathrm{o})_{Z^{-2}}$.

It follows from this corollary that equation (2.8) is equivalent to

(2.12) $\varpi(R)(\hat{u})+(\frac{1}{2}-\nu)\hat{u}(\mathrm{o})z-2--0$.

Remark. Parmeggiani and Wakayama [PW] have already obtained a part of the results
in this section, and stated in the different terminology. For example, their recurrence
equations (13) in [PW] corresponds to the differential equation (2.12). However, the
Laplace transformation seems new.

3. LAPLACE TRANSFORM OF AN EIGENFUNCTION

3.1. Heun’s differential operator.
Substituting the realization (2.10) into (2.9), we obtain the realization

(3.1)
$\varpi(R)=(z^{2}(\theta_{z}+2)+Z^{-}2(\theta_{z}-1)-2(\coth 2\kappa)(\theta_{z}+\frac{1}{2})+\frac{2\nu}{\sinh 2\kappa})(\theta z+\frac{1}{2}-\nu)+\frac{2(\epsilon\nu)^{2}}{\sinh 2\kappa}$

(3.2)
$\varpi(R)=((Z+z-22-2)(\theta_{z}+\frac{1}{2})+\frac{3}{2}(z-2z-2\coth 2\kappa)+\frac{2\nu}{\sinh 2\kappa})(\theta z+\frac{1}{2}-\nu)+\frac{(\epsilon\nu)^{2}}{\sinh 2\kappa}$.

Conjugating by $z$ , we have

$z^{-1} \varpi(R)z=((_{\mathcal{Z}^{2}}+z^{-2}-2\coth 2\kappa)(\theta z+\frac{3}{2})+\frac{3}{2}(z^{2}-z^{-2})+\frac{2\nu}{\sinh 2\kappa})(\theta_{z}+\frac{3}{2}-\nu)+\frac{(\epsilon\nu)^{2}}{\sinh 2\kappa}$.

Since the operators $\varpi(H),$ $\varpi(X^{+})$ and $\varpi(X^{-})$ are invariant under the symmetry
$z\vdasharrow-Z$ , the operator $\varpi(R)$ is invariant under the same symmetry. This can be seen
in expression (3.1) or (3.2). This implies that the operator $\varpi(R)$ can be written in
terms of the variable $z^{2}$ . Now let us introduce the new variable $w:=z^{2}\coth\kappa$ . Then,
factoring by the leading coefficient, from the above expression, we obtain .

(3.3) $z^{-1}\varpi(R)Z=4(\tanh\kappa)w(w-1)(w-\coth^{2}\kappa)H(w, D_{w})$ ,

where, $H(w, D_{w})$ is Heun’s differential operator $[\mathrm{H}, (1.1.1)]$ ,

(3.4) $H(w, D_{w}):= \partial_{w}^{2}+(\frac{\gamma’}{w}+\frac{\delta’}{w-1}+\frac{\epsilon’}{w-a’})\partial_{w}+\frac{\alpha’\beta’w-q’}{w(w-1)(w-a’)}$ ,

with the parameters

$\gamma’=\frac{7-2\nu}{4},$ $\delta’=\frac{3-2\nu}{4},$ $\epsilon’=\frac{3+2\nu}{4},$ $\alpha’=\frac{3}{2},$ $\beta’=\frac{3-2\nu}{4},$ $a’=\coth^{2}\kappa$

and
$q’= \frac{4\nu^{2}(1-\epsilon^{2})-12\nu\cosh^{2}\kappa+9\cosh 2\kappa}{16\sinh^{2}\kappa}$ .
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Recall that

$1-\epsilon^{2}=\underline{4\det A}$ $\coth^{2}\kappa=\underline{\det A}$

$\mathrm{T}\mathrm{r}(A)^{2}$

’ $\det B$
’

In particular, $H(w, D_{w})$ is a second-order linear differential operator with four regular
singular points on the Riemannian sphere. In terms of the Riemann schema (a P-
symbol), the list of the exponents $[\mathrm{H}, (1.1.3)]$ is given as$=$.

In particular, the parameter $\kappa$ designates the locations of the singular points, the
parameter $\nu$ designates the exponents, and the parameter $\epsilon$ is an accessory parameter.

The above discussion gives the following:

Proposition 12. The operator $\varpi(R)$ has the following properties:

(i) It is a second-order linear ordinary differential operator and has rational coef-
ficients in $z$ .

(ii) It has six singular points $z=0,$ $\pm\sqrt{\tanh\kappa},$ $\pm\sqrt{\coth\kappa},$ $\infty$ .
(iii) All singularities are regular singularities.
(iv) The exponents at $z=0$ are 1 and $(2\nu-1)/2$ . Those at $z=\infty$ are 2 and

$-(2\nu-1)/2$ . Those at the points $z=\pm\sqrt{\tanh\kappa}$ are $0$ and $(2\nu+1)/4$ . Those
at the points $z=\pm\sqrt{\coth\kappa}$ are $0$ and $(-2\nu+1)/4$ .

Proof. By the conjugation of $w^{1/2}$ , the operator $\varpi(R)$ has the P-symbol

( $\mathrm{t}\mathrm{a}\kappa\frac{2\nu+\ln_{0}\mathrm{h}}{4}$ $\frac{\cot-2\nu+10^{\mathrm{h}\kappa}}{4}$
$\frac{-2\nu+1\infty 1}{4}$

$z^{2}$ ).
By unfolding $z^{2}rightarrow z$ , this $P$-symbol is equal to

( $\sqrt{\kappa}\frac{\tan 2\nu+10\mathrm{h}}{4}$ $- \sqrt{\mathrm{h}\kappa}\frac{2\nu+1\tan 0}{4}$ $\frac{\sqrt{\coth\kappa}-2\nu+10}{4}$ $- \sqrt{\kappa}\frac{-2\nu+1\coth 0}{4}$
$\frac{-2\nu+1\infty 2}{2}$

$z$ ) .

This proves the assertion (iv). $\square$

3.2. The differential equation.
We define the third-order differential operator $P(z, D_{z}):=(z\partial_{z}+2)\varpi(R)=\varpi((H+$

$\frac{3}{2})R)$ . This is the operator in Theorem 1 in the Introduction.

Lemma 13. The following conditions for a holomorphic function \^u $(z)\in \mathcal{O}_{0}$ at the
origin are equivalent:

(i) $\varpi(R)(\hat{u})+(\frac{1}{2}-\nu)\hat{u}(\mathrm{o})_{\mathcal{Z}^{-2}}=0$ (that is, the condition (2.12)).
(ii) $(z^{2} \varpi(R))\hat{u}+(\frac{1}{2}-\nu)\hat{u}(\mathrm{O})=0$ .
(iii) $\partial_{z}z^{2}\varpi(R)\hat{u}=0$ .
(iv) $P(z, D_{z})\hat{u}=0$ .
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Proof. The relations $(\mathrm{i})\Leftrightarrow(\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}\mathrm{i})\Leftrightarrow(\mathrm{i}\mathrm{v})$ are clear. Since the constant term on
the left-hand side of (ii) vanishes for an arbitrary holomorphic function \^u $(z)\in \mathcal{O}_{0}$ , the
condition (iii) implies (ii). $\square$

Now we summarize the properties of the operator $P(z, D_{z})$ . We see that the operator
$P(z, D_{z})$ is holomorphic on C. This follows from (3.1) and the formula $(\theta_{z}+2)z^{-2}(\theta z-$

$1)=\partial_{z}^{2}$ . Also, the coefficient of $\partial_{z}^{3}$ of $P(z, D_{z})$ is $z^{3}(z^{2}+z^{-2}-2\coth 2\kappa)=z(z^{2}-$

$\tanh\kappa)(z^{2}-\coth\kappa)$ . The order of the zeros of this coefficient at the singular points
$z=0,$ $\pm\sqrt{\tanh\kappa}\mathrm{a}\mathrm{n}\mathrm{d}\pm\sqrt{\coth\kappa}$ is 1.

3.3. $L^{2}$-conditions and analytic continuation. We now consider the holomorphic
solution \^u (z) $\in \mathcal{O}_{0}$ satisfying the equation $P(z, D_{z})\hat{u}=0$ (see Lemma 13). The
solution can be analytically continued along a path avoiding the singular points of
the differential equation. In particular, the solution is holomorphic on the (open)
disk of radius $\sqrt{|\tanh\kappa|}$ . We consider the behavior of the solution near the points
$z=\pm\sqrt{\tanh\kappa}$ . There are two possibilities:

$\bullet$ If a solution \^u (z) is holomorphic near the points $z=\pm\sqrt{\tanh\kappa}$ , then it is
continued to a (single-valued) holomorphic function on the disk $\{z\in \mathrm{C}||z|<$

$\sqrt{|\coth\kappa|}\}$ centered at the origin. In this case, the Taylor expansion \^u$(z)=$

$\sum_{n=0}^{\infty}a_{n^{Z}}n$ satisfies the following asymptotic property:

$\forall\epsilon_{1}>0,$ $\exists N$ such that $\forall n>N$, $|a_{n}|\leq(|\tanh\kappa|+\epsilon_{1})^{n/2}$ .

$\bullet$ If a solution \^u $(z)$ cannot be holomorphically continued to at least one point $z=$

$\pm\sqrt{\tanh\kappa}$ , then the radius of convergence of the Taylor series \^u $(z)= \sum_{n=0}^{\infty}a_{n^{Z}}n$

is $\sqrt{|\tanh\kappa|}$ . In this case,

$\forall\epsilon_{1}>0$ and $\forall N,$ $\exists n>N$ such that $|a_{n}|\geq(|\coth\kappa|-\epsilon_{1})^{n/}2$ .

Proposition 14. Consider a formal power series solution $u(y)= \sum_{n=0}^{\infty}uny2\in \mathrm{C}[[y]]$ of
the equation $\pi’(R)u=0$ . Its Laplace transform is written as \^u $(z)\in \mathrm{C}[[z]]$ . Then, $we$

have the following:
(i) Since the operator is regular singular at the origin, any formal power series

solution \^u $(z)\in \mathrm{C}[[z]]$ of the equation $P(z, D_{z})\text{\^{u}}=0$ converges to a holomorphic
function near the origin.

(ii) The following conditions are equivalent:
(a) $u(y)$ converges in the Hilbert space $\overline{\mathrm{C}[y]}$ .
(b) \^u $(z)$ converges to a holomorphic function on the unit disk.
(c) Both the even part $\hat{u}^{e}(z)$ and the odd part $\hat{u}^{o}(z)$ of \^u $(z)$ can be holomor-

phically continued to a neighbourhood of the closed interval $[0, \sqrt{\tanh\kappa}]$ .
(iii) The following conditions are equivalent:

$(a)u(y)$ does not converge in the Hilbert space $\overline{\mathrm{C}[y]}$ .
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$(b)$ \^u $(z)$ cannot be continued to a holomorphic function on the unit disk.
$(c)$ Either the even part $\hat{u}^{e}(z)$ or the odd part $\hat{u}^{o}(z)$ of\^u $(z)$ cannot be holomor-

phically continued to a neighbourhood of the closed interval $[0, \sqrt{\tanh\kappa}]$ .

Proof. We set $a_{n}=u_{n} \Gamma(\frac{n}{2}+1)2^{n/2}$ . Then the condition (ii-b) and (iii-b) imply

(3.5) $|u_{n}|^{2}(y, y)nn= \frac{|a_{n}|^{2}\sqrt{\pi}n!}{\Gamma(\frac{n}{2}+1)^{2}2n}\{$

$\leq(|\tanh\kappa|+\epsilon_{1})^{n}\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2}+1)}$ for case (ii),

$\geq(|\coth\kappa|-\epsilon_{1})^{n}\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2}+1)}$ for case (iii).

This proves the equivalences $(\mathrm{i}\mathrm{i}- \mathrm{a})\Leftrightarrow(\mathrm{i}\mathrm{i}- \mathrm{b})$ and $(\mathrm{i}\mathrm{i}\mathrm{i}_{-\mathrm{a}})\Leftrightarrow(\mathrm{i}\mathrm{i}\mathrm{i}- \mathrm{b})$ . Then, (ii-b) implies
(ii-c) by the relations $\hat{u}^{e}(z)=(\hat{u}(z)+\hat{u}(-Z))/2,\hat{u}^{O}(z)=$ ( $\hat{u}$ (z)-\^u $(-Z)$ ) $/2$ . Conversely,
the condition (iii-c) implies that the even function $\hat{u}^{e}(z)$ is also holomorphic at $z=$
$-\sqrt{\tanh\kappa}$. Since this function is a solution of the differential equation, it can be
holomorphically continued to regular points. Thus, it is holomorphic on the unit disk.
The same holds for the odd part $\hat{u}^{o}(z)$ . This proves (ii-c) for $\text{\^{u}}=\hat{u}^{e}+\hat{u}^{o}$ . $\square$

Remark 15. If we replace the Hilbert space $L^{2}(\mathrm{R})$ by some Sobolev-type space, then
the estimate (3.5) requires some additional factors such as $(1+n^{2})^{\sigma}$ . This change
affects neither the $\mathit{8}tatement$ nor the proof of the proposition.

Remark 16. The unit disk can be replaced by a connected and simply-connected open
subset $\Omega’$ of $\mathrm{C}$ which contains the three points $0,$ $\pm\sqrt{\tanh\kappa}$ and which contains neither
of the points $\pm\sqrt{\coth\kappa}$ . In fact, Proposition 14 $remain\mathit{8}$ valid if we replace the unit
disk by such a domain in the statements of conditions (ii-b) and (iii-b).

We denote the set of holomoprhic functions on $\Omega’$ by $\mathcal{O}(\Omega’)$ . The germ of holomor-
phic functions at the origin is denoted by $\mathcal{O}_{0}$ .

To summarize the above discussion, the spectral problem (1.1) is equivalent to that
of finding all the holomorphic solutions $U(z)\in \mathcal{O}(\Omega’)$ of the differential equation
$P(_{Z,D_{z}})U(Z)=0$ .

3.4. Index of the operator.

Lemma 17. The index of the map

(3.6) $P(z, D_{z}):\mathcal{O}(\Omega’)arrow \mathcal{O}(\Omega’)$

is zero.

Proof. The index is, by definition, the difference of the dimensions of the kernel and
cokernel. It is known (e.g., see [K]) that the map (3.6) is continuous, it has a closed
range, the dimensions of its kernel and cokernel are both finite, and its index is equal
to the difference of the order of the operator $P(z, D_{z})$ and the number of zeros with
multiplicity in the domain $\Omega’$ . Thus the index of the map in question is $3-1\cross 3=0$ . $\square$

Corollary 18. The following conditions are equivalent:
(i) The map (3.6) is injective.
(ii) The map (3.6) is surjective.
(iii) The map (3.6) is bijective.
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If one takes a monomial basis $\{z^{n}|n\in \mathrm{Z}_{+}\}$ of $\mathrm{C}[[z]]$ , the condition (iii) of Corol-
lary 18 can be expressed in terms of the ‘determinant’ of a tridiagonal, by (3.1), matrix
of infinite size. This determinant should coincide with the function $f$ introduced in
[PW], where this function is constructed with the limit of some continued fractions. If
the determinant is zero, then we have an infinite series solution in $\mathrm{C}[[z]]=\hat{\mathcal{O}}_{0}$ . Since
the operator $P(z, D_{z})$ has regular singularity at the origin (Proposition $14(\mathrm{i})$ ), such a
formal solution converges to a holomorphic solution at the origin.

4. CONNECTION PROBLEM

In this section, we discuss the relation between our problem and the connection
problem of a linear ordinary differential equation in a complex domain. It is instructive
to relate our work with Heun’s operator, and therefore we work in the variable $w$ in
this section. We set $\Omega’=\{z\in \mathrm{C}||z|<1\},$ $\Omega=\{w\in \mathrm{C}||w|<|\coth\kappa|\}$ .
4.1. Expression. Every solution $f\in \mathcal{O}(\Omega’)$ of $P(z, D_{z})f=0$ is the sum of an even
solution $f^{e}(z)$ and an odd solution $f^{o}(z)$ . By the map $w=z^{2}\coth\kappa$ , the set of even
functions in $\mathcal{O}(\Omega’)$ is isomorphic to $\mathcal{O}(\Omega)$ . The set of odd functions in $\mathcal{O}(\Omega’)$ is identified
with $\sqrt{w}\mathcal{O}(\Omega)$ . We denote the differential operator $P(z, D_{z})$ written in terms of $w$ by
$P^{e}(w, D_{w})$ . This operator acts on $\mathcal{O}(\Omega)$ and $\sqrt{w}\mathcal{O}(\Omega)$ as

$P^{e}(w, D_{w}):\mathcal{O}(\Omega)arrow \mathcal{O}(\Omega)$ , $P^{e}(w, D_{w}):\sqrt{w}\mathcal{O}(\Omega)arrow\sqrt{w}\mathcal{O}(\Omega)$ .

Using the variable $w$ , we have

$\varpi(R)=(2w(\tanh\kappa)(\theta w+1)+w^{-1}(\coth_{\hslash)(}2\theta_{w}-1)-2(\coth 2\kappa)(2\theta_{w}+\frac{1}{2})+\frac{2\nu}{\sinh 2\kappa})\cross$

$(2 \theta_{w}+\frac{1}{2}-\nu)+\frac{2(\epsilon\nu)^{2}}{\sinh 2\kappa}$ ,

where $\theta_{w}=w\partial_{w}=\frac{1}{2}\theta_{z}$ . By this expression $w\varpi(R)$ is holomorphic on $w\in$ C. We
see that $P^{e}(w, D_{w})=(\theta_{z}+2)\varpi(R)=2(\theta_{w}+1)\varpi(R)=2\partial_{w}w\varpi(R)$ . In other words,
$P^{e}(w, D_{w})$ can be factorized into a product of the two differential operators $\partial_{w}$ and
$w\varpi(R)$ holomorphic on $\mathrm{C}$ in the variable $w$ . By (3.3), we have

(4.1) $P^{e}(w, D_{w})=8(\tanh\kappa)\partial w$ . $w(2w-1)(w-\coth^{2}\kappa)\cdot\sqrt{w}H(w, Dw)\sqrt{\overline{w}}-1$

Thus the exponents of $P^{e}(w, D_{w})$ are given by the P-symbol

$\{\frac{\nu}{2}00\frac{1}{-2}\frac{1}{4}$
$\frac{\nu}{2}+\frac{1}{4}011$

$- \frac{\nu}{2}+\coth^{2}\kappa 01\frac{1}{4}$

$- \frac{\nu}{2}+\frac{1}{4}\infty 21$ $w\}$ .

The new exponent is $2– 2=0$ at $w=0$ , it is $2– 1=1$ at $w=1,$ $\coth^{2}\kappa$ , and it is
$-(2-4)=2$ at $w=\infty$ .

4.2. Connection problem. We illustrate the corresponding connection problem
briefly. For simplicity, we assume in this section that the parameter $\nu$ satisfies $\nu+\frac{1}{2}\not\in$

$\mathrm{z}_{+}$ .
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First, consider the differential equation $w\varpi(R)U(w)=0$ . Choose a basis $\{f\mathrm{o}1, f02\}$

of solutions near $w=0$ such that the exponent of $f_{01}$ is 1/2 and that of $f_{02}$ is $(2\nu-1)/4$ .
Then $\sqrt{w}^{-1}f_{01}$ is holomorphic and $f_{02}$ is not. If $(2 \nu-1)/4\not\in\frac{1}{2}-\mathrm{Z}_{+}$ , then $f_{02}$ is
ambiguous, but this is irrelevant to the present discussion.

Now, choose a basis $\{f_{11}, f_{12}\}$ of solutions near $w=1$ such that the expoent of $f_{11}$

is $0$ and that of $f_{12}$ is $(2\nu+1)/4$ . Then $f_{11}$ is holomorphic and $f_{12}$ is not.
Next we select a basis of the solution of the differential equation $P^{e}(w, D_{w})U(w)=0$ .

Let $f_{00}$ be a solution with exponent $0$ near $w=0$ . This solution is holomorphic. Then,
let $f_{10}$ be a solution with exponent 1 near $w=1$ . This is also holomorphic.

The space $\mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \mathcal{O}_{0})$ of holomorphic solutions at the origin is spanned by $f_{00}$ .
Similarly, the space $\mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \sqrt{w}o_{0})$ is spanned by $f_{01}$ . For the point $w=1$ , the space
$\mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \mathcal{O}_{1})$ is spanned by $f_{10}$ and $f_{11}$ .

Now we consider the connection matrix along the open interval $(0,1)$ :

$f_{0j}= \sum_{i=0}^{2}f_{1i}\eta ij$ , $j=0,1,2$ .

By definition, the function $\eta_{ij}=\eta_{ij}(\nu, \kappa, \epsilon)$ does not depend on $w$ , but it may depend
on the parameters $\nu,$ $\kappa$ , and $\epsilon$ . Since $\{f_{kj}|j=1,2\}$ forms a basis of solutions of the
equation $w\varpi(R)U(w)=0$ , we have $\eta_{01}=\eta_{02}=0$ .

The restriction map from $\Omega$ to the origin gives a natural map $\mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \mathcal{O}(\Omega))arrow$

$\mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \mathit{0}_{0})$. We characterize the image of this map by the connection coefficient.

Proposition 19.
(i) The (even) function $f_{00}\in \mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \mathcal{O}_{0})$ comes from a function in $\mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \mathcal{O}(\Omega))$

if and only if $\eta_{20}=0$ .
(ii) The (odd) function $f_{01}\in \mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \sqrt{w}o_{0})$ comes from a function in $\mathrm{k}\mathrm{e}\mathrm{r}(Pe, \sqrt{w}o(\Omega))$

if and only if $\eta_{21}=0$ .

In other words, provided that $\nu$ is “non-integral”, then $\nu$ is an eigenvalue of the
eigenvalue problem if and only if $\eta 20\eta 21=0$ . An expression for the connection coeffi-
cients is given in [SS1] and [SS2].

4.3. Odd case. For the odd case, the connection to Heun’s operator is more direct.
Let us consider

$P^{e}(z, D_{z})$ : $\sqrt{w}\mathcal{O}(\Omega)arrow\sqrt{w}\mathcal{O}(\Omega)$ .
Lemma 20. We have the isomorphism

$\mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \sqrt{w}\mathcal{O}(\Omega))=\sqrt{w}\mathrm{k}\mathrm{e}\mathrm{r}(H(w, Dw),$ $\mathcal{O}(\Omega))$ .

Proof. First, we see that $\sqrt{w}f\in \mathrm{k}\mathrm{e}\mathrm{r}(P^{e}, \sqrt{w}\mathcal{O}(\Omega))$ if and only if

$f\in \mathrm{k}\mathrm{e}\mathrm{r}(\sqrt{w}^{-}1P^{e}(w, D_{w})\sqrt{w},$ $\mathcal{O}(\Omega))$ .

Then, by (4.1), we have

$\sqrt{w}^{-1}P^{e}(w, D_{w})\sqrt{w}=8(\tanh\kappa)\sqrt{w}-1\partial w\sqrt{w}\cdot w^{2}(w-1)(w-\coth 2\kappa)H(w, D_{w})$ .

Finally, since $\sqrt{w}^{-1}\cdot\partial_{w}\cdot\sqrt{w}$ is bijective on $\mathcal{O}(\Omega)$ , the kernel of the operator is given
by the kernel of $H(w, D_{w})$ . $\square$
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Remark 21. The operator

$w(1-w)H(w, D_{w})$ : $\mathcal{O}(\Omega)arrow \mathcal{O}(\Omega)$ .

has index zero.

The exponents of this operator are, as is in Section 3.1, given by

$\{\frac{\nu}{2}-\frac{3}{4}00$ $\frac{\nu}{2}+\frac{1}{4}01$
$- \frac{\nu}{2}+\frac{1}{4}\cot 0\mathrm{h}^{2}\kappa$

$- \frac{\nu}{2}+\frac{3}{4}\infty\frac{3}{2}$ $w\}$ .

Then if $(2\nu+1)/4\not\in \mathrm{Z}_{+}$ , the eigenvalue problem remains equivalent to $\eta_{21}=0$ . In
particular, this is the case for $(2\nu-1)/4\in \mathrm{Z}_{+}$ , which was excluded in Section 4.2.

4.4. Monodromy representation. In this subsection, we assume that $-( \nu+\frac{3}{2})\not\in$

$\mathrm{Z}_{+}$ . Since all the eigenvalues $\nu$ satisfy $\nu>0$ , as seen in Section 4. $\mathrm{A}$ , this assumption
is harmless. We choose a base point $w_{0}$ such that $0<w_{0}<1$ and fix a basis of
$\mathrm{k}\mathrm{e}\mathrm{r}(P, \mathcal{O}_{w0})\cong \mathrm{c}^{3}$ . Then the monodromy defines the representation of the fundamental
group

$\pi_{1}(\mathrm{C}\backslash \{0,1, \coth^{2}\kappa\})arrow GL(3, \mathrm{c})$ .

Now, we consider the subgroup $F_{2}=\pi_{1}(\Omega\backslash \{0,1\})$ , which is isomorphic to the free
group of two generators. Restricting the above representation to the subgroup $F_{2}$ , we
have a representation,

$\rho:F_{2}arrow GL(3, \mathrm{c})$ ,

which is called a restricted monodromy representation.

Proposition 22. The set of invariants of the restricted monodromy $repre\mathit{8}entati_{on\rho}$

is isomorphic to the solutions

$\mathrm{k}\mathrm{e}\mathrm{r}(P:\mathcal{O}(\Omega)arrow O(\Omega))arrow(\mathrm{C}^{3})^{\beta}\sim(p_{2})$ .

We take two loops $\gamma_{0},$ $\gamma_{1}\in\pi_{1}(\Omega\backslash \{0,1\})$ around $0,1$ , respectively, and consider
the corresponding local monodromy matrices $\rho(\gamma_{0}),$ $\rho(\gamma_{1})\in GL(3, \mathrm{c})$ . Then the set of
invariants is equivalent to the common kernel of these two matrices:

$(\mathrm{C}^{\mathrm{s}})^{\rho(}F_{2})=\{f\in \mathrm{C}^{3}|\rho(\gamma 0)f=f, \rho(\gamma_{1})f=f\}$ .

Example 23. For a non-generic parameter $\nu$ , we have the following properties for
local monodromy matrices:

(i) The case $(2\nu-1)/4\in \mathrm{Z}_{+}$ . The matrix $\rho(\gamma_{1})$ is semisimple with eigenvalues
1, 1 and $-1$ , while the matrix $\rho(\gamma_{0})$ has eigenvalues 1, 1 and $-1$ . Then the
dimension of the common kernel is $0,1$ , or 2.

(ii) The case $(2\nu+1)/4\in \mathrm{Z}_{+}$ . The matrix $\rho(\gamma_{0})$ has eigenvalues $1,$ $-1$ and $-1$ .
The eigenspace for the eigenvalue 1 is one-dimensional. The matrix $\rho(\gamma_{1})$ has
$eigenvalue\mathit{8}1,1$ and 1. The dimension of the common kernel is $0$ or 1.
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(iii) The case of odd functions with $(2\nu+1)/4\in \mathrm{Z}_{+}$ . We can define the restricted
monodromy representation for the operator appearing in Section 4.3:

$\rho^{o}$ : $F_{2}arrow GL(2, \mathrm{c})$ .

We have a relation similar to that appearing in Proposition 22,

$\mathrm{k}\mathrm{e}\mathrm{r}(H(w, D_{w}),$ $\mathcal{O}(\Omega))arrow(\mathrm{c}^{2}\sim)\rho^{o}(F_{2})=\{f\in \mathrm{C}^{2}|\rho^{o}(\gamma_{0})f=\rho O(\gamma_{1})f=f\}$ .

Both the matrices $\rho^{o}(\gamma 0)$ and $\rho^{o}(\gamma_{1})$ are unipotent (with eigenvalues 1, 1). The
dimension of the kernel is $0,1$ , or 2.

4. $\mathrm{A}$ . Positivity of eigenvalues. Assume equation (2.3) holds. (lllen for $u=(u_{-}, u_{+})$ ,

$\overline{u}_{-}\pi(S_{-})u-+\overline{u}_{+}\pi(S_{+})u_{+}=\mu\delta(|u_{+}|^{2}+|u_{-}|^{2}-\epsilon^{2}(\overline{u}+^{u_{-}}+\overline{u}_{-}u_{+})$.

The right-hand side of this expression is

$\mu\delta((1-\epsilon^{2})(|u+|2+|u-|2)+\epsilon^{2}|u++u-|^{2})$ .

On the other hand,

$\int\overline{u}_{-}\pi(S_{-})u_{-}+\overline{u}_{+}\pi(S_{+})u_{+}=\frac{1}{2}\int(|\partial_{x}u_{-}|^{2}+|xu_{+}|^{2})$ .

This proves the relations $\mu\delta>0$ and $\nu=\mu\delta\cosh\kappa>0$ .
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