Dynamical representations of substituted Sturmian sequences

Shin-ichi YASUTOMI (海富真一)

Suzuka National College of Technology

1 Introduction

We announce some theorems about Sturmian words in this report. The proofs and details will be published elsewhere. We need some notations. Let L be an alphabet, i.e., a non-empty finite set of letters. Now, we set $L = \{0, 1\}$. Let $W = \bigcup_{n=0}^{\infty} \{0, 1\}^n$, $W^* = \bigcup_{n=0}^{\infty} \{0, 1\}^n \cup \{0, 1\}^{\mathbb{N}}$. For $x, y \in [0, 1]$ we define $G(x, y), \hat{G}(x, y) \in W^*$ by

$$G(x,y) = G_0(x,y)G_1(x,y)...,$$

 $\hat{G}(x,y) = \hat{G}_0(x,y)\hat{G}_1(x,y)...,$

where $G_j(x,y) = \lfloor (j+1)x + y \rfloor - \lfloor jx + y \rfloor$, $\hat{G}_j(x,y) = \lceil (j+1)x + y \rceil - \lceil jx + y \rceil$ for each integer j and $\lfloor u \rfloor$ is an integral part of u and $\lceil u \rceil = -\lfloor -u \rfloor$ for each $u \in \mathbf{R}$. **Examples**

 $x = \frac{1}{3}$

$$G(x,0) = 001001... = (001)_{\infty}$$

 $x = \sqrt{2} - 1, y = \frac{1}{2}$

$$G(x,y) = 0101001010...$$

For $w \in L^{\mathbb{N}}$, we define Sub(w) by

$$Sub(w) = \{u \in W \mid u \text{ is a subword of } w\}.$$

A Sturmian word is defined to be a word $w \in L^{\mathbb{N}}$ satisfying

$$| | A |_1 - | B |_1 | < 1$$

for any $A, B \in Sub(w)$ with |A| = |B|, where for $u \in W$ |u| is a length of u and $|u|_1$ is a number of the occurrences of the letter 1 in u. In this lecture we consider only non periodic Sturmian word.

Theorem. (Morse and Hedlund [2]; Coven and Hedlund [3]) w is Sturmian if and only if w is equal to G(x, y) or $\hat{G}(x, y)$ for some $x, y \in [0, 1]$.

A transformation f on W^* is called substitution on W^* , if f satisfies following conditions:

- 1. $f(0), f(1) \in W$,
- 2. for any $a \in W$ and $b \in W^*$, f(ab)=f(a)f(b).

Example

Let f be a substitution on W^* defined by

$$f: \begin{cases} 0 \longrightarrow 01 \\ 1 \longrightarrow 010 \end{cases}.$$

Then,

$$f(00101) = f(0)f(0)f(1)f(0)f(1) = 010101001010.$$

Let α be a real number. Define right infinite word $\chi(S,\alpha) \in W^*$ for a set S in interval [0,1] and α by

$$\chi(S,\alpha) = \lambda(S,\alpha;0)\lambda(S,\alpha;1)\cdots,$$

where

$$\lambda(S, \alpha; n) = \begin{cases} 1 & \text{if } \langle n\alpha \rangle \in S, \\ 0 & \text{if } \langle n\alpha \rangle \notin S, \end{cases}$$

where $\langle x \rangle$ is a fractional part of x.

Example of $\chi(S, \alpha)$

We define a mod 1 semiclosed interval $[x,y)^{\sim}$ for $0 \leq x,y \leq 1$ by

$$[x,y)^{\sim} = \begin{cases} [x,y) & \text{if } 0 \le x \le y, \\ [0,y) \cup [x,1) & \text{if } 0 < y < x. \end{cases}$$

We can define a mod 1 semiclosed interval $(x, y]^{\sim}$ in the same manner as above. Our main result is as follows.

Theorem 1. Let S be a Sturmian sequence. Let F be a substitution with GCD(|F(0)|, |F(1)|) = 1. Then, there exist $x, y \in \mathbb{R}$ and integers m_1, \ldots, m_k and n_1, \ldots, n_k such that x is irrational and 0 < x < 1 and

$$\chi(I,x) = F(S),$$

where

$$I = \bigcup_{i=1}^{k} [\langle m_i x - y \rangle, \langle n_i x - y \rangle)^{\sim},$$
or
$$I = \bigcup_{i=1}^{k} (\langle m_i x - y \rangle, \langle n_i x - y \rangle)^{\sim}.$$

The converse is also true.

2 An algorithm on inhomogeneous Diophantine approximation

We introduce the following algorithm on inhomogeneous Diophantine approximation to prove main Theorem. Let us define functions t_0, t_1, t_2 on \mathbb{R}^2 by

$$t_0(x,y) = (\frac{x}{1+x}, \frac{y}{1+x}),$$

$$t_1(x,y) = (\frac{1}{2-x}, \frac{y}{2-x}),$$

$$t_2(x,y) = (1-x, 1-y).$$

Let us a domain X by

$$X = \{(x,y) | 0 \le x, y \le 1 \text{ and } y \ne mx + n \text{ for any integers } m, n\}.$$

We define domains S_i^0 (i = 0, ..., 5) by

We define transformation T_0 on X as follows:

$$T_0(x,y) = \begin{cases} t_0^{-1}(x,y) & \text{if } (x,y) \in S_0^0, \\ t_1^{-1}(x,y) & \text{if } (x,y) \in S_1^0, \\ t_2^{-1} \circ t_0^{-1}(x,y) & \text{if } (x,y) \in S_2^0, \\ t_2^{-1} \circ t_0^{-1} \circ t_2^{-1}(x,y) & \text{if } (x,y) \in S_3^0, \\ t_2^{-1} \circ t_1^{-1} \circ t_2^{-1}(x,y) & \text{if } (x,y) \in S_4^0, \\ t_0^{-1} \circ t_2^{-1}(x,y) & \text{if } (x,y) \in S_5^0. \end{cases}$$

We define domains S_i^1 (i = 0, ..., 5) as follows:

Figure of X

We define transformation T_1 on X as follows:

$$T_{1}(x,y) = \begin{cases} t_{1}^{-1}(x,y) & \text{if } (x,y) \in S_{0}^{1}, \\ t_{0}^{-1}(x,y) & \text{if } (x,y) \in S_{1}^{1}, \\ t_{2}^{-1} \circ t_{1}^{-1}(x,y) & \text{if } (x,y) \in S_{2}^{1}, \\ t_{2}^{-1} \circ t_{1}^{-1} \circ t_{2}^{-1}(x,y) & \text{if } (x,y) \in S_{3}^{1}, \\ t_{2}^{-1} \circ t_{0}^{-1} \circ t_{2}^{-1}(x,y) & \text{if } (x,y) \in S_{4}^{1}, \\ t_{1}^{-1} \circ t_{2}^{-1}(x,y) & \text{if } (x,y) \in S_{5}^{1}. \end{cases}$$

For $(x, y) \in X$ we consider the following binary tree:

We associate $u = \{i_1, i_2, \dots\} \in \{0, 1\}^{\mathbb{N}}$ with a path in the tree like the following example:

For $u = \{i_1, i_2, \dots\} \in \{0, 1\}^{\mathbb{N}}$ and a positive integer n, we define $g(u, n, (x, y)) \in X$ by

$$g(u, n, (x, y)) = T_{i_n} \cdots T_{i_1}(x, y).$$

We define a sequence $S(u,(x,y)) = \{j_n\}_{n=1}^{\infty} \in \{0,1,2,3,4,5\}^{\mathbb{N}}$ which is called the name of (x,y) related to $u \in \{0,1\}^{\mathbb{N}}$ as follows: for $n=1,2,\ldots$

$$g(u, n-1, (x, y)) \in S_{j_n}^{i_n}.$$

Figures of $S_j^i \ (0 \le j \le 5, \ i \in \{0, 1\})$

 $u = \{i_1, i_2, \dots\} \in \{0, 1\}^{\mathbb{N}}$ is called good related to (x, y) if there exists infinitely many positive integers k such that $i_k = i_{k+1}$ and j_k and j_{k+1} satisfy one of following two conditions (1) and (2):

(1)
$$j_k = 1$$
 and $j_{k+1} \in \{0, 2\}$,

(2)
$$j_k = 4$$
 and $j_{k+1} \in \{3, 5\}$,

where $\{j_1, j_2, ...\}$ is the name of (x, y) related to u. We define substitutions s_0, s_1, ϵ on L by

$$s_0: \left\{ \begin{array}{ll} 0 \to 0 \\ 1 \to 01 \end{array} \right. \qquad s_1: \left\{ \begin{array}{ll} 0 \to 01 \\ 1 \to 1 \end{array} \right. \qquad \epsilon: \left\{ \begin{array}{ll} 0 \to 1 \\ 1 \to 0 \end{array} \right.$$

For $(i,k) \in \{0,1\} \times \{0,1,2,3,4,5\}$, we define substitutions $\phi(i,k)$ as follows:

$$\phi(i,j) = \begin{cases} s_0 & \text{if } (i,j) = (0,0), \\ s_1 & \text{if } (i,j) = (0,1), \\ s_0e & \text{if } (i,j) = (0,2), \\ es_0e & \text{if } (i,j) = (0,3), \\ es_1e & \text{if } (i,j) = (0,4), \\ es_0 & \text{if } (i,j) = (0,5), \\ s_1 & \text{if } (i,j) = (1,0), \\ s_0 & \text{if } (i,j) = (1,1), \\ s_1e & \text{if } (i,j) = (1,2), \\ es_1e & \text{if } (i,j) = (1,3), \\ es_0e & \text{if } (i,j) = (1,4), \\ es_1 & \text{if } (i,j) = (1,5). \end{cases}$$

By the theory [1] we have the following important Lemma:

Lemma

$$\phi(i_1,j_1)\cdots\phi(i_n,j_n)G(g(u,n,(x,y)))=G(x,y).$$

For substitutions f and g on W^* we say that f is equivalent to f, if for any $w \in W |f(w)| = |g(w)|$.

We have the following Theorem 2.

Theorem 2 Let $(x,y) \in X$. Let $u = \{i_1, i_2, ...\} \in \{0,1\}^{\mathbb{N}}$ be a good path in the previous tree related to (x,y). Let I be a finite union of intervals $[\langle m_1\alpha - \beta \rangle, \langle m_2\alpha - \beta \rangle)^{\sim}$ $(m_1, m_2 \in \mathbb{Z})$. Then, there exist a integer $k \geq 0$ and a substitution ψ on W^* which is equivalent to $\phi(i_1, j_1) \cdots \phi(i_k, j_k)$ such that

$$\chi(I, x) = \psi(G(g(u, k, (x, y)))),$$

where $\{j_1, j_2, ...\}$ is the name of (x, y) related to u. The converse also holds.

From Theorem 2 and considering homogeneous cases (y = mx + n), we get Theorem 1.

References

- [1] S.Ito and S.Yasutomi, On continued fraction, substitution and characteristic sequences [nx + y] [(n-1)x + y], Japan, J. Math.16(1990),287-306.
- [2] M.Morse and G.A.Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer.J.Math 62(1940), 1-42
- [3] E.M.Coven and G.A.Hedlund, Sequences with minimal block growth. Math. systems theory 7(1973),138-153

Present Address:

GENERAL EDUCATION, SUZUKA NATIONAL COLLEGE OF TECHNOLOGY, SHIROKO, SUZUKA, MIE, 510-0294, JAPAN E-mail:yasutomi@genl.suzuka-ct.ac.jp