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On the Rumin complex

- Akahori, Takao (FRYE PER)

The moduli of complex structures seems to be related to the hyperbolicity.
Here, we treat the moduli of isolated singularities. Let (V,0) be a normal
isolated singularity in a complex euclidean space C. Consider the link M,
defined by the intersection of (V, 0) and the real hypersphere S?¥~1(0), cen-
tered at the origin o with the radius of €. Over this link M, a CR structure
is naturally induced from V. Concerning the moduli problem of isolated
singularities, Kuranishi initiated the deformation theory of CR structures.
Of course, the problem of constructing a versal family of deformations of
isolated singularities is done by several authors, almost 30 years ago(for ex-
ample, Grauert,Douady,etc..),with more direct method(rather, in algebraic
geometry). However, our approach(in CR geometry) has one geometric as-
pect. In order to introduce ”several new methods in topology (Symplectic
structure, Seiberg-Witten invariants,etc..)” to the moduli of isolated sin-
gularities, our method is definitely more accessible(we are directly treating
links, contact structures and CR structures).

The purpose of this survey is to introduce the brief sketch of the Ru-
min’s method in the deformation theory of CR structures and establish a
versal family in the 5-dimensional case(the precise proof will be published
elsewhere). Obviously, the moduli of CR structures should be related to
”Seiberg-Witten equation in CR strucures”. In the future, I wolud like to
discuss the relation of our setting and ”Seiberg-Witten equatin in CR struc-
tures”. But, at the present time, our project in this direction is in process.
Here, we only sketch our joint work([A-G-L[1]],|A-G-L[2]]), briefly. Anyway,
we start with the deformation theory of CR structures.

1 Standard Deformation Complex

Let (M,°T") be a CR structure. This means that M is a C* differen-
tiable manifold with real odd dimension and °7” is a sub-vector bundle of
the complexfied tangent bundle C' ® T'M satisfying:



CTM
T” OT, = O dZmCW = (1)
{I‘(M,OT”), (M, OT”)] - F(M,OT”), (2)

where 07" = 07"
Now we assume that there is a global real vector field ¢ satisfying; for

every point p of M,
& ¢ °T) +°T,. (3)

We set

=0T+ C®¢, (4)

where C ® & means the line bundle generated by £. For brevity, we use
the notation F for this line bundle. By using this 7", we set a C'° vector

bundle decomposition

CRTM =T +°T". (5)

Following [A1], we introduce a first order differential operator Oz from
(M, T") to (M, T' ® (°T")*)(T'(M,T")(resp. T(M,T' ® (°T")*)) means
the space of C™ sections of T"(resp. T" ® (°T"")*), by: for u € T'(M,T"),
X €°T)', p is a point of M,

ET/’U,(X) = [X,U]Tr, (6)

where [X, u]7 means the projection of [X,u] to T" according to (5), and X
means a C°° extension of X to M( d7vu(X) doesn’t depend on the exten-
sion). Like the case for scalar valued differential forms, we can introduce

B(T,) operators, p = 1,2, - - ( see [Al]) and we have a differential complex

5
0 - T(M,T") %5 By T(M,T' ® CT")*) 5 T(M,T' ® A2(°T")*) -
- F(M, TI ® /\p(OT/I)*) _’Z) F(M,TI ® /\P-i-l(OTIl)*) e (7)

th a(P+l)a(p)
This complex is called the standard deformation complex. We, briefly recall
the deformation theory of CR structures. Let (M,%T") be a CR structure.
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Definition 1 Let E be a complex subbundle of the complezfied tangent bun-
dle C @ TM satisfying:
ENE=0.

We call this pair (M, E) an almost CR structure.

Almost CR structures satisfying a certain condition can be parametrized
by elements of I'(M,T' ® (°T"")*) as follows.

Definition 2 An almost CR structure (M, E) is at finite distance from
(M,°T") if and only if the composition map of the inclusion map of E into
C ®TM, and the projection map of C @ TM to °T" according to (5), is

isomorphic.
Then we have

Theorem 1 (Proposition 1.1 in [A]). The almost CR structure, which is at
finite distance from (M,°T"), corresponds to an element ¢ in T'(M, Hom(°T",T"))
= (M, T" ® °T")*), bijectively. The correspondence is that; for ¢ in
(M, T"® (°T")*),

T ={X : X'=X+¢(X), X €°T" }.

And the following theorem explains when this almost CR structure (M, ¢T7")

is really a CR structure.

Theorem 2 (Theorem 2.1 1n [A]). An almost CR structure (M, *T"), which
is at finite distance from (M,°T") is a CR structure(this means that our
(M,®T") satisfies the integrability condition), if and only if our ¢ is a so-

lution of the non linear partial differential equations

P(¢) = B+ Ro(e) + Rs(e)
= Q.

Namely the linear term of P(¢) = 0 is 5(7},)q5. And the real difficult
problem, in soloving this non-linear partial differential equation, is that:
the non-linear term Ry(¢) includes the first order derivatives of ¢, and our
Or+ cpmplex is subelliptic(the Neumann operator gains only 1). So, in CR
case, the mehod in complex manifolds is not available. In order to overcome
this difficulty, we introduce E; structure in [A1l]. Henceforth, we assume

strongly convexity.



2 Ej structure

We recall several results obtained in [A1]. Let (M,°T") be a strongly
speudo convex CR structure(this is an abstract of my talk, so we omit the

notion of strongly pseudo convex CR structures). We set
F- = {'U, U € P(M OT' ® /\j (OT”)*), (ggr)u)F®Aj+1(oTu)* = 0} (8)

Here (8T, u) peas+1(ory~ means the projection of (9 Juto F A (OT")*
according to the C* vector bundle decomoposition

T/ ® /\j+1 (OT//)* — OT/ ® /\j+1 (OT”)* + F ® /\j+1(0Tu)*
induced by (4) and (5). In the definition of I';, the ﬁrst order derivative of u
appears. But, actually as u takes its value in °T", (aT, u) peaitiorys = 0
is an algebraic condition. We see this more precisely. We consider a bundle
map:
OT/ ® /\j(OT“)* S F ®/\j+1(OTII)*

defined by; for w in °T" ® AT (OT")*,

7(9)

(6'121 u)F@/\j-l-l(OT//)* .
Then, we have the following theorems.

Theorem 3 (Proposition 2.1 in [A1]). There is a sub-vector bundle E; of
OT' QNI (OT")*, satisfying T (M, E;) =T';. And especially, our CR structure

is strongly pseudo convez, Ey = 0.
Theorem 4 (Theorem 2.2 in [A1]).

8(”)1‘ C Tjt1,
that is to say, (Tj,0;) , where

8 — 8(]) |I‘j
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is a sub-differential complex of the standard deformation complez of (I'(M,T'®

N CT")), B5)).

So we have a sub-differential complex of the standard deformation com-
plex;

0= 0 = (M, Er) B T(M, Ey) B T(M, Bs). 9)

And for this complex, we have
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Theorem 5 (Theorem 2.4 in [A1]). This subcomplez (I'(M, E;),0;) re-
covers the cohomology group of the standard deformation complex. More
precisely, the inclusion map induces the isomorphim map

Ker 5j N Ker,_gg,?,)

Im ;1 55,2',_1)

ifj 22,
and if j =1, the inclusion map induces the surjecive map

(1)
_ K ,
Ker 8, — Ker O, .

m 8T:

Furthermore for this complex,

Theorem 6 (Theorem 4.1 in [A1]) If dimpM = 2n —1 > 7, then at E,,
there is a sub- elliptic estimate. So this estimate insures the Kodaira-Hodge
decomposition theorem over I'(M, E5). That is to say, we put the L? norm
on I'(M, E;) and complete these spaces. We denote T'o(M, E;) for these
completed hilbert spaces. Let H={u;u € F(M,Eg),_a-:u = 0,0;u = 0},
Then, there is a Neumann type operator N from I'y(M, Es) to itself and the
harmonic operator H from I's(M, Es) to H satisfying;

(1) NH=HN=0,

(2) for we Ty(M,Esy), u= Hu+ 0,0,Nu + 0,0, Nu.

(3) INu|| < c|lul|”, for w € T'a(M,E;), where c is a positive constant,
independent of u.

For the norm || ||”, see [Al].

3 The new complex inspired by Rumin

Let
Ho={v:v e(M,T),0rv)rgor) =0} (10)

Instead of (7), we introduce the following differential complex.

0 —— Hy = (M, E)) —2 T(M, Ey). (11)

By the definition of Hy, Ou is in T'(M,°T' ® (°T")*) (because F @ (°T")*)
term vanishes). And .é(q}l)B—T:u = 0 is obvious. So, (9) makes sense as a
differential complex. We have to explain what Hyis like. First, we note
that Hy does not come from the space of C' sections of a vector bundle
over M. Hy is a graph of the following first order differential operator. For



u- € in ['(M, F), where u is a C* function on M, we set an element 1, of
I'(M,°T") by:

(Or (Yu +u - &) FreeTr)* =0, (12)

that is to say,

X, 9ulp + (Xu)é +ulX,€p =0, for X € (M,°T"). (13)

This is possible. Since our CR structure is strongly pseudo convex, WYy, 1S
uniquely determined. Hence we have a first order differetial operator from
(M, F) to Hy defined by; for u-§ in T'(M, F), ¢ +u - & in Ho, and so we
have a differeital complex.

(M, F)
d
00—  Hy =T T(M,E) —2 I(M,E,).

We note that 1, includes a first derivative of u. We see this more explicitly.

By using a moving frame {e},e3} of °T" |y, , satisfying:

Y [ez ) ]]F - 61]6) (14)
where [e},€}]p means the F' part of [e 2,e}] according to (2.4), we write
down 1,. Set

=P1e) + P35 8;. (15)
Then,
e, e} + ¥38]r + (efu)é + uled, Elr =0, (16)
that is to say,
VEIRRE 4 (€1)€ + uleg, €lr =0, i =1,2. (17)

So

= \/—1e}u + 0-th order term of u. (18)
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We set a second order linear differential operator D from I'(M, F) to
I'(M, Ey), by: for u- £, where u is a C'*° function,

D(u-§) = 0 (p(u- ). (19)

We would like to explain about this second order differential operator
and Rumin’s one. For this, we set a C'* vector bundle decomposition over
complex valued differential k¥ forms(here we write this space by A*(C ®
TM)*) as follows.

Ak(C®TM)* — Z HA/\T(OTI)* /\/\s(OTlI)*
r+s=k—1,r,52>0
+ Y OANCT) ANCTY). (20)
r+s=k,r,s>0

Here 6 is defined by:
(&) =1,

9(X)=0, X €T,
d9(¢,X) =0 X €°T"

(if necessary, we change ¢). By using this decomposition, we introduce; for
i>1,
Fr2t={u:ueT(M, § AAN2CT)ANCT)Y),
(dU)/\n—l(OT/)*/\/\i+1(OT//)*) = 0} (21)
Here (d’U,)/\n—l(OTI)*/\/\i-{-l(OTH)*) means the /\n_l(OTl)* A NI (OT”)*) part
of du according to the above decomposition. For i = 0, we set

T(M, A" H(T")*). (22)

Then we have a complex version of the Rumin complex

"

D(M, A" Y(T")*) B T(M, F"=2Y) & T(M, F"=22).

We note that: if the canonical line bundle is trivial, this is nothing but our
new complex.

Our main result is as follows.

Theorem 7 For this complez, a subelliptic estimate on T'(M, F"~21) holds

(see [A-G-L[2]]).

And so, this assures that:
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Theorem 8 The following family is parametrized by a finite dimensional

analytic space.

P(¢) =0,
B¢ =0, for ¢ € (M, Ey)

Here 5;«, means the adjoint operator in the our setting(not the standard
one)(see [A-G-L[2]]). And this family is parametrized by a complex analytic

space locally at o, complez analytically and versal in the sence of Kuranishi.

We note that the linear term of these non-linear equations is

014 =0,
B =0, for ¢ € T(M, Ey).

This is the dual of the Dirac operator in our setting.
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