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The moduli of complex structures seems to be related to the hyperbolicity.
Here, we treat the moduli of isolated singularities. Let (V, $\mathit{0}$) be a normal
isolated singularity in a complex euclidean space $C^{N}$ . Consider the link $M$ ,
defined by the intersection of (V, $\mathit{0}$) and the real hypersphere $S_{\epsilon}^{2N-1}(\mathit{0})$ , cen-
tered at the origin $\mathit{0}$ with the radius of $\epsilon$ . Over this link $M$ , a CR structure
is naturally induced from $V$ . Concerning the moduli problem of isolated
singularities, Kuranishi initiated the deformation theory of CR structures.
Of course, the problem of constructing a versal family of deformations of
isolated singularities is done by several authors, almost 30 years ago( $\mathrm{f}_{\mathrm{o}\mathrm{r}}$ ex-
ample, Grauert,Douady, $\mathrm{e}\mathrm{t}\mathrm{c}..$ ), $\mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}$ more direct $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}(\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}$, in algebraic
geometry). However, our approach( $\mathrm{i}\mathrm{n}$ CR geometry) has one geometric as-
pect. In order to introduce ”several new methods in topology (Symplectic

structure, Seiberg-Witten invariants,etc..)” to the moduli of isolated sin-
gularities, our method is definitely more accessible( $\mathrm{w}\mathrm{e}$ are directly treating
links, contact structures and CR structures).

The purpose of this survey is to introduce the brief sketch of the Ru-
$\min^{)}\mathrm{s}$ method in the deformation theory of CR structures and establish a
versal family in the 5-dimensional case( $\mathrm{t}\mathrm{h}\mathrm{e}$ precise proof will be published

elsewhere). Obviously, the moduli of CR structures should be related to

”Seiberg-Witten equation in CR strucures” In the future, I wolud like to

discuss the relation of our setting $\mathrm{a}\mathrm{n}\mathrm{d}$

)’
$\mathrm{S}\mathrm{e}\mathrm{i}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{g}$ -Witten equatin in CR struc-

tures” But, at the present time, our project in this direction is in process.
Here, we only sketch our joint work $([\mathrm{A}-\mathrm{G}- \mathrm{L}[1]],[\mathrm{A}_{-\mathrm{G}\mathrm{L}}-[2]])$ , briefly. Anyway,
we start with the deformation theory of CR structures.

1 Standard Deformation Complex

Let $(M, 0T”)$ be a CR structure. This means that $M$ is a $C^{\infty}$ differen-

tiable manifold with real odd dimension and $0T’$ is a sub-vector bundle of

the complexfied tangent bundle $C\otimes TM$ satisfying:
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$0_{T’’}\cap 0_{T’}=0,$ $dimC \frac{C\otimes TM}{0T’+^{0}T’},=1$

$[\Gamma(M, 0_{T}//), \mathrm{r}(M, 0\tau’’)]\subset\Gamma(M, 0Tl/)$ ,

(1)

(2)

where $0T’=\overline{0T’’}$ .

Now we assume that there is a global real vector field $\xi$ satisfying; for

every point $p$ of $M$ ,

$\xi_{p}\not\in 0\tau//+0T\prime pp$ . (3)

We set

$T’:=^{0}\tau’+C\otimes\xi$ , (4)

where $C\otimes\xi$ means the line bundle generated by $\xi$ . For brevity, we use

the notation $F$ for this line bundle. By using this $T’$ , we set a $C^{\infty}$ vector

bundle decomposition

$C\otimes TM=\tau/+T0//$ . (5)

Following [A1], we introduce a first order differential operator $\overline{\partial}_{T’}$ from
$\Gamma(M, T’)$ to $\Gamma(M, T^{l}\otimes(^{0}T’’)*)(\mathrm{r}(M, T^{;})(\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{p}. \Gamma(M, T’\otimes(^{0}T^{\prime l})*))$ means

the space of $C^{\infty}$ sections of $\tau’$ (resp. $T’\otimes(^{0}T^{\prime/})*$ ), by: for $u\in\Gamma(M, T’)$ ,

$X\in 0T_{\mathrm{P}’}’,$ $p$ is a point of $M$ ,

$\overline{\partial}_{T};u(X)=[X, u]_{T^{l}}$ , (6)

where $[X, u]_{T’}$ means the projection of $[\tilde{X}, u]$ to $T’$ according to (5), and $\tilde{X}$

means a $C^{\infty}$ extension of $X$ to $M(\overline{\partial}_{\tau^{lu}}(X)$ doesn’t depend on the exten-

sion). Like the case for scalar valued differential forms, we can introduce
$\overline{\partial}_{T}^{(p)}$, operators, $p=1,2,$ $\cdots$ (see [A1]) and we have a differential complex

$0arrow\Gamma(M, \tau’)^{\overline{\partial}\prime}arrow^{T}\Gamma(M, \tau’\otimes(^{0}\tau\prime\prime)^{*},)^{\overline{\partial}_{\tau’}^{(1}}\overline{\partial}_{T}^{(}p)arrow)\Gamma(M, T/\otimes\wedge(20\tau/l)*)arrow$

$arrow\Gamma(M, T’\otimes\wedge p(_{\backslash }^{0\prime}T’)^{*})arrow\Gamma(M, T/\otimes\wedge p+1(0\tau\prime\prime)*)arrow\cdots$ (7)

with $\overline{\partial}_{T}(p,+1)(p\overline{\partial}_{\tau},)=0$ .

This complex is called the standard deformation complex. We, briefly recall

the deformation theory of CR structures. Let $(M, 0T”)$ be a CR structure.
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Definition 1 Let $E$ be a complex subbundle of the complexfied tangent bun-
dle $C\otimes TM$ satisfying:

$E\cap\overline{E}=0$ .

We call this pair $(M, E)$ an almost $CR$ structure.

Almost CR structures satisfying a certain condition can be parametrized
by elements of $\Gamma(M, T’\otimes(^{0}T’’)*)$ as follows.

Definition 2 An almost $CR$ structure $(M, E)$ is at finite distance from
$(M, 0T^{l\prime})$ if and only if the composition map of the inclusion map of $E$ into
$C\otimes TM$ , and the projection map of $C\otimes TM$ to $0T”$ according to (5), $is$

isomorphic.

Then we have

Theorem 1 (Proposition 1.1 in $[A]$). The almost $CR$ structure, which is at
finite distance from $(M, 0T”)$ , corresponds to an element $\phi$ in $\Gamma(M, Hom(0T’l, T’))$

$=\Gamma(M, T^{l}\otimes(^{0}T’’)*)$ , bijectively. The correspondence is that; for $\phi$ in
$\Gamma(M, T^{l_{\otimes}}(0\tau\prime\prime)^{*})$ ,

$\emptyset\tau’’=\{X’ : X’=X+\phi(X), x\in^{0_{T’}\prime} \}$ .

And the following theorem explains when this almost CR structure $(M, \emptyset T’’)$

is really a CR structure.

Theorem 2 (Theorem 2.1 in [A]). An almost $CR$ structure $(M, \emptyset T^{ll})$ , which
is at finite distance from $(M, 0\tau/;)$ is a $CRstruCture(this$ means that our
$(M, \emptyset T’’)$ satisfies the integrability condition), if and only if our $\phi$ is a so-
lution of the non linear partial differential equations

$P(\emptyset)$ $=$
$\overline{\partial}_{\tau}^{(1)},\emptyset+R2(\phi)+R_{3}(\emptyset)$

$=$ $0$ .

Namely the linear term of $P(\emptyset)=0$ is $\overline{\partial}_{T}^{(1)},\phi$ . And the real difficult
problem, in soloving this non-linear partial differential equation, is that:
the non-linear term $R_{2}(\phi)$ includes the first order derivatives of $\phi$ , and our
$\overline{\partial}_{T’}$ cpmplex is subelliptic(the Neumann operator gains only 1). So, in CR
case, the mehod in complex manifolds is not available. In order to overcome
this difficulty, we introduce $E_{j}$ structure in [A1]. Henceforth, we assume
strongly convexity.
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2 $E_{j}$ structure
We recall several results obtained in [A1]. Let $(M, 0T^{\prime/})$ be a strongly

speudo convex CR structure($\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{S}$ is an abstract of my talk, so we omit the

notion of strongly pseudo convex CR structures). We set

$\Gamma_{j}=\{u:u\in \mathrm{r}(M, 0\tau’\otimes\wedge j(0_{T’’)^{*})}, (\overline{\partial}^{(}\tau j,)_{u)_{F\otimes\wedge}j+1(^{0}T^{lJ})*}=0\}$ (8)

Here $(\overline{\partial}_{T}^{(j)},u)F\otimes\wedge^{j+}1(0\tau l’)^{*}$ means the projection of $\overline{\partial}_{T}^{(j)},u$ to $F\otimes\wedge^{j}(^{0}\tau’’)^{*}$

according to the $C^{\infty}$ vector bundle decomoposition

$T’\otimes\wedge j+1(^{0}T’’)^{*}=T’0\otimes\wedge j+1(0_{T}/l)^{*}+F\otimes\wedge^{j+}(^{0}1\tau’’)^{*}$

induced by (4) and (5). In the definition of $\Gamma_{j}$ , the first order derivative of $u$

appears. But, actually as $u$ takes its value in $0T’,$ $(\overline{\partial}_{T}^{(j)},u)F\otimes\wedge^{j}+1(0\tau\prime\prime)^{*}=0$

is an algebraic condition. We see this more precisely. We consider a bundle

map:

$0_{T’\wedge(^{0}T^{l})}\otimes j’*arrow F\otimes\wedge^{j+1}(0T’’)^{*}$

defined by; for $u$ in $0T’\otimes\wedge^{j}(^{0}\tau’’)^{*}$ ,

$(\overline{\partial}_{T}^{(j)},u)_{F}\otimes\wedge^{j}+1(^{0}\tau\prime\prime)*$ .

Then, we have the following theorems.

Theorem 3 (Proposition 2.1 in $[\mathrm{A}l]$). There is a sub-vector bundle $E_{j}$ of
$0T’\otimes\wedge^{j}(^{0*}\tau^{l/})$ , satisfying $\Gamma(M, E_{j})=\Gamma_{j}$ . And especially, our $CR$ structure

is strongly pseudo convex, $E_{0}=0$ .

Theorem 4 (Theorem 2.2 in $[\mathrm{A}l]$).

$\overline{\partial}_{T}^{(j)},\Gamma_{j}\subset\Gamma_{j+1}$ ,

that is to say, $(\Gamma_{j}, \overline{\partial}_{j})$ , where

$\overline{\partial}_{j}=\overline{\partial}_{T}^{(j)},|_{\Gamma_{j}}$

is a $sub-\acute{d}ifferential$ complex of the standard deformation complex of $(\Gamma(M,$ $T’\otimes$

$\wedge^{j}(0\tau’’)*),$
$\overline{\partial}_{T}^{(},)j)$ .

So we have a sub-differential complex of the standard deformation com-
plex;

$0arrow 0arrow\Gamma(M, E_{1})^{\underline{\overline{\partial}}}\mathrm{f}\Gamma(M, E_{2})\underline{\overline{\partial}?},$
$\mathrm{r}(M, E_{3})$ . (9)

And for this complex, we have
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Theorem 5 (Theorem 2.4 in $[Al]$). This subcomplex $(\Gamma(M, E_{j}),\overline{\partial}j)$ re-
covers the cohomology group of the standard deformation complex. More
precisely, the inclusion map induces the isomorphim map

$\frac{Ker\overline{\partial}_{j}}{Im\overline{\partial}_{j-1}}\simeq\frac{Ker\overline{\partial}_{T}\prime(j)}{Im\overline{\partial}_{T}^{(j1)}-}$

,
if $j\geq 2$ ,

and if $j=1$ , the inclusion map induces the surjecive map

$Ker \overline{\partial}_{1}arrow\frac{Ker\overline{\partial}_{T}^{(1)}\prime}{Im\overline{\partial}_{T}},arrow 0$ .

Furthermore for this complex,

Theorem 6 (Theorem 4.1 in $[Al]$) If $dim_{R}M=2n-1\geq 7$ , then at $E_{2}$ ,
there is a sub- elliptic estimate. So this estimate insures the Kodaira-Hodge
decomposition theorem over $\Gamma(M, E_{2})$ . That is to say, we put the $L^{2}$ norm
on $\Gamma(M, E_{i})$ and complete these spaces. We denote $\Gamma_{2}(M, E_{i})$ for these
completed hilbert spaces. Let $\mathrm{H}=\{u;u\in\Gamma(M, E_{2}),\overline{\partial}_{1}^{*}u=0, \overline{\partial}_{2}u=0\}$ .
Then, there is a Neumann type operator $N$ from $\Gamma_{2}(M, E_{2})$ to itself and the
harmonic operator $H$ from $\Gamma_{2}(M, E_{2})$ to $\mathrm{H}$ satisfying;

(1) $NH=HN=\mathit{0}$,

(2) for $u\in\Gamma_{2}(M, E_{2}),$ $u=Hu+\overline{\partial}_{2}^{*}\overline{\partial}_{2}Nu+\overline{\partial}_{1}\overline{\partial}_{1}^{*}Nu$.

(3) $||Nu||\leq c||u||’’$ , for $u\in\Gamma_{2}(M, E_{2})f$ where $c$ is a positive constant,
independent of $u$ .

For the norm $||||’’$ , see [A1].

3 The new complex inspired by Rumin
Let

$H_{0}=\{v:v\in\Gamma(M, T’), (\overline{\partial}\tau\prime v)F\otimes(^{\mathit{0}}\tau\prime l)^{*}=0\}$ . (10)

Instead of (7), we introduce the following differential complex.

$0arrow H_{0}-\overline{\partial}_{T’}\Gamma(M, E_{1})-^{\overline{\partial}_{1}}\Gamma(M, E_{2})$ . (11)

By the definition of $H_{0},$ $\overline{\partial}_{T}\prime u$ is in $\Gamma(M, 0T’\otimes(^{0}\tau’’)^{\star})$ (because $F\otimes(^{0}T’’)^{*}$ )
term vanishes). And $\overline{\partial}_{\tau’ T’}^{(1)}\overline{\partial}u=0$ is obvious. So, (9) makes sense as a
differential complex. We have to explain what $H_{0}\mathrm{i}\mathrm{s}$ like. First, we note
that $H_{0}$ does not come from the space of $C^{\infty}$ sections of a vector bundle
over M. $H_{0}$ is a graph of the following first order differential operator. For
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$u\cdot\xi$ in $\Gamma(M, F)$ , where $u$ is a $C^{\infty}$ function on $M$ , we set an element $\psi_{u}$ of
$\Gamma(M, 0T’)$ by:

$(\overline{\partial}_{\tau\prime}(\psi u+u\cdot\xi))_{F\otimes}(^{0}T’’)*=0$ , (12)

that is to say,

$[X, \psi_{u}]F+(Xu)\xi+u[X, \xi]_{F}=0$ , for $X\in\Gamma(M, 0T’’)$ . (13)

This is possible. Since our CR structure is strongly pseudo convex, $\psi_{u}$ is

uniquely determined. Hence we have a first order differetial operator from

$\Gamma(M, F)$ to $H_{0}$ defined by; for $u\cdot\xi$ in $\Gamma(M, F),$ $\psi u+u\cdot\xi$ in $H_{0}$ , and so we

have a differeital complex.

$\Gamma(M, F)\rho\downarrow$

$0arrow$ $H_{0}$
$arrow\overline{\partial}_{T’}\Gamma(M, E_{1})\underline{\overline{\partial}_{1\backslash }},$ $\Gamma(M, E_{2})$ .

We note that $\psi_{u}$ includes a first derivative of $u$ . We see this more explicitly.

By using a moving frame $\{e_{1}^{\lambda}, e_{2}^{\lambda}\}$ of $0T”|_{U_{\lambda}}$ , satisfying:

$-\sqrt{-1}[e_{i}^{\lambda},\overline{e}^{\lambda}]_{F}j=\delta_{ij}\xi$, (14)

where $[e_{i}^{\lambda\lambda}, \overline{e}_{j}]_{F}$ means the $F$ part of $[e_{i}^{\lambda},\overline{e}_{j}^{\lambda}]$ according to (2.4), we write

down $\psi_{u}$ . Set

$\psi_{u}=\psi_{1}^{\lambda}\overline{e}1+\psi_{22}\lambda\lambda\overline{e}^{\lambda}$ . (15)

Then,

$[e_{i’\psi_{1}\overline{e}}^{\lambda\lambda\lambda}1+\psi^{\lambda}2\overline{e}2]\lambda+F(eiu\lambda)\xi+u[e_{i}^{\lambda}, \xi]_{F}=0$ , (16)

that is to say,

$\sqrt{-1}\psi_{i}^{\lambda}\xi+(e_{i}^{\lambda})\xi+u[e_{i}, \xi\lambda]F=0,$ $i=1,2$ . (17)

So

$\psi_{i}^{\lambda}$ $=\sqrt{-1}e_{i}^{\lambda}u+0$-th order term of $u$ . (18)
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We set a second order linear differential operator $D$ from $\Gamma(M, F)$ to
$\Gamma(M, E_{1})$ , by: for $u\cdot\xi$ , where $u$ is a $C^{\infty}$ function,

$D(u\cdot\xi)=\overline{\partial}_{T’}(\rho(u\cdot\xi))$ . (19)

We would like to explain about this second order differential operator
and Rumin’s one. For this, we set a $C^{\infty}$ vector bundle decomposition over
complex valued differential $k\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{s}(\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ we write this space by $\Lambda^{k}(C\otimes$

$TM)^{*})$ as follows.

$\Lambda^{k}(c\otimes^{\tau M})*$ $=$
$r+S=k-1,rs \geq\sum_{0 ,)}\theta\wedge\wedge r(^{0}\tau/)*\wedge\wedge s(^{0/\prime}T)^{*}$

$+ \sum_{rr+s=k,,S\geq 0}\theta\wedge\wedge^{r}(0T’)*\wedge\wedge^{s}(^{0}T^{l\prime})^{*}$
(20)

Here $\theta$ is defined by:

$\{$

$\theta(\xi)=1$ ,
$\theta(X)=0$ , $X\in^{0}T/$ ,
$d\theta(\xi, X)=0X\in^{0}T’$ .

(if necessary, we change $\xi$). By using this decomposition, we introduce; for
$i\geq 1$ ,

$F^{n-2,i}=\{u:u\in\Gamma(M, \theta \wedge\wedge^{n-2}(^{0}\tau’)^{*}\wedge\wedge^{i}(^{0}T’’)^{*})$ ,

$(du)_{\wedge^{n}(}-10T’)^{*}\wedge\wedge i+1(\mathrm{o}T’’)*)=0\}$ . (21)

Here $(du)_{\wedge^{n}(}-10T’)*\wedge\wedge i+1(^{\mathit{0}}T’’)*)$ means the $\wedge^{n-1}(^{0}\tau’)^{*}\wedge\wedge^{i+1}(^{0}\tau^{l}’)*)$ part
of $du$ according to the above decomposition. For $i=0$ , we set

$\Gamma(M, \wedge^{n-}1(\tau’)^{*})$ . (22)

Then we have a complex version of the Rumin complex

$\Gamma(M, \wedge^{n-1}(\tau’)^{*})arrow\Gamma(M, F^{n-2}’ 1)Darrow\Gamma(Md’’, F^{n-}2,2)$ .

We note that: if the canonical line bundle is trivial, this is nothing but our
new complex.

Our main result is as follows.

Theorem 7 For this complex, a subelliptic estimate on $\Gamma(M, F^{n-2},1)$ holds
(see $[\mathrm{A}- G-Ll^{\mathit{2}}\mathit{1}]j$ .

And so, this assures that:

123



Theorem 8 The following family is parametrized by a finite dimensional
analytic space.

$\{$

$P(\emptyset)=0$ ,
$\overline{\partial}_{\tau’\emptyset=}^{*}0$ , for $\phi\in \mathrm{r}(M, E_{1})$ .

Here $\overline{\partial}_{T}^{*}$ , means the adjoint operator in the our setting ($not$ the standard
$one)(see[A- G-Ll\mathit{2}]\mathit{1})$ . And this family is parametrized by a complex analytic
space locally at $\mathit{0}$ , complex analytically and versal in the sence of Kuranishi.

We note that the linear term of these non-linear equations is

$\{$

$\overline{\partial}_{1}\phi=0$ ,
$\overline{\partial}_{T}^{*},\phi=0$ , for $\phi\in\Gamma(M, E_{1})$ .

This is the dual of the Dirac operator in our setting.
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