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Abstfact. The object of the present paper is to derive new coefficient inequalities for umivalent
and starlike, and univalent and convex functions defined in the open unit disk $U$ . Our results are the
improvements of the previous theorems given by J. Clunie and F. R. Keogh ([1]) and by H. Silverman
([2]).

1 Introduction
Let $A$ denote the class of functions $f(z)$ of the form

$f(z)= \sum_{n=1}^{\infty}a_{n}z^{n}$ $(a_{1}=1)$

which are analytic in the open unit disk $U=2\{z\in \mathbb{C} : |z|<1\}$ . A function $f(z)\in A$ is
said to be univalent and starlike in $U$ if it satisfies

${\rm Re} \{\frac{zf’(z)}{f(z)}\}>0$

for all $z\in U$ . Also a function $f(z)\in A$ is said to be univalent and convex in $U$ if it
satisfies

${\rm Re} \{1+’\frac{\sim^{f’’(z)}}{f^{l}(z)}\}>0$

for all $z\in U$ .
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Clunie and Keogh ([1]) (also Silverman ([2])) have proved the following result: If
$f(z)\in A$ satisfies

$\sum_{n=2}^{\infty}n|a_{n}|\leq 1$ ,

then $f(z)$ is univalent and starlike in $U$ . If $f(\approx)\in A$ satisfies

$\sum_{n=2}^{\infty}n^{2}|a_{n}|\leq 1$ ,

then $f(\approx)$ is univalent and convex in $U$ .
In the present paper, we consider new coefficient inequalities for functions $f(z)$ to be
univalent and starlike, and univalent and convex in $U$ .

2 Coefficient inequalities

Our main result for the coefficient inequality of $f(z)$ to be univalent and starlike in $U$ is
contained in

Theorem 1. Let $f(z)$ be in the class $A$ and

$\max_{n\geq\iota}n|a_{n}|=p|a_{p}|$ .

If $f(z)$ satisfies
$\sum_{n=1,n\neq p}^{\infty}(|n-p|+p)|a_{n}|\leq p|a_{p}|$ ,

then $f(z)$ is $uni\prime valent$ and starlike in $U$ .

Proof. Applying the maximum principle of analytic functions, the following inequality
folds true on $|z|=1$

$|zf’(z)-pf( \approx)|-|pf(z)|=|\sum_{n=1}^{\infty}(n-p)a_{n}\approx^{n}|-p|\sum_{n=1}^{\infty}a_{n}z^{n}|$

$\leq\sum_{n=1}^{\infty}|n-p||a_{n}||z|^{n}-p(|c\iota_{p}||\approx|^{p}-\sum_{pn=1,n\neq}^{\infty}|a_{n}||\approx|^{n})$

$= \sum_{n=1,n\neq p}^{\infty}(|n-p|+p)|a_{n}|-p|a_{p}|\leq 0$ .

Therefore, it follows that
$| \frac{zf’(z)}{f(_{\sim}\mathit{7})}-p|<p$

for all $\sim 7\in U$ . This shows that $f(\approx)$ is univalent and starlike in $U$ .
$\square$

78



Remark 1. If
$\max_{n\geq 1}n|a_{n}|=|a_{1}|=1$ ,

then Theorem 1 becomes the result by Clunie and Keogh ([1]) (also by Silverman ([2]).

Corollary 1. If a function $f(z)\in A$ satisfies

$\max_{n\geq 1}n|a_{n}|=2|a_{2}|$

$an,d$

$\sum_{n=3}^{\infty}n|a_{n}|\leq 2|a_{2}|-3$ ,

then $f(z)$ is univalent and starlike in $U$ .

By means of the definitions between starlike functions and convex functions, it follows
that $f(z)\in A$ is univalent and convex in $U$ if and only if $zf^{l}(z)$ is univalent starlike in $U$ .
Therefore Theorem 1 gives us

Theorem 2. Let $f(\approx)$ be in the class $A$ and

$\max_{n\geq 1}n^{2}|a_{n}|=p^{2}|a_{p}|$ .

If $f(z)$ satisfies
$\sum_{n=1n\neq)p}^{\infty}n(|n-p|+p)|a_{n}|\leq p^{2}|a_{p}|$ ,

then $f(z\rangle$ $i,s$ univalent and convex in $U$ .

Remark 2. If
$\max_{n\geq 1}n^{2}|a_{n}|=|c\iota_{1}|=1$ ,

then Theorem 2 becomes the result by Silverman ([2]).

Corollary 2. If a function $f(z)\in A$ satisfies

$\max_{n\geq 1}n^{2}|a_{n}|=4|a_{2}|$

and

$\sum_{n=3}^{\infty}n|a_{n}|\leq 4|a_{2}|-3$ ,

then $f(z)$ is univalent and convex in $l^{\gamma}$ .
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