Alpha-spiral mappings of a Banach space into the complex plane

Dorina Răducanu

Abstract

Let E be a complex Banach space and let B be the unit ball in E, i.e. $B = \{x \in E : ||x|| < 1\}$. In this paper we define the class of α -spiral mappings of the unit ball B into the complex plane C.

1 Introduction

Let E^* be the dual space of E. For any $A \in E^*$ we consider $\chi(A) = \{x \in E : A(x) \not = 0\}$ and $\gamma(A) = E \setminus \chi(A)$. If $A \neq 0$ then $\chi(A)$ is dense in $X \in A$ and $X \in A$ and $X \in A$ is dense in $X \in A$. Where $X \in A$ is dense in $X \in A$ is dense in $X \in A$.

Let H(B) be the family of all functions $f: B \to \mathbb{C}$, f(0) = 0, which are holomorphic in B, i.e. have the Fréchet derivative f'(x) in each point $x \in B$. If $f \in H(B)$, then, in some neighbourhoods V of the origin, $f(x) = \sum_{m=1}^{\infty} P_{m,f}(x)$, where the series is uniformly convergent on V and $P_{m,f}: E \to \mathbb{C}$ are continuous and homogeneous polynomials of degree m.

Let $\alpha \in \mathbf{R}$ with $|\alpha| < \frac{\pi}{2}$ and let $z_0 \in \mathbf{C} \setminus \{0\}$. The condition

$$z(t) = z_0 e^{-(\cos \alpha + i \sin \alpha)t}, \quad t \in \mathbf{R}$$

defines an α -spiral curve in the complex plane.

Let D be a domain in \mathbb{C} , such that $0 \in D$. If for any $z_0 \in D \setminus \{0\}$ the arc of α -spiral curve between the points z_0 and the origin is contained in D, then D is an α -spiral domain with respect to the origin.

Let $U = \{z \in \mathbf{C} : |z| < 1\}$. We denote by $SP(\alpha)$ the family of all univalent functions $f: U \to \mathbf{C}$,

 $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are α -spiral in U, i.e. f(U) is an α -spiral domain with respect to the origin.

Theorem 1 ([3]) Let f be an holomorphic function from U into \mathbf{C} such that f(0) = 0, f'(0) = 1, $f(z) \neq 0$, for all $z \in U \setminus \{0\}$ and let $\alpha \in \mathbf{R}$ with $|\alpha| < \frac{\pi}{2}$. Then $f \in SP(\alpha)$ if and only if

$$\operatorname{Re}\left[e^{i\alpha}\frac{zf'\left(z\right)}{f\left(z\right)}\right] > 0 \quad \text{for all } z \in U.$$

The class of alpha-spiral mappings on a Banach space

Let $A \in E^*$, $A \neq 0$ and $\alpha \in \mathbb{R}$, $|\alpha| < \frac{\pi}{2}$. We denote by $SP_A(\alpha)$ the family of all functions $f \in H(B)$ which have the form

$$f(x) = A(x) + \sum_{n=2}^{\infty} P_{n,f}(x)$$
(1)

such that, for any $a \in \chi(A) \cap \hat{B}$, f is univalent on $B_a = \{za : z \in U\}$ and $f(B_a)$ is an α -spiral domain with respect to the origin.

For any function f of the form (1) and $a \in \chi(A) \cap \hat{B}$ we consider the function $f_a: U \to \mathbb{C}$.

$$f_a(z) = \frac{f(za)}{A(a)}, \quad z \in U.$$

Obviously

$$f_a(z) = z + \sum_{n=2}^{\infty} \frac{P_{n,f}(a)}{A(a)} z^n, \qquad z \in U.$$
 (2)

Moreover, it is easy to check that

$$f_a^{(n)}(z) = \frac{f^{(n)}(za)(a,...,a)}{A(a)}, \quad n \in \mathbb{N}, z \in U.$$

By using the properties of α -spiral functions in the unit disk, we obtain some estimations of $|P_{n,f}(a)|$ and $||P_{n,f}||$ in the class $SP_A(\alpha)$.

Theorem 2 If $f \in SP_A(\alpha)$ and $a \in \hat{B}$, then

$$|P_{n,f}(a)| \le \frac{|A(a)|}{(n-1)!} \prod_{k=1}^{n-1} \left[(k-1)^2 + 4k \cos^2 \alpha \right]^{\frac{1}{2}}, \quad n \ge 2$$
 (3)

This inequality is sharp and the equality holds for the function

$$f(x) = \frac{A(x)}{(1 - H(x))^{2s}}, \quad x \in B$$

where $s = e^{-i\alpha}\cos\alpha$, $H \in E^*$, H(a) = 1 and ||H|| = 1.

Proof. Suppose that $f \in SP_A(\alpha)$ and $n \geq 2$. If $a \in \chi(A) \cap \hat{B}$, then $f_a \in SP(\alpha)$ and hence we get (3). If $a \in \gamma(A) \cap \hat{B}$, then evidently $a = \lim_{m \to \infty} a_m$, where $a_m \in \chi(A), m \in \mathbb{N}$. There exists $r_m \in R_+$ such that $a_m/r_m \in \hat{B}$. Clearly $(r_m)_{m \geq 0}$ is bounded for 0 is an interior point of B.

Since $a_m/r_m \in \chi(A) \cap \overline{\hat{B}}, m \in N$, by the first part of the proof we have

$$\left| P_{n,f}\left(\frac{a_m}{r_m}\right) \right| \le \left| A\left(\frac{a_m}{r_m}\right) \right| \frac{1}{(n-1)!} \prod_{k=1}^{n-1} \left[(k-1)^2 + 4k \cos^2 \alpha \right]^{\frac{1}{2}}, \quad m \in \mathbb{N}.$$

Hence

$$|P_{n,f}(a_m)| \le r_m^{n-1} \frac{|A(a_m)|}{(n-1)!} \prod_{k=1}^{n-1} \left[(k-1)^2 + 4k \cos^2 \alpha \right]^{\frac{1}{2}}, \quad m \in \mathbb{N}.$$

By taking the limit with $m \to \infty$, we obtain $P_{n,f}(a) = 0$.

Corollary 1

Any $f \in SP_A(\alpha)$ vanishes on $\gamma(A) \cap B$.

Proof. Let $f \in SP_A(\alpha)$. Since $P_{n,f}(a) = 0$ for all $a \in \gamma(A) \cap \hat{B}$, f vanishes on B_a . Let $x \in \gamma(A) \cap B$, $x \neq 0$. Then $a = \frac{x}{\|x\|} \in \gamma(A) \cap \hat{B}$ and f(za) = 0 for all $z \in U$. Putting $z = \|x\|$, we get f(x) = 0.

Corollary 2 If $f \in SP_A(\alpha)$ and $n \geq 2$, then

$$||P_{n,f}|| \le \frac{||A||}{(n-1)!} \prod_{k=1}^{n-1} \left[(k-1)^2 + 4k \cos^2 \alpha \right]^{\frac{1}{2}}$$
 (4)

The inequality is sharp, being attained by

$$f(x) = \frac{A(x)}{(1 - H(x))^{2s}}, \quad x \in B.$$

We shall give some necessary and sufficient conditions for holomorphic functions to belong to the class $SP_A(\alpha)$.

Theorem 3 If $f \in SP_A(\alpha)$, then

$$\operatorname{Re}\left[e^{i\alpha}\frac{f'\left(x\right)\left(x\right)}{f\left(x\right)}\right] > 0, \quad \text{for any } x \in \chi\left(A\right) \cap B \tag{5}$$

Proof. Let $x \in \chi(A) \cap B, x \neq 0$. Then $a = \frac{x}{\|x\|} \in \chi(A) \cap \hat{B}$ and hence the function f_a belongs to the class $SP(\alpha)$. We have

$$\operatorname{Re}\left[e^{i\alpha}\frac{zf_{a}'\left(z\right)}{f_{a}\left(z\right)}\right]>0,\quad z\in U.$$

From the equality

$$\frac{f'\left(za\right)\left(za\right)}{f\left(za\right)} = \frac{zf'_{a}\left(z\right)}{f_{a}\left(z\right)}, \qquad z \in U,$$

we obtain

$$\operatorname{Re}\left[e^{i\alpha}\frac{f'\left(za\right)\left(za\right)}{f\left(za\right)}\right] > 0, \quad z \in U.$$

Putting z = ||x||, we get (5).

Theorem 4 Let $f \in H(B)$, f'(0) = A and $f(x) \neq 0$, for all $x \in B \setminus \{0\}$. If

$$\operatorname{Re}\left[e^{i\alpha}\frac{f'\left(x\right)\left(x\right)}{f\left(x\right)}\right] > 0, \quad x \in B$$

then $f \in SP_A(\alpha)$.

Proof. Let $a \in \chi(A) \cap \hat{B}$. Since $f_a(0) = 0, f'_a(0) = 1, f_a(z) \neq 0$, for all $z \in U \setminus \{0\}$ and

$$\operatorname{Re}\left[e^{i\alpha}\frac{zf_{a}'\left(z\right)}{f_{a}\left(z\right)}\right] = \operatorname{Re}\left[e^{i\alpha}\frac{f'\left(za\right)\left(za\right)}{f\left(za\right)}\right] > 0, \quad z \in U,$$

we obtain that f_a is an α -spiral function in U. Then f is univalent in B_a and $f(B_a)$ is an α -spiral domain with respect to the origin. Hence $f \in SP_A(\alpha)$.

Remark

The above results can be generalized by replacing the unit ball B with a bounded and open set $D \subset E, D \neq \Phi$ such that $zD \subset D$, for $z \in \overline{U} = \{z \in \mathbb{C}, |z| \leq 1\}$. In this case, for $\alpha = 0$ some of the results due to E.Janiec [4] are obtained.

References

- [1] Dobrovolska, K., Dziubinski, I., On starlike and convex functions of many variables, Demonstratio Math. 11(1978), 545-556.
- [2] Dziubinski, I., Sitarski, R., On classes of holomorph functions of many variables starlike and convex on some hypersurfaces, Demonstratio Math. 13(1980), 619-632.
- [3] Goodman, A. W., Univalent functions, Mariner Publishing Company, Inc., 1983
- [4] Janiec, E., On starlike and convex maps of a Banach space into the complex plane, Demonstratio Math., XXVII, 2(1994), 511-516.

Department of Mathematics
Faculty of Sciences, "Transilvania" University of Braşov
Iuliu Maniu, 50
Braşov 2200
România