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Abstract. We first survey some results concerning the generative power of $\mathrm{P}$ sys-
tems with objects described by strings processed by rewriting and by splicing, then we
consider $\mathrm{P}$ systems with multisets of string-objects processed by replication, splitting,
point mutation, and crossover. A combination of these variants (systems with multisets
of string-objects processed by rewriting and crossing-over, without using priorities) is
shown to characterize the recursively enumerable languages (moreover, systems with five
membranes suffice). .

1 Introduction
$\mathrm{P}$ systems are distributed parallel computing models which start from the observation
that the processes which take place in the complex structure of a living cell can be
(and it has been) interpreted as a computation. The basic ingredients are a membrane
structure, consisting of several membranes embedded in a main membrane (called the skin)
and delimiting regions where multisets of certain objects are placed (Figure 1 illustrates
these notions); the objects evolve according to given evolution rules, which are applied
nondeterministically (the rules to be used and the objects to evolve are randomly chosen)
in a maximally parallel manner (in each step, all objects which can evolve must do it).
The objects can also be communicated from a region to another one. In this way, we get
transitions from a configuration of the system to the next one. A sequence of transitions
constitutes a computation; with each halting computation we associate a result, the number
of objects in a specified output membrane.

Since these computing devices were introduced ([6]) several variants were considered,
[11], [8], [9], [1], etc. Many of them were proved to be computationally complete, able to
compute all recursively enumerable sets of natural numbers. When membrane division is
allowed, $\mathrm{N}\mathrm{P}$-complete problems are shown to be solved in linear time: see [9] for SAT,
[3] for the Hamiltonian Path Problem and the Node Covering Problem (and [12] for five

$\mathrm{N}\mathrm{P}$-complete problems from logic and five from graph theory, solved in a quite uniform
way by using $\mathrm{P}$ systems with cooperative rules; $\mathrm{b}\mathrm{y}.\mathrm{s}\mathrm{u}$.ch rules, several objects may evolve
together).

In most of these variants, the objects are described by symbols from a given alphabet.
It is also possible (this was considered already in [6]) to work with objects described by
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strings. The evolution rules should then be string processing rules, such as rewriting
and splicing rules. As a result of a computation we can either consider the language of
all strings computed by a system, or the number of strings produced by a system and
“stored” in a specified membrane. In the first case one works with usual sets of strings
(languages), not with multisets (each string is supposed to appear in arbitrarily many
copies), while in the latter case we have to work with multisets. In such a framework
we have to consider operations on strings which can increase and decrease the number of
strings, rewriting and splicing are not sufficient. Such operations are the replication and
the splitting of strings–see precise definitions in Section 4.

Figure 1: A membrane structure

In all these c.ases, characterizations of recursively enumerable languages or of recur-
sively enumerable sets of natural numbers can be found. We here recall results of this
type from [6], [5], [3], [13], [1], [4].

In the case of rewriting, the characterization of recursively enumerable languages is
obtained by using a priority relation among rewriting rules, which is a very powerful
feature. We show here that we can avoid using a priority relation, providing that we
compensate the loss in power by adding crossovering rules to rewriting rules and that we
take into account the number of copies of each string (that is, we work with multisets).
Systems with only five membranes, arranged in a linear structure (the tree describing the
membrane structure is a line), can generate all recursively enumerable languages.

2 Rewriting $\mathrm{P}$ Systems
If the objects in a $\mathrm{P}$ system are described by strings, then their evolution will correspond
to a string transformation. In this section we consider transformations in the form of
rewriting steps, as usual in formal language theory, but we associate with them target
indications, telling us the region where the result of the rewriting should be placed after
applying a rule.

We refer to [14] for all elements of formal language theory we use. We only mention
that we denote by $RE$ the family of recursively enumerable languages.
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Always we use only context-free rules, that is, the rules of our systems are of the
form ($Xarrow v$ ; tar), where $Xarrow v$ is a context-free rule and $tar\in$ {here, out, $in_{j}$ }, with
the obvious meaning: the string produced by using this rule will go to the membrane
indicated by tar ($j$ is the label of a membrane).

Formally, a rewriting $P$ system is a construct

$\square =(V, T, \mu, L_{1}, \ldots, L_{m}, (R_{1},\rho_{1}), \ldots, (R_{m}, \rho_{m}), i_{0})$ ,

where $V$ is an alphabet, $T\subseteq V$ (the terminal alphabet), $\mu$ is a membrane structure with
$m$ membranes labeled with 1, 2, . . . , $m,$ $L_{1},$

$\ldots,$
$L_{m}$ are finite languages over $V$ (initial

strings placed in the regions of $\mu$), $R_{1},$
$\ldots,$

$R_{m}$ are finite sets of context-free evolution rules,
$\rho_{1},$ $\ldots$ , $\rho_{m}$ are partial order relations over $R_{1},$

$\ldots,$
$R_{m}$ , and $i_{0}$ is the output membrane.

The language generated $\Pi$ is denoted by $L(\Pi)$ and it is defined as follows: we start
from the initial configuration of the system and proceed iteratively, by transition steps
performed by using the rules in parallel, to all strings which can be rewritten, obeying the
priority relations; when the computation halts, we collect the terminal strings generated in
the output membrane. Note that each string is processed by one rule only, the parallelism
refers here to processing simultaneously all available strings by all applicable rules.

We denote by $RP_{m}(Pri)$ the family of languages generated by rewriting $\mathrm{P}$ systems of
degree at most $m,$ $m\geq 1$ , using priorities; when priorities are not used, we replace $Pri$

with $nPri$.
In order to illustrate the way of working of a rewriting $\mathrm{P}$ system, we consider an exam-

ple (which also proves that the family $RP_{2}(nPri)$ contains non-context-free languages):
$\Pi=$ ( $\{A,$ $B,$ $a,$ $b,$ $c\},$ $\{a,$ $b,c\},$ $[_{1}[_{2}]_{2}]_{1},$ $\emptyset,$ {AB}, $(R_{1},$ $\emptyset),$ $(R_{2},$ $\emptyset),$ $2$ ),

$R_{1}=\{(Barrow cB;_{\iota}in_{2})\}$ ,
$R_{2}=$ { $(Aarrow aAb$; out), $(Aarrow ab$ ; here), (.B $arrow c$ ; here)}.

It is easy to see that $L(\Pi)=\{a^{n}b^{n}c^{n}|n\geq 1\}$ (if a string $a^{i}Ab^{i}c^{i}B$ is rewritten in
membrane 2 to $a^{i}Ab^{i}c^{i+1}$ and then to $a^{i+1}Ab^{i+1}c^{i+1}$ and sent out, then it will never come
back again in membrane 2, the computation stops, but the output membrane will remain
empty).

For $RP_{3}(Pri)$ , the following result is proved in [6]; the improvement to $RP_{2}(Pri)$ was
given independently in [3] and [5].

Theorem 1. $RP_{2}(Pri)=RE$ .

3 Splicing $\mathrm{P}$ Systems
The strings in a $\mathrm{P}$ system can also be processed by using the splicing operation introduced
in [2] as a formal model of the DNA recombination under the influence of restriction
enzymes and ligases (see a comprehensive investigation of splicing systems in [10]).

Consider an alphabet $V$ and two symbols $\#$ , $ not in $V$ . A splicing rule over $V$ is a
string $r=u_{1}\neq u_{2} u_{3}\neq u_{4}$ , where $u_{1},$ $u_{2},$ $u_{3},$ $u_{4}\in V^{*}$ ( $V^{*}$ is the set of all strings over $V$ ).
For such a rule $r$ and for $x,$ $y,$ $w,$ $z\in V^{*}$ we define

$(x, y)\vdash_{f}(w, z)$ iff $x=x_{1}u_{1}u_{2}x_{2},$ $y=y_{1}u_{3}u_{4}y_{2},$ $w=x_{1}u_{1}u_{4}y_{2},$ $z=y_{1}u_{3}u_{2}x_{2}$ ,
for some $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}\in V^{*}$ .
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(One cuts the strings $x,$ $y$ in between $u_{1},$ $u_{2}$ and $u_{3},$ $u_{4}$ , respectively, and one recombines
the fragments obtained in this way.)

A splicing $P$ system (of degree $m,$ $m\geq 1$ ) is a construct

$\Pi=(V, T,\mu, L_{1}, \ldots, L_{m}, R_{1}, \ldots, R_{m})$ ,

where $V$ is an alphabet, $T\subseteq V$ (the output alphabet), $\mu$ is a membrane structure
consisting of $m$ membranes (labeled with 1, 2, . . . , $m$ ), $L_{i},$ $1\leq i\leq m$ , are languages
over $V$ associated with the regions 1, 2, . . . , $m$ of $\mu,$ $R_{i},$ $1\leq i\leq m$ , are finite sets
of evolution rules associated with the regions 1, 2, .. ., $m$ of $\mu$ , given in the follow-
ing form: $(r;tar_{1}, tar_{2})$ , where $r=u_{1}\neq u_{2} u_{3}\neq u_{4}$ is a usual splicing rule over $V$ and
$tar_{\dot{1}},tar_{2}\in$ {here, $out$} $\cup\{in_{j}|1\leq j\leq m\}$ .

Note that, as usual in splicing systems, when a string is present in a region of our
system, it is assumed to appear in arbitrarily many copies.

A transition in $\Pi$ is defined by applying the splicing rules from each region of $\mu$ , in
parallel, to all possible strings from the corresponding regions, and following the target
indications associated with the rules. More specifically, if $x,$ $y$ are strings in region $i$ and
$(r=u_{1}\neq u_{2} u_{3}\neq u_{4};tar_{1},tar_{2})\in R_{i}$ such that we can have $(x, y)\vdash_{f}(w, z)$ , then $w$ and
$z$ will go to the regions indicated by $tar_{1},$ $tar_{2}$ , respectively. Note that after splicing, the
strings $x,$ $y$ are still available in region $i$ , because we have supposed that they appear
in arbitrarily many copies (an arbitrarily large number of them were spliced, arbitrarily
many remain), but if a string $w,$ $z$ , resulting from a splicing, is sent out of region $i$ , then
no copy of it remains here.

The result of a computation consists of all strings over $T$ which are sent out of the
system at any time during the computation. We denote by $L(\square )$ the language of all
strings of this type. We say that $L(\square )$ is generated by $\Pi$ . Note that in this section we do
not consider halting computations, but we leave the process to continue forever and we
just observe it from outside and collect the terminal strings leaving the system.

We denote by $SP(tar, m,p)$ the family of languages $L(\Pi)$ generated by splicing $\mathrm{P}$

systems as above, of degree at most $m,$ $m\geq 1$ , and of depth at most $p,p\geq 1$ .
If all target indications $tar_{1},$ $tar_{2}$ in the evolution rules of a $\mathrm{P}$ system are of the form

here2 out, $in$ , then we say that $\Pi$ is of the $i/\mathit{0}$ type; the strings produced by splicing and
having associated the indication $in$ are moved into any lower region immediately below
the region where the rule is used (that is, the target membrane is nondeterministically
chosen from the adjacently lower membraes). The family of languages generated by $\mathrm{P}$

systems with this weaker target indication and of degree at most $m$ and depth at most $p$

is denoted by $SP(i/\mathit{0}, m,p)$ .
Proofs of the following results, showing the computational universality of splicing $\mathrm{P}$

systems of rather simple forms, can be found in [13].

Theorem 2. $SP(i/\mathit{0},3,3)=SP(tar, 3,2)=SP(i/\mathit{0},5,2)=RE$ .

4 $\mathrm{P}$ Systems with Worm-Objects

In $\mathrm{P}$ systems with symbol-objects we work with multisets and the result of a computation
is a natural number or a vector of natural numbers; in the case of string-object $\mathrm{P}$ systems
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we work with sets of strings and the result of a computation is a string. We can combine
the two ideas: we can work with multisets of strings and consider as the result of a com-
putation the number of strings present in the halting configuration in a given membrane.
To this aim, we need operations with strings which can increase and decrease the number
of occurrences of strings.

The following four operations were considered in [1] (they are slight variants of the
operations used in [15] $)$ :

1. Replication. If $a\in V$ and $u_{1},$ $u_{2}\in V^{+}$ , then $r$ : $aarrow u_{1}||u_{2}$ is called a replication
rule. For strings $w_{1},$ $w_{2},$ $w_{3}\in V^{+}$ we write $w_{1}\Rightarrow f(w_{2}, w_{3})$ (and we say that $w_{1}$

is replicated with respect to rule $r$ ) if $w_{1}=x_{1}ax_{2},$ $w_{2}=x_{1}u_{1}x_{2},$ $w_{3}=x_{1}u_{2}x_{2}$ , for
some $x_{1},$ $x_{2}\in V^{*}$ .

2. Splitting. If $a\in V$ and $u_{1},$ $u_{2}\in V^{+}$ , then $r$ : $aarrow u_{1}|u_{2}$ is called a splitting rule. For
strings $w_{1},$ $w_{2},$ $w_{3}\in V^{+}$ we write $w_{1}\Rightarrow f(w_{2}, w_{3})$ (and we say that $w_{1}$ is splitted
with respect to rule $r$ ) if $w_{1}=x_{1}ax_{2},$ $w_{2}=x_{1}u_{1},$ $w_{3}=u_{2}x_{2}$ , for some $x_{1},$ $x_{2}\in V^{*}$ .

3. Mutation. A mutation rule is a context-free rewriting rule, $r:aarrow u$ , over $V$ . For
strings $w_{1},$ $w_{2}\in V^{+}$ we write $w_{1}\Rightarrow rw_{2}$ if $w_{1}=x_{1}ax_{2},$ $w_{2}=x_{1},ux_{2}$ , for some
$x_{1},$ $x_{2}\in V^{*}$ .

4. Recombination. Consider a string $z\in V^{+}$ (as a crossing-over block) and four strings
$w_{1},$ $w_{2},$ $w_{3},$ $w_{4}\in V^{+}$ . We write $(w_{1}, w_{2})\Rightarrow z(w_{3}, w_{4})$ if $w_{1}=x_{1}zx_{2},$ $w_{2}=y_{1}zy_{2}$ ,
and $w_{3}=x_{1}zy_{2},$ $w_{4}=y_{1}zx_{2}$ , for some $x_{1},$ $x_{2},$ $y_{1},$ $y_{2}\in V^{*}$ .

Note that replication and splitting increase the number of strings, mutation and re-
combination not; by sending strings out of the system, their number can also be decreased.

We work here only with multisets $\sigma$ : $V^{*}arrow \mathrm{N}$ such that only finitely many elements
have a non-null multiplicity, thus we can specify $\sigma$ in the form $A=\{(x_{1}, \sigma(x_{1})),$

$\ldots$ , $(x_{k}$ ,
$\sigma(s_{k}))\}$ , where $x_{i},$ $1\leq i\leq k$ , are those elements of $V^{*}$ for which $\sigma(x_{i})>0$ .

A $P$ system (of degree $m,$ $m\geq 1$ ) with worm-objects is a construct

$\square =(V,\mu, A_{1}, \ldots, A_{m}, (R_{1}, S_{1}, M_{1}, C_{1}), \ldots, (R_{m}, S_{m}, M_{m}, C_{m}), i_{0})$ ,

where:

-V is an alphabet;
$-\mu$ is a membrane structure of degree $m$ (with the membranes labeled with

1, 2, . . . , $m$ );
$-A_{1},$

$\ldots$ , $A_{m}$ are multisets of finite support over $V^{*}$ , associated with the regions of $\mu$ ;
-for each $1\leq i\leq m,$ $R_{i},$ $S_{i},$ $M_{i},$ $C_{i}$ are finite sets of replication rules, splitting rules,

mutation rules, and crossing-over blocks, respectively, given in the following forms:
$\mathrm{a}$ . replication $\mathrm{r}\mathrm{u}$’les: $(aarrow u_{1}||u_{2};tar_{1}, tar_{2})$ , for $tar_{1},$ $tar_{2}\in$ {here, $out$} $\cup\{in_{j}|$

$1\leq j\leq m\}$ ;
$\mathrm{b}$ . splitting rules: $(aarrow u_{1}|u_{2};tar_{1}, tar_{2})$ , for $tar_{1},$ $tar_{2}\in$ {here, out}. $\cup\{in_{j},$ $|1\leq$

$j\leq m\}$ ;
$\mathrm{c}$ . mutation rules: ( $aarrow u$ ; tar), for $tar\in$ {here, $out$} $\cup\{in_{j}|1\leq j\leq m\}$ ;

$\mathrm{d}$ . crossing-over blocks: $(z;tar_{1}, tar_{2})$ , for $tar_{1},$ $tar_{2}\in$ {here, $out$} $\cup\{in_{j}|1\leq j\leq$

$m\}$ ;
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$-i_{0}\in\{1,2, \ldots, m\}$ specifies the output membrane of the system; it should be an
elementary membrane of $\mu$ .

The $(m+1)$-tuple $(\mu, A_{1}, \ldots, A_{m})$ constitutes the initial configuration of the system.
By applicating the operations defined by the components $(R_{i}, S_{i}, M_{i}, C_{i}),$ $1\leq i\leq m$ , we
can define transitions from a configuration to another one. This is done as usual in $\mathrm{P}$

system area, according to the following specific rules: A string which enters an operation
is “consumed” by that operation, its multiplicity is decreased by one. The multiplicity
of strings produced by an operation is accordingly increased. A string is processed by
only one operation. For instance, we cannot apply two mutation rules, or a mutation rule
and a replication one, to the same string. The strings resulting from an operation are
communicated to the region specified by the target indications associated with the used
rule.

The result of a halting computation consists of the number of strings in region $i_{0}$ at
the end of the computation. A non-halting computation provides no output. For a system
$\Pi$ , we denote by $N(\square )$ the set of numbers computed in this way. By $NWP_{m},$ $m\geq 1$ , we
denote the sets of numbers computed by all $\mathrm{P}$ systems with at most $m$ membranes.

In [1] it is proved that each recursively enumerable set of natural numbers (their family
is denoted by $nRE$ ) can be computed by a $\mathrm{P}$ system as above; the result is improved in
[4], where it is proved that the hierarchy on the number of membranes collapses:

Theorem 3. $nRE=NWP_{6}$ .
It is an open problem whether or not the bound 6 in this theorem can be improved;

we expect a positive answer.

5 One More Characterization of $RE$

The characterization of recursively enumerable languages in Theorem 1 is obtained at
the price of using priorities among the rewriting rules. The use of this powerful feature
can be avoided if we combine the rewriting with other features, of the types used in
the previous section. More precisely, let us consider $\mathrm{P}$ systems working with multisets
of worm-objects, processed by rewriting and crossovering rules, but let us consider as
the result of a computation the language of all strings present at the end of halting
computations in a specified output membrane. The work of such a system is exactly
as the work of a $\mathrm{P}$ system with worm-objects, only the way of defining the result of a
computation is different.

Let us denote by $RXP_{m}(i/\mathit{0}),$ $m\geq 1$ , the family of languages generated by such
systems with at most $m$ membranes, using as communication commands the indications
here, $out_{f}$ in (it turns out that $in$ is sufficient, we do not need to indicate the label of the
target membrane). Somewhat expected, we get one further characterization of recursively
enumerable languages.

Theorem 4. $RE=RXP_{5}(i/\mathit{0})$ .

Proof. We only prove the inclusion $RE\subseteq RXP_{5}(i/\mathit{0})$ , for the opposite one we can
invoke the Turing-Church thesis.

Let $G=(N, T, S, P)$ be a type-O grammar in the Kuroda normal form, that is, with
the rules in $P$ of one of the following forms: $Aarrow BC,$ $Aarrow a,$ $Aarrow\lambda$ , and $ABarrow CD$ ,
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for $A,$ $B,$ $C,$ $D\in N,$ $a\in T$ . We assume that all the non-context-free rules in $P$ are labeled
in a one-to-one manner with elements of a given set Lab.

We construct the $\mathrm{P}$ system (of degree 5)

$\square =(V, \mu, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, (R_{1}, \emptyset), (R_{2}, C_{2}), (R_{3}, C_{3}), (R_{4}, \emptyset), (R_{5}, \emptyset), 5)$ ,

with

$V=N\cup T\cup\{A’, A’’, A’’’|A\in N\}\cup\{A_{f}’, B_{f}’’|r:ABarrow CD\in P\}\cup\{\mathrm{Y}\}$,
$\mu=[_{1}[_{2}[_{3}[_{4}[_{5}]_{5}]_{4}]_{3}]_{2}]_{1}$ ,

$A_{5}=\{(S, 1)\}$ ,
$A_{3}=\{(A_{f}’B_{f}’, 1)|r:ABarrow CD\in P\}$ ,
$A_{1}=A_{2}=A_{4}=\emptyset$ ,

and with the following sets of rules:

$R_{1}=$ { $(B_{f}’’arrow B’’’$ ; here), $(A_{f}’arrow C’D’’$ ; in) $|r:ABarrow CD\in P$ },
$R_{2}=$ { $(A^{m}arrow\lambda$ ; in), $(A’arrow y$ ; here) $|A\in N$}

$\cup$ { ( $Yarrow \mathrm{Y}$ ; here)},
$C_{2}=$ { $(A_{f}’B_{f}’’$ ; in, out) $|r:ABarrow CD\in P$},
$R_{3}=$ { $(A’arrow A$ ; in), $(A”arrow Y$ ; out) $|A\in N$}

$\cup$ { ( $\alphaarrow \mathrm{Y}$ ; out) $|\alpha\in N\cup T$ }
$\cup$ { ( $\mathrm{Y}arrow Y$ ; here)},

$C_{3}=$ { $(A_{f}’B_{f}’’$ ; out, out) $|r:ABarrow CD\in P$},
$R_{4}=$ { $(Barrow B_{f}’’$ ; out), $(A_{r}’arrow \mathrm{Y}$ ; out) $|r:ABarrow CD\in P$}

$\cup$ { ( $A”arrow A$ ; in) $|A\in N$}
$\cup$ { ( $Yarrow \mathrm{Y}$ ; here)},

$R_{5}=$ { $(Aarrow x$ ; here) $|Aarrow x\in P$}
$\cup$ { ( $Aarrow A_{f}’$ ; out) $|r:ABarrow CD\in P$}
$\cup$ { ( $Aarrow Y$ ; out) $|A\in N$}
$\cup$ { ( $\mathrm{Y}arrow Y$ ; here)}.

This system works as follows.
Let us assume that we have a string $w$ in membrane 5, in only one copy; initially, this

is the case with the axiom $S$ of $G$ . The context-free rules from $P$ are present in $R_{1}$ as
rewriting rules, hence they can be simulated without any difficulty. Assume that we use
the rule $Aarrow A_{f}’$ corresponding to some rule $r:ABarrow CD$ from $P$ . The obtained string,
$w_{1}A_{f}’w_{2}$ , is sent to membrane 4. If we apply the rule $A_{f}’arrow Y$ , then the trap-symbol $Y$

is introduced, and the string will be rewritten forever by using the rule $Yarrow Y$ , hence
the computation never ends. Thus, we have to use a rule of the form $Barrow B_{p}’’$ , for some
rule $p:XBarrow EF$ from $P$ . A string which contains both the symbols $A_{f}’$ and $B_{p}’’$ is sent
to membrane 3. If we apply a rule of the form $\alphaarrow Y$ , for any $\alpha\in N\cup T$ , then the
computation will never finish. The only way to correctly continue the computation is by
using a crossovering block and this implies the fact that $r=p$ and $r:ABarrow CD$ . This
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means that the initial string was of the form $w=w_{1}ABw_{2}’$ , hence in membrane 3 we have
the string $w_{1}A_{f}’B_{f}’’w’$ ; this string is recombined with $A_{f}’B_{f}’’$ , which waits here from the
beginning of the computation (in only one copy) and we get the strings $w_{1}A_{r}’B_{r}’’,$ $A_{r}’B_{f}’’w_{r}’$ ,
which are both sent to membrane 2. In membrane 2 we can perform two crossovering
operations:

$(w_{1}A_{f}’B_{f}’’, A_{f}’B_{f}’’w_{f}’)\vdash(w_{1}A_{r}’B_{f}’’w_{f}’, A_{f}’B_{r}’’)$, (in, out), and
$(A_{f}’B_{f}’’w_{f}’, w_{1}A_{f}’B_{f}’’)\vdash(A_{f}’B_{f}’’, w_{1}A_{f}’B_{f}’’w_{2}’)$, (in, out).

The two cases are identical if $w_{1}=w_{2}’=\lambda$ . If this does not hold, then in the first
case we send the string $w_{1}A_{r}’B_{f}’’w_{2}’$ to membrane 3 and, because we have no copy of the
crossovering block $A_{f}’B_{f}’’$ here, we have to use a rule $\alphaarrow Y$ and the computation will
never finish. Therefore, we have to proceed as in the second case, that is, we send the
string $w_{1}A_{f}’B_{f}’’w_{2}’$ to membrane 1 and the string $A_{f}’B_{r}’’$ to membrane 3. This latter string
is an axiom, it will stay in membrane 3, waiting for a possible future use. If the string
$w_{1}A_{f}’B_{f}’’w_{2}’$ is rewritten in membrane 1 by the rule $A_{f}’arrow C’D^{u}$ , then the resulting string is
sent to membrane 2. The only rule which can be applied is $Carrow Y$ and the computation
will never finish. Thus, before using the rule $A_{f}’arrow C’D’’$ , in membrane 1 we have to use
the rule $B_{f}’’arrow B’’’$ . This means that the string $w_{1}C’D’’B’’’w_{2}’$ arrives to membrane 2;
the symbol $B”’$ is erased and the obtained string is sent to membrane 3. By the use of
$D”arrow \mathrm{Y}$ or $\alphaarrow Y,$ $\alpha\in N\cup T$ , we lead to non-halting computations, hence we have to
continue by using the rule $C’arrow C$ . The string is sent to membrane 4. If here we apply
a rule $Xarrow X_{p}’’$ , for some rule $p:ZXarrow YW\in P$ , then the obtained string is sent to
membrane 3, where the only applicable rules are $D”arrow Y$ and, if any symbol $\alpha\in N\cup T$

appears in the string, $\alphaarrow Y$ . The computation never finishes, hence the way to proceed
in membrane 2 is by using the rule $D”arrow D$ . We send to membrane 5 the string $w_{1}CDw_{2}’$ ,
which is the correct result of simulating the rewriting of the string $w$ by means of the rule
$r:ABarrow CD$ .

The process can be iterated, hence each derivation in $G$ can be simulated in $\Pi$ and,
conversely, all halting computations in $\Pi$ correspond to correct derivations in $G$ . Note that
the multiplicities of strings in membrane 5 and in membrane 3, the only ones where we
have strings in the beginning of a computation, are restored. As long as any nonterminal
symbol $A$ is still present in the current string from membrane 5, the rule $Aarrow Y$ can be
used. Therefore, the computation in $\Pi$ can stop only after reaching a terminal string with
respect to $G$ .

In conclusion, $L(G)=L(\Pi)$ , which concludes the proof. $\square$

It is an open problem whether or not the bound 5 in the previous theorem can be
decreased. Anyway, it is easy to see that $RXP_{1}(i/\mathit{0})$ contains all context-free languages,
while the example from the end of Section 2 shows that $RXP_{2}(i/\mathit{0})$ contains non-context-
free languages.
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