
Knowledge Structure in Decision Theory

Takashi Matsuhisa

Department of Liberal Arts and Sciences, Ibaraki National College of Technolo$g\mathrm{y}$

866 Nakane, Hitachinaka-shi, Ibaraki-ken 312-8508, Japan
E–mail address mathisa@ge. $\mathrm{i}\mathrm{b}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{k}\mathrm{i}- \mathrm{c}\mathrm{t}’$.ac.jp

ABSTRACT. The logic for ‘utility maximizers’ $L^{um}$ is proposed which
is an extension of a system of modal logic for many players. The
sound models according to $L^{um}$ are given in terms of game theory. It
is shown for the models that two utility maximizing players must take
the same actions if they mutually believe that each takes a dominant
action, even when they have different informations. We remark that
the logic $L^{um}$ have the finite model property.

1. INTRODUCTION

Recently researchers in such diverse fields as Economics, Linguistics,
Artificial Intelligence, and Computer Sciences have become interested in
reasoning about knowledge. There are pragmatic concerns about the
relationship between knowledge and actions, and there are also concerns
about the complexity of computing knowledge. Of most interested is the
emphasis on considering situation involving the knowledge of a group of
players rather than that of a single player.

The purpose of this talk is to develop a theory of decision making
among a group of players under uncertainty based on modal logic rather
than on probability measures (as in the standard theory.) It is the theory
of ‘ maximizing utility’ in which all players are utility maximizers; that
is, each player takes the actions being best response to his utility. In
the theory there is a ‘logic of belief’ in which a given proposition is
either believed, or disbelieved, or neither believed nor disbelieved. It is
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noted that there are another specific kinds of theories of decision making:
Among others the theory of ‘agreeing to disagree’ is of most interested,
in which all players cannot agree to disagree on their predictions about
an event ( $\mathrm{c}.\mathrm{f}$ . Aumann [1], Bacharach [2] and Matsuhisa [6].)

This talk will proceed as follows: In section 2 I review the standard
models of belief for a system of modal $\mathrm{l}\mathrm{o}\dot{\mathrm{g}}\mathrm{c}$ for multi-players and the
utility theory with belief. Section 3 proposes a system for ‘utility maxi-
mizers’ that is an extension of a system of modal logic. The sound models
according to the system are given in terms of the utility theory with be-
lief. In section 4 I show that two utility maximizers in each sound model
must take the same actions if they mutually believe that each takes a
dominant action, even when they have different informations. Example
(Prisoner Dilemma) demonstrates that they does not always take the
same actions in case that each player simply believes that he takes a
dominant action. Section 5 presents the logic for (utility maximizers’
$L^{um}$ and remarks that the logic has the finite model property.

2. THE MODEL

Let $\Omega$ be a non-empty set called a state-space, $N$ a set of two players
1, 2, and let $2^{\Omega}$ be the family of all subsets of $\Omega$ . Each member of $2^{\Omega}$ is
called an event and each element of $\Omega$ called a state.
2.1. Information and Belief (Binmore [3]). An information structure
$(P_{i})_{i\in N}$ is a class of mappings $P_{i}$ of $\Omega$ into $2^{\Omega}$ . Given our interpretation,
an player $i$ for whom $P_{i}(\omega)\subseteq E$ knows, in the state $\omega$ , that some state
in the event $E$ has occurred. In this case we say that in the state $\omega$ the
player $i$ believes $E$ .

An $i’ \mathrm{s}$ belief operator is an operator $B_{i}$ on $2^{\Omega}$ such that $B_{i}E$ is the set
of states of $\Omega$ in which $i$ believes that $E$ has occurred; that is,

$B_{i}E=\{\omega\in\Omega|P_{i}(\omega)\subseteqq E\}$ . (1)
We note that the $i’ \mathrm{s}$ belief operator satisfies the following properties: For
every $E,$ $F$ of $2^{\Omega}$ ,

$\mathrm{N}$ : $B_{i}\Omega=\Omega$ and $B_{i}\emptyset=\emptyset$ ;
$\mathrm{K}$ : $B_{i}(E\cap F)=B_{i}E\cap B_{i}F$;

The set $P_{i}(\omega)$ will be interpreted as the set of all the states of nature that
$i$ believes to be possible at $\omega$ , and $B_{i}E$ will be interpreted as the set of
states of nature for which $i$ believes $E$ to be possible. We will therefore
call $P_{i}$ an $i’ \mathrm{s}$ possibility operator on $\Omega$ and also will call $P_{\dot{x}}(\omega)$ the $i’ \mathrm{s}$

possibdity set at $\omega$ . An event $E$ is said to be an $i’ \mathrm{s}$ truism if $E\subseteqq B_{i}E$
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We should note that the information structure $P_{i}$ is uniquely deter-
mined by the belief operator $B_{i}$ such that $P_{i}( \omega)=\bigcap_{\omega\in B_{i}E}E$.

2.2. Utility and Belief. By a utility theory for two player we mean a
triple $\langle N, (A_{i})_{i=1,2}, (V_{i})_{i=1,2}\rangle$ with the following structure and interpreta-
tions: $N$ is a of players {1, 2}, $A_{i}$ is a finite set of $i’ \mathrm{s}$ available actions
(or $i’ \mathrm{s}$ pure strategies) and $V_{i}$ is an $i’ \mathrm{s}$ utility-function of $A_{1}\cross A_{2}$ into $\mathbb{R}$ .
We denote by $A_{-i}$ the set $A_{j}$ for $j\neq i$ .

An action $a$ in $A_{i}$ is called dominant for $i$ if $V_{i}(a_{i}, a_{-i})\geq V_{i}(b, a_{-i})$ for
all $b\in A_{i}$ and for all $a_{-i}\in A_{-i}$ .
Example 1. (Prisoners’ dilemma:) Let $A$ be a set of two available ac-
tions $\{a_{1}, a_{2}\}$ which is common for players 1, 2. The utility functions
$(V_{1}, V_{2})$ are given by

Player 2

Player 1

In this example we can plainly observe that the action $a_{1}$ is dominant for
each player 1, 2. $\square$

Definition 1. By a utdity theory with belief we mean a tuple $\mathcal{V}=$

$\langle\Omega, (P_{i})_{i=1,2}, (A_{i})_{i=1,2}, (V_{i})_{i=1,2}\rangle$ with the following structures:
$\bullet$

$\Omega$ is a state-space;
$\bullet$ $P_{i}$ : $\Omegaarrow 2^{\Omega}$ is an $i’ \mathrm{s}$ information function;
$\bullet$ $A_{i}$ is a set of available actions for player $i$ ;
$\bullet$ $V_{i}$ : $A_{1}\cross A_{2}\cross\Omegaarrow \mathbb{R}$ is an $i’ \mathrm{s}$ utility function with the property

that $V_{i}(\cdot, \cdot;\omega)$ is injective on $A_{1}\cross A_{2}$ for each $\omega\in\Omega$ .

Example 2. A tuple $\mathcal{V}=\langle\Omega, (P_{i})_{i=1,2}, (A_{i})_{i=1,2}, (V_{i})_{i=1,2}\rangle$ given as below
is a utility theory with belief:

$\bullet\Omega=\{\omega_{1}.\omega_{2}\}$

$\bullet$ $P_{i}$ : $\Omegaarrow 2^{\Omega}$ is given by $P_{1}(\omega_{1}):=\{\omega_{1}\},$ $P_{1}(\omega_{2}):=\{\omega_{2}\},$ $P_{2}(\omega_{1})$ $:=$

$\{\omega_{2}\}$ , and $P_{2}(\omega_{2}):=\{\omega_{1}\}$ ;
$\bullet A_{1}=A_{2}=\{a_{1}.a_{2}\}$ ;
$\bullet$ $V_{i}$ : $A_{1}\cross A_{2}\cross\Omegaarrow \mathbb{R}$ is defined by
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Pla.ve.r 2

$\square$

3. SYSTEM

Let us consider a system of multi-modal logic as follows.

3.1. Syntax. The language of the system consists of the symbols, the
terms and the sentences as follows:

$\bullet$ Symbols:
Non-modal operators: $\neg,$ $arrow,$ $\wedge,$ $\mathrm{T},$ $\cdots$ ;
Modal operators : $\coprod_{1},$ $\coprod_{2},$ $\coprod_{E;}$

Variables: $\mathrm{a}_{1},$ $\mathrm{a}_{2},$ $\cdots,$ $\mathrm{a}_{n}$ (Actions for players 1, 2)
Predicates: $=$ (Equality on the actions)

$\mathrm{d}\mathrm{o}\mathrm{m}_{1},$ $\mathrm{d}\mathrm{o}\mathrm{m}_{2}$ . (Dominant actions)

$\bullet$ Terms and Sentences:
(i) The variables are terms;
(ii) If $\mathrm{s}$ and $\mathrm{t}$ are two terms then $\mathrm{s}=\mathrm{t}$ and $\mathrm{d}\mathrm{o}\mathrm{m}_{1}(\mathrm{s}),$ $\mathrm{d}\mathrm{o}\mathrm{m}_{2}(\mathrm{t})$

are atomic sentences;
The sentences of the language form the least set containing all
atomic sentences $\mathrm{P}_{m}(m=0,1,2, \ldots)$ closed under the following
operations:
-nullary operators for $falsity\perp \mathrm{a}\mathrm{n}\mathrm{d}$ for truth $\mathrm{T}$ ;
-unary and binary syntactic operations for negation $\neg$ , condi-

$tionalityarrow \mathrm{a}\mathrm{n}\mathrm{d}conjunction\wedge$ , respectively;
-three unary operations for modality $\coprod_{1},$ $\coprod_{2},$ $\coprod_{E}$ .

Other such operations are defined in terms of those in usual ways.

The intended interpretation of $\square _{i}\varphi$ is the sentence that ‘player $i$ be-
lieves a sentence $\varphi,’\square _{E}\varphi$ as ‘everybody believes $\varphi.$

’ The sentence $\mathrm{d}\mathrm{o}\mathrm{m}_{i}(\mathrm{a}_{k})$

is interpreted as $‘ \mathrm{a}_{k}$ is a dominant action for $i$

3.2. System for utility maximizers. By this we mean a set of sen-
tences, denoted by $L$ ,

$\bullet$ containing a set of all tautologies and closed under substitution and
modus ponens;
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$\bullet$ has the following inference rules and axioms:

(N) $\coprod_{*}\mathrm{T}$ $\mathrm{f}\mathrm{o}\mathrm{r}*=1,2,$ $E$

$(\mathrm{R}\mathrm{E}_{\square })$ $\frac{\varphirightarrow\psi}{\coprod_{*}\varphirightarrow\coprod_{*}\psi}$ $\mathrm{f}\mathrm{o}\mathrm{r}*=1,2,$ $E$ ;

$(\mathrm{D}\mathrm{e}\mathrm{E}_{E})$ $\square _{E}\varphirightarrow\square _{1}\varphi\wedge\square _{2}\varphi$;

$(\mathrm{R}\mathrm{E}_{\mathrm{d}\mathrm{o}\mathrm{m}})$
$\frac{\mathrm{a}_{k}=\mathrm{a}_{l}}{\mathrm{d}\mathrm{o}\mathrm{m}_{i}(\mathrm{a}_{k})rightarrow \mathrm{d}\mathrm{o}\mathrm{m}_{i}(\mathrm{a}_{l})}$ for $i=1,2$ .

A sentence $\varphi$ is provable in $L$ , denoted $\mathrm{b}\mathrm{y}\vdash_{L}\varphi$ , if $\varphi\in L$ .

3.3. Semantics. A model $\mathcal{M}$ for a system $L$ is a tuple $\langle$V, $v_{\Lambda\Lambda},$ $\pi,$
$\models\rangle$

with the following structures:
$\bullet$ $\mathcal{V}=\langle\Omega, (P_{i})_{i=1,2}, (A_{i})_{i=1,2}, (V_{i})_{i=1,2}\rangle$ is a utility theory with belief

such that
(i) $A_{1}=A_{2}=A:=\{a_{1}, a_{2}, \cdots, a_{n}\}$ ;
(ii) $V_{i}(\cdot, \cdot;\omega)$ is injective on $A\cross A$ for each $\omega\in\Omega$ ;

$\bullet$
$v_{\lambda 4}$ : $\{\mathrm{a}_{k}|k=1,2, \cdots, n\}arrow A$ is a valuation of variables into
available actions;

$\bullet$ $\pi$ : $\{\mathrm{P}_{m}|m=0,1,2, \ldots\}\cross\Omegaarrow$ {$true$ , false} is a truth assign-
ment such that

(i) $\pi(\mathrm{a}_{k}=\mathrm{a}_{l}, \omega)=true$ if and only if $v_{\mathcal{M}}(\mathrm{a}_{k})=v_{\mathcal{M}}(\mathrm{a}_{l})$;
(ii) $\pi(\mathrm{d}\mathrm{o}\mathrm{m}_{1}(\mathrm{a}_{k}), \omega)=true$ if and only if

$V_{1}(v_{\lambda 4}(\mathrm{a}_{k}), b;\omega)\geq V_{1}(c, b;\omega)$ for all $b,$ $c\in A$ ;
$\pi(\mathrm{d}\mathrm{o}\mathrm{m}_{2}(\mathrm{a}_{l}), \omega)=true$ if and only if

$V_{i}(b, v_{\mathcal{M}}(\mathrm{a}_{l});\omega)\geq V_{i}(a, b;\omega)$ for all $b,$ $c\in A$ .
$\bullet$ Truth $\models_{\omega}^{\mathcal{M}}\varphi$ at $\omega$ in $\mathcal{M}$ is inductively defined as follows:

(i) $\models_{\omega}^{\lambda 4}\mathrm{v}$ if and only if
$\pi(\mathrm{v}, \omega)=true$ for each atomic sentence $\mathrm{v}$ ;

(ii) $\models_{\mathrm{t}v}^{\mathcal{M}}\mathrm{T}$ ;
(iii) $\models_{\omega}^{\mathcal{M}}\varphiarrow\psi$ if and only if $\models_{\omega}^{\lambda 4}\varphi$ implies $\models_{\omega}^{\mathcal{M}}\psi$ ;
(iv) $\models_{\omega}^{\mathcal{M}}\square _{i}\varphi$ if and only if

$\emptyset\neq P_{i}(\omega)\subseteq||\varphi||^{\lambda 4}.=\{\xi \mathrm{d}\mathrm{e}\mathrm{f}\in\Omega|\models_{\xi}^{\mathcal{M}}\varphi\}$ , for $i=1,2$ ;
$.(\mathrm{v})$

$\models_{v}^{\mathcal{M}}‘\square _{E}\varphi$ if and only if
$\emptyset\neq P_{E}(\omega).\cdot=\bigcap_{i=1},{}_{2}P_{i}(\omega)\mathrm{d}\mathrm{e}\mathrm{f}\subseteq||\varphi||^{\mathcal{M}}$.
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4. UNIQUENESS OF DOMINANT ACTIONS

4.1. Let $M_{L}$ be the class of all models for a system $L$ and $M_{L}^{sym}$ the
subclass of $\mathcal{M}=$ $\langle.., (V_{i})_{i=1,2}, ..\rangle$ with $V_{1}(a, b;\omega)=V_{2}(b, a;\omega)$ for all
$a,$ $b\in A$ . We denote $\models_{M_{L}^{\epsilon ym}}\varphi$ when $\models_{\omega}^{\lambda 4}\varphi$ for all $\mathcal{M}\in M_{L}^{sym}$ and for
all $\omega\in \mathcal{M}$ .

4.2. We will show the uniqueness theorem on dominant actions:
Proposition 1. (Matsuhisa and Hirase [7]:) For a system for utility
maximizers $L$ we obtain that

$\models_{M_{L}^{sym}}\square _{E}(\mathrm{d}\mathrm{o}\mathrm{m}_{1}(\mathrm{a}_{k})\wedge \mathrm{d}\mathrm{o}\mathrm{m}_{2}(\mathrm{a}_{l}))arrow \mathrm{a}_{k}=\mathrm{a}_{l}$ .

That is: If all players believe that each takes his dominant action then
they cannot agree to disagree.

Proof. Let $\mathcal{M}\in \mathrm{M}^{sym}$ . Set $d_{i}$ : $2^{\Omega}arrow 2^{A}$ by
$d_{i}(E)=\{v_{\mathcal{M}}(\mathrm{a})\in A|E\subseteq||\mathrm{d}\mathrm{o}\mathrm{m}_{i}(\mathrm{a})||^{\mathcal{M}}\}$ .

We can plainly verify the three properties:

(1) $d_{i}(E)\subseteq d_{i}(F)$ if $E\supseteq F$. (by definition of $d_{i}$ )
(2) $|d_{i}(E)|\leq 1$ if $E\neq\emptyset$ , (because $V_{i}(\cdot,$ $\cdot;\omega)$ is injective.)
(3) $d_{1}(E)=d_{2}(E)$ , (because $V_{1},$ $V_{2}$ are symmetric.)

$\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e}\models_{\omega}^{\mathcal{M}}\square _{E}(\mathrm{d}\mathrm{o}\mathrm{m}_{1}(\mathrm{a}_{k})\wedge \mathrm{d}\mathrm{o}\mathrm{m}_{2}(\mathrm{a}_{l}))$ . Then we obtain
$\models_{\omega}^{\mathcal{M}}\coprod_{i}\mathrm{d}\mathrm{o}\mathrm{m}_{i}(\mathrm{a}_{m})$ for $m=k,$ $l$ .

It follows from the properties (1), (2), (3) that
$\{v_{\mathcal{M}}(\mathrm{a}_{k})\}=d_{1}(P_{1}(\omega))(1)(1),$

(2)
$=d_{1}(P_{E}(\omega))$

$(3)=d_{2}(P_{E}(\omega))(1),$
(2)

$(1)=d_{2}(P_{2}(\omega))=\{v_{\mathcal{M}}(\mathrm{a}_{l})\}$ .

Thus we obtain that $v_{\Lambda 4}(\mathrm{a}_{k})=v_{\mathrm{A}4}(\mathrm{a}_{l})$ , and so $\models_{\omega}^{\mathcal{M}}\mathrm{a}_{k}=\mathrm{a}_{l}$ .
$\square$

4.3. Remarks.
(i) A model $\mathcal{M}$ is actually a model of belief because it does not satisfy
the axiom:

$\mathrm{T}$ : $B_{i}(F)\subseteq F$.
(See Example 2.)

(ii) There is no role of common-belief in Proposition 1.
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(iii) The weak statement is not true that

$\models_{M_{L}^{\epsilon ym}}\square _{1}\mathrm{d}\mathrm{o}\mathrm{m}_{1}(\mathrm{a}_{1})\wedge\square _{2}\mathrm{d}\mathrm{o}\mathrm{m}_{2}(\mathrm{a}_{2})arrow \mathrm{a}_{1}=\mathrm{a}_{2}$ .

In fact, we can plainly observe that Example 2 gives its counter example.

5. THEOREMS

5.1. Logic for utility maximizers. By this we mean the least exten-
sion of $L$ , denoted by $L^{um}$ , that contains the axiom

(UDA) $\coprod_{E}(\mathrm{d}\mathrm{o}\mathrm{m}_{1}(\mathrm{a}_{k})\wedge \mathrm{d}\mathrm{o}\mathrm{m}_{2}(\mathrm{a}_{l}))arrow \mathrm{a}_{k}=\mathrm{a}_{l}$.

It immediately follows from Proposition 1 that

Theorem 1. The logic $L^{um}$ is sound with respect to $M_{L^{um}}^{sym}$ : $i.e.$ ,

$\vdash_{L^{um}}\varphi$ $\Rightarrow$ $\models_{M_{L^{um}}^{sym}}\varphi$ .

5.2. Completeness. By the similar argument concerning about the ‘canon-
ical model’ ( $\mathrm{c}.\mathrm{f}$ . Chapter 5 in Chellas [4]) we can prove that:

Theorem 2. The system $L^{um}$ is complete with respect to $M_{L^{um}}^{sym}$ : $i.e.$ ,

$\vdash_{L^{um}}\varphi$ $\Leftarrow$ $\models_{M_{L^{um}}^{\epsilon ym}}\varphi$ .

$\square$

5.3. Finite model property. We say a model for $L$ to be finite if its
state-space is a finite set. Let $M_{L,FIN}^{sym}$ denote the subclass of all finite
models in $M_{L}^{sym}$ . Furthermore we can prove that:

Theorem 3. The system $L^{um}$ has finite model propertyj $i.e.$ ,

$\vdash_{L^{um}}\varphi$ $\Leftrightarrow$
$\models_{M_{L^{um},FIN}^{\epsilon ym}}\varphi$.

$\square$

We will give the detail proofs of Theorems 2 and 3 in the future paper
(Matsuhisa and Hirase [7]) with further discussions.
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