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Abstract.
Yen Hsu-Chun and Lin Yih-Kai showed that B\"uchi automata

represent various kinds of figures. They proved that if a figure is
represented by a deterministic B\"uchi automaton, then the area of
the figure is a rational number. This paper shows the theorem that
if a figure is represented by a non-deterministic B\"uchi automaton,
then the area of the closure of the figure is a rational number. as is
an extension of their theorem for deterministic B\"uchi automata.

1 B\"uchi Automaton
Definition 1.1 (B\"uchi Automaton) A B\"uchi automaton is defined by the
datum which is consists of five components $(\Sigma, S, \delta, s_{0}, F)$ , where each compo-
nent has the following meaning:

$\Sigma$ : alphabet, the set of symbols
$S$ : the set of states
$\delta\subset S\cross\Sigma\cross S$ : transition relation
$s_{0}\in S$ : the initial state
$F$ : the set of final states

Actually, final states are not final, but are to be visited infinitely many times.
Let $B$ be a B\"uchi automaton such as $B=(\Sigma, S, \delta, s_{0}, F)$ . Then $L(B)$ is a

subset of $\Sigma^{\omega}$ which defined as the following. For $(\sigma_{1}, \sigma_{2}, \ldots)\in\Sigma^{\mathrm{t}d}$ ,

$(\sigma_{1}, \sigma_{2}, \ldots)\in L(B)$

iff there is $(s_{1}, s_{2}, \ldots)\in S^{\omega}$ such that $(s_{i-1}, \sigma_{i}, s_{i})\in\delta$ for each $i=1,2,$ $\ldots$ , and
that there are infinitely many $i’ \mathrm{s}$ such that $s_{i}\in F$ . The set $L(B)$ is called the
language of $B$ .

Definition $1.2-(\mathrm{D}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{s}\mathrm{m})$ A B\"uchi automaton $B=(\Sigma, S, \delta, s_{0}, F)$ is
deterministic iff for each $s\in S$ and each $\sigma\in\delta$ , there exist at most one $s’\in S$

such that $(s, \sigma, s’)\in\delta$ .

Definition 1.3 (Measure over infinite words) Let $\Sigma$ be a set which con-
sists of $N$ characters. If $\mu$ is written as a measure over the set $\Sigma^{\omega}$ , then $\mu$

denotes the ordinal measure over $\Sigma^{\omega}$ , which is defined as following: We write
$(x_{1}, x_{2}, \ldots, x_{n}, *)$ for the set $\{(y_{1}, y_{2}, \ldots)\in\Sigma^{\omega}|y_{1}=x_{1}, y_{2}=x_{2}, \ldots, y_{n}=x_{n}\}$ .
Then, $\mu(x_{1}, x_{2}, \ldots, x_{n}, *)=1/N^{n}$ . Hence $\mu(\Sigma^{\omega})=1$ .
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Definition 1.4 (Closure) For $E\subset\Sigma^{\omega}$ , we write $\overline{E}$ for the closure of $E$ with
respect to the ordinal topology of $\Sigma^{\omega}$ . That is, for each $(\sigma_{1}, \sigma_{2}, \ldots)\in\Sigma^{\omega}$ ,
$(\sigma_{1}, \sigma_{2}, \ldots)\in\overline{E}$ iff for any positive integer $n$ , there exists an infinite sequence
$(\sigma_{n}’, \sigma_{n+1}’, \sigma_{n+2}’, \ldots)\in\Sigma^{\omega}$ such that $(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}, \sigma_{n}’, \sigma_{n+1}’, \ldots)\in E$

2 Representations of Figures
Definition 2.1 The sets 2, $2^{2},\mathit{2}^{3}$ is written as follows.

$\mathit{2}=\{0,1\},$ $\mathit{2}^{2}=\{|x, y\in 2\},$ $\mathit{2}^{3}=\{|x, y, z\in \mathit{2}\}$ .

The sets $2^{\omega},$ (2)
$,$ (2) is written as follows.

$\mathit{2}^{\omega}$ $=\{(x_{1}, x_{2}, \ldots)|x_{i}\in 2\}$ ,
(2) $=\{(\sigma_{1}, \sigma_{2}, \ldots)|\sigma_{i}\in 2^{2}\}$ ,
(2) $=\{(\sigma_{1}, \sigma_{2}, \ldots)|\sigma_{i}\in 2^{3}\}$ .

The sets $2^{n}$ and (2) for $n=4,5,$ $\ldots$ are defined similarly.

Deflnition 2.2 The function $\phi$ maps 2 into the unit interval $[0,1]$ such as:

$\phi:(x_{1}, x_{2}, \ldots)rightarrow\phi(x_{1}, x_{2}, \ldots)=\sum_{i=0}^{\infty}2^{-i}x_{i}$

The function $\phi$ is continuous and surjective, but not injective. The function $\phi$

also maps (2) into the unit square $[0,1]^{2}$ such as:

$\phi:(, , \ldots)\vdasharrow\phi(, , \ldots)=$

The function $\phi$ also maps a subset $E\subset(2^{2})^{\omega}$ into a subset $\phi(E)\subset[0,1]^{2}$ such
as:

$\phi(E)--\{\phi(\tilde{\sigma})|\vec{\sigma}\in E\}$ .

The functions $\phi$ over elements $\vec{\sigma}\in(2^{n})^{\omega}$ and over subsets $E\subset(2^{n})^{\omega}$ are also
defined similarly. ..
Lemma 2.3 (Cascade Product) Let $B$ and $B’$ be B\"uchi automata with $2^{2}$

as their alphabet. Then there is a B\"uchi automaton $B”$ which satisfies the
following:

$(, , \ldots)\in L(B’’)$
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iff there is $(z_{1}, z_{2}, \ldots)\in \mathit{2}^{\omega}$ such that

$( , , \ldots)\in L(B)$ and $( , , \ldots)\in L(B’)$ .

In the case of the previous lemma, we call $B”$ $a$ cascade product of $B$ and $B’$ .

Remark 2.4 Cascade products are defined not only for automata with $\mathit{2}^{2}$ as
their alphabet, but also for automata with $\mathit{2}^{3}$ , or sets of higher dimension, as
their alphabets.

Lemma 2.5 There is a B\"uchi automaton $B_{0}$ such that

$(, , \ldots)\in L(B_{0})$ iff $\phi(x_{1}, x_{2}, \ldots)=\phi(y_{1}, y_{2}, \ldots)$ .

Remark 2.6 For each B\"uchi automaton $B$ with $\mathit{2}^{n}$ as its alphabet, there is a
B\"uchi automaton $B’$ such that $\tilde{\sigma}\in L(B’)$ iff $\phi(\tilde{\sigma})\in\phi(L(B))$ . This $B’$ is made
as a cascade product of $B$ and $n$ duplications of $B_{0}$ of Lemma 2.5.

Put $n=2$ especially. For this $B’$ above, it holds that if $\phi(x_{1}, x_{2}, \ldots)=$

$\phi(x_{1}’,$ $x_{2}’$ , ... $)$ and $\phi(y_{1}, y_{2}, \ldots)=\phi(y_{1}’, y_{2}’, \ldots)$ , then

$(, , \ldots)\in L(B’)$ iff $(, , \ldots)\in L(B’)$ .

Theorem 2.7 (Afflne bansformation) For each B\"uchi automaton $B$ with
$\mathit{2}^{2}$ as its alphabet, and for each $\mathit{2}\cross B$-matrix $A$ over rational numbers, there is a
B\"uchi automaton $B’$ such that $\phi(L(B’))=A(\phi(L(B)))$

Proof. In $[\mathrm{J}\mathrm{S}’ 99]$ . I

Theorem 2.8 (Non-representability of Circles) There is no B\"uchi au-
tomaton $B$ such that $\phi(L(B))$ is a circle.

Proof. In $[\mathrm{J}\mathrm{S}’ 99]$ . 1

Definition 2.9 (Measure over real numbers) If $\mu$ is written as a measure
over the interval $[0,1]$ , then $\mu$ denotes the ordinal Lebesque measure over $[0,1]$ .

Similarly, if $\mu$ is written as a measure over an interval $[0,1]^{n}$ , then $\mu$ denotes
the ordinal Lebesque measure over $[0,1]^{n}$ .

Lemma 2.10 The function $\phi$ preserves $\mu$ . That is, for any subset $E\subset 2^{\omega}$ ,
$\mu(\phi(E))=\mu(E)$ .

Lemma 2.11 The function $\phi$ preserves the closure operation. That is, for any
subset $E\subset 2^{\omega},$ $\phi(\overline{E})=\overline{\phi(E)}$.
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3 Measure of Languages
Theorem 3.1 (Lin&Yen ’00) For a deterministic B\"uchi automaton $B$ , the
measure of the language $\mu(L(B))$ is rational.

Proof. In [Lin&Yen’OO]. I

Remark 3.2 Lin and Yen proves the theorem above by the property of Markov
chains. A deterministic B\"uchi automaton is regarded as a Markov chain in
their proof. Unfortunately, their method cannot be applied to non-deterministic
B\"uchi automata. We prove the theorem only on the closures of the languages
of non-deterministic B\"uchi automata. A characterisation for the measure of the
languages of non-deterministic B\"uchi automata is still open.

Lemma 3.3 For any B\"uchi automaton $B$ , we can construct a deterministic
B\"uchi automaton $\overline{B}$ such that $\overline{L(B)}=L(\overline{B})$ .

Theorem 3.4 (Main Result) For each B\"uchi automaton $B$ , the measure of
the closure of the language $\mu(\overline{L(B)})$ is rational.

Proof. By Theorem 3.1 and Lemma 3.3 above. 1

Corollary 3.5 For each B\"uchi automaton $B$ with $\mathit{2}^{2}$ as its character set, the
area of the closure $\overline{\phi(L(B))}$ is rational.
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