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Abstract

We have introduced a new controlled DTOL system, called a word
length controlled DTOL system, or a wlcDTOL system for short. A
wlcDTOL system is a DTOL system with a control function which maps
from the set of nonnegative integers to the set of tables. A wlcDTOL
system derives exactly one word from a given word by iterating the
table which is the value of the control function of the length of the
given word. Thus a wlcDTOL system generates a sequence of words
which starts from the axiom. In this paper we prove that a wlcDTOL
system with a periodic control function generates a finite combination
of DOL sequences.

1 Introduction

In this paper we will discuss farther property of word length controlled (or
wlc for short) DTOL systems which have been first introduced in [5]. We
prove that a wlcDTOL system with a periodic control function generates a
finite combination of DOL sequences.

We briefly explain the motivation of introducing the wlcDTOL systems.
M. Andragiu, et al. have suggested the idea that a slender languages, which
has at most k words of the same length for some nonnegative integer k, can
be used as a key of a cryptosystem [1]. Then many researchers have inves-
tigated slenderness condition of known language families eagerly. Slender
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. context-free languages are characterized by L. Ilie [3, 4]. Slender context-
free languages have the form Uﬁnite{uviwwiy |72 > 0} and are easily inferable
[11]. G. Piun and A. Salomaa have proved that all DOL languages are slen-
der [8]. There are some other subfamilies of OL languages which consist of
slender languages only [6, 7, 2]. But all known slender languages in these
subfamilies have periodic structures, which are fatal weakness as a key of
cryptosystems. So we seek new language families which contain complex,
preferably like random sequences, languages. The wlcDTOL systems are
good candidates for keys of cryptosystems.

2 Preliminaries

Let ¥ be a finite alphabet. The element of ¥ is called a letter. The set of
all finite words over ¥ including the empty word ) is denoted by ¥*. For a
word w € T*, the length of w is denoted by |w|. Let a be a letter in ¥. We
denote by |w|, the number of occurrences of a in w.

Let ¥ = {a1,...,a,} be a finite alphabet and let w € £*. The Parikh
vector w of w is an n-dlmensmna,l vector given by

= (|w|a1" ) ‘wlan)'

Let S be an arbitrary set. The cardinality of S is denoted by card(S).

We denote by N the set of nonnegative integers and N the set of positive
integers.

Let ¥ and T be finite alphabets. A mapping h from ¥* to I'* is said to
be a morphism if h satisfies

h(uv) = h(u)h(v)

for‘ every u,v € X*. A morphism from ¥* to ¥* is called a morphism over
Y. A morphism h is said to be M-free if for every a € X, h(a) # A. Let h be
a morphism over ¥. For every n € N and w € ¥*, h™ is defined by

R(w) = w and
R*(w) = h(h" Y(w)) forn > 0.

A triplet G = (X, h, w) is said to be a DOL system if ¥ is a finite alphabet,
h is a morphism over ¥, and w € ¥*. A DOL system G generates a sequence
of words (w;) where w; = h*(w). A DOL system is called a PDOL system if
h is A-free.
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A triplet G = (3,11, w) is said to be a DTOL system if ¥ is a finite
alphabet, II is a finite set of morphisms over ¥, and w € ¥*. A DTOL
system G generates a set of words W}, in k steps for k € N as follows:

W — {w} ifk=0
k= {u|u=hy-- hg(w) where hy,...,hy € II} otherwise

So there may be at most ¢* words which are generated in k steps where
¢ = card(I). A DTOL system is called a PDTOL system if every morphism
in II is A-free.

We assume the reader is familiar with the rudiments of formal language
theory and theory of L systems, see, for example, [9, 10].

3 Definitions of word length controlled DTOL sys-
tems |

A word length controlled DTOL system first appears in [5]. Here we give the
definition.

Definition 1 A word length controlled DTOL system, or a wlcDTOL sys-
tem for short, is a 4-tuple (X,I,w, f) where ¥ is a finite alphabet, T is a
set of morphisms over ¥ called the set of tables, w € * is the aziom, and
f ts a partial recursive function from N to II called the control function.

A derivation by a wlcDTOL system is defined as follows. -

Definition 2 Let G = (X, II,w, f) be a wlcDTOL system. Let xz and y be
words over ¥. Then G directly derives y from z if y = f(|z])(z). If f(|z|)
s not defined, then G derives nothing from x.

By Definition 2, a wlcDTOL system G = (X, I, w, f) generates a sequence
of words w = wg, w1, ...,w;,... which is given by w;r1 = f(jw;|)(w;) for
i € N. The sequence (w;) is called the sequence generated by G.

A wlcDTOL system G = (X, I1, w, f) is said to be a wlcPDTOL system if
every morphism h € II is A-free. :

Now we give an example of a wicPDTOL system.

Example 1 Let G = ({4, a,b},{h1,h2}, A, f) be a wlcPDTOL system where

hl(A) = a’A, hl(a‘) =a, hl(b) = ba
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hZ(A) = bA’ h2(a') = b, h2(b) =a

and h ifn ' ;
__[h1 ifn is a prime number
fln) = { hy otherwise '

The first few words in the sequence generated by G is as follows:
wo = A, wy = hy(A) = bA, we = hyi(wy) = baA, ws = hi(ws2) = baaA,

Wy = h2 ('Ll)3) = abbbA, Wy = h1 (w4) = abbbaA, We = hg (w5) = baaabbA,
wy = hy(wg) = baaabbaA,....

Since f is a total recursive function, the sequence (w;) is infinite. We cannot
characterize (w;) because we do not have an entire characterization of prime
numbers.

4 Periodic control function

In this section we consider a wlcDTOL system with a periodic control func-
tion. Our goal is to establish Theorem 1, which insists the sequence gener-
ated by a wlcDTOL system with a periodic control function is made of finite
number of DOL sequences. First we define this concept clearly.

Definition 3 Let G = (X, I, w, f) be a wlcDTOL system and let (w;) be
the sequence generated by G. The sequence (w;) is said to be a finite com-
bination of DOL sequences if there are k DOL systems G; = (E,hj,u(j))
(7 =0,1,...,k—1) and a nonnegative integer ny such that for every n > ny,
there exist 0 < p and 0 < j < k — 1 satisfying

n=ng+pk+j and w, =u1()j)
where u},j ) is the p-th word in the sequence generated by G ;.

Example 2 Let G = ({a,b,c}, {h1,ha},a, f) be a wleDTOL system in which
hl(a) = a'ba hl (b) = bC, h1 (C) =G,

ho(a) =a, ha(b) = ha(c) = X and

_[h ifn<10
f(”)‘{h; ifn>10"
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Then G is a finite combination of DOL sequences generated by DOL systems
G; = {{a,b,c},hyw;) (i=1,...,5) where

and
w) =a, we=ab, ws=abbc, w4 = abbcbcc, ws = abbcbccbcce,
because the sequence generated by G begins

a, ab, abbc, abbcbee, abbcbccbccc, Gyoo..

The next example shows another wlcDTOL system of finite combination
of DOL sequences.

Example 3 Let G = ({a,b},{h1, ha},a, f) be a wlcDTOL system where
hi(a) = ba, hi(b) = ab, ho(a) = a, ha(b) = ab

and
hi ifx=2m+1 (odd number)

fla) = { ho if x = 2m (even number)
The first few words generated by G is

a ba
aba baabba
abaaababa baabbababaabbaabba

Then there are two DOL systems G1 = ({a,b}, g1, a) and G2 = ({a, b}, g2, ba)
such that |
g1(a) = aba, g1(b) = aabd

and
g2(a) = ba, g2(b) = baab.

Now 1t is obvious that the sequence generated by G is a finite combination
of the DOL sequences generated by G1 and G.

The control functions of the wlcDTOL systems in the above examples
are periodic. We can generalize these examples as follows.
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Theorem 1 Let G = (X, I1,w, f) be a wicDTOL system. If f is ultimately
periodic, that is, there exist positive inlegers ng and p such that for every
integer n > ng, f(n) = f(n+ p) holds, then the sequence (wy) generated by
G is a finite combination of DOL sequences.

Proof. Let ¥ = {ai1,a2,...,0;} and II = {hy,hy,...,h}. Let M; (i =
1,2,...,k) be the growth matrix corresponding to h;, that is, the pq element
apg of M; is given by apq = |hi(ap)|a,- Let (wn) be the sequence generated
by G and let m, be the Parikh vector of w,. Let 7, and M; be the image
of m, and M; to the residue class ring of modulo p, that is, the i-th element
T; of 7, satisfies T; = x; mod p where z; is the i-th element of =, for every
1 =1,...,0 and @pq of M; satisfies Gpq = Gpqg mod p where a,, is the pg
element of M;. : ,

Now it is obvious that for every z,y > ng £ = y mod p if and only if
f(z) = f(y). For every n > ngy we have

and
T+l = TnMp(jw,))-

Since 7, vary over a finite set, there exist integers n > ng and kg < p' such
that 7, = Tp1k,. Therefore we have that |w,| = |wp4k,| mod p because
|wn| = mpn where 7 is the column vector n = (1,1,...,1)T. Now we have
the equation

f(lwnl) = f('wn+k0|)°

Then we have

Tntkotl = TntkoMf(jwpys,l)

= TnMf(jw,|)

= Tnt1-

This means that the sequence (|wy/| mod p) has period kg for n’ > n. Let
k1 be the least common multiple of &y and p. Then for every 0 < j < k; the
same morphism is iterated to wyy 4k, for every ¢ > 0. This completes the
proof. [I :

We note that the reverse of Theorem 1 is not true. For example the
wlcDTOL system G = ({a, b}, {h1, h2}, a, f) where f is given by

f(n) = hi1 if n is not a prime number
~ | hy if nis a prime number
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and h; and hy are given by
hi(a) = ha(a) = ab, hi1(b) = ha(b) =b

is an instance of counter-examples because the sequence generated by G is a
finite combination of DOL sequences but the control function is not periodic.

There is another related question of Theorem 1, that is, for every DOL
sequences (u; (0 )), . (u(k 1)) whether or not there exists a wicDTOL system
G such that the sequence generated by G is a finite combination of the
given DOL sequences. The answer is no. The DOL sequences (a%,a?,...) and
(a3,a?,...) which are generated by DOL systems ({a}, k,a?) and ({a} h,a3)
with h(a) = g serve an example. Since no morphisms map a? to a3 nor a3 to

a?, there are no wlcDTOL systems which generate the sequence (...,a% a3,

a?,a3,...). This example shows that the finite language {a?, a3} cannot be

generated by any wlcDTOL system.
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