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1 Introduction
The purpose of this paper is to study the relationship between the exact WKB analysis
and integral representations of solutions for the following ordinary differential equations
of Laplace type with a large parameter $\eta>0$ :

(1) $P \psi=(\frac{d^{m}}{dx^{m}}+(cm-1x+dm-1)\eta\frac{d^{m-1}}{dx^{m-1}}+\cdots+(C_{0^{X+}}d_{0})\eta)m\psi=0$ ,

where $c_{j}$ and $d_{j}$ are complex constants.
In contrast with the case of second-order equations (cf., for example, [V], [CNP],

[DP], [KT] $)$ , establishment of the exact WKB analysis for higher-order linear ordinary
differential equations has not been accomplished yet: To give a complete description of
the Stokes geometry (i.e., configuration of Stokes curves) for higher-order equations is
still an open problem (cf. [BNR], [AKTI], [AKT2], [A]). However, for equation (1) we
have an integral representation of solutions via the Fourier-Laplace transformation and
the steepest descent method for such an integral representation enables us to analyze
the Borel transform of WKB solutions. In this paper, dealing with the problem by using
differential equations, we try to clarify the relationship between the Borel resummed
WKB solutions and the integral representation to obtain a characterization of Stokes
curves for (1).

Integral representations have been employed by many authors in doing asymptotic
analysis of particular examples like Bessel functions (cf. [O] and references cited there).
Among others we here refer to the following three works all of which are closely related
to our point of view: Uchiyama’s study ([U1], [U2]) of several examples of Stokes
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phenomena, the work of Shudo and Ikeda $([\mathrm{S}\mathrm{I}1], [\mathrm{S}\mathrm{I}2])$ on chaotic tunneling and Stokes
phenomena for some quantum complex dynamics, and hyperasymptotic analysis for
integrals due to Berry and Howls ([BH], [H] etc.).

Now the plan of this paper is as follows: We first review the exact WKB analysis
for linear ordinary differential equations briefly in \S 2, and then explain an integral
representation of solutions for equation (1) in \S 3. In \S 4 we discuss the Airy equation, the
simplest example of the Laplace-type equations, to illustrate the relationship between
the exact WKB analysis and the integral representation. Finally in \S 5 and \S 6 we
formulate and prove our main results, which relate the Borel resummed WKB solutions
with the integral representation, and consequently obtain a characterization of Stokes
curves for (1).

The author would like to express his heartiest thanks to Professor T. Kawai and
Professor T. Aoki for their many valuable suggestions and the stimulating discussions
with them. This work is supported by Japan Society for the Promotion of Science under
Grant-in-Aid for Encouragement of Young Scientists (No. 11740087).

2 WKB solutions &Stokes curves
First of all, let us recall some basic notions and notations used in the exact WKB
analysis for equation (1).

A WKB solution of (1) is a solution of the following form:

(2) $\psi=\exp(\int^{x}(\eta s_{-1}(X)+S_{0}(X)+\eta-1s1(X)+\cdots)dx)$ .

Such a solution can be readily constructed by substituting (2) into (1). In particular,
$s_{-1}(x)$ is a root of the algebraic equation (“ $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{S}\mathrm{t}\mathrm{i}_{\mathrm{C}}$ equation”)

(3) $\xi^{m}+(_{C}m-1x+d)m-1\xi m-1+\cdots+(c0x+d0)=0$ ,

while the other coefficients $S_{n}(x)(n\geq 0)$ are uniquely determined in a recursive manner.
Letting $\xi_{j}(x)(j=1, \ldots, m)$ denote the roots of (3), we thus find that there exist $m$

WKB solutions $\psi_{j}$ with the top term $s_{-1}(x)=\xi_{j}(x)$ . In this paper we use $\eta^{-1/2}\psi$ (in
place of $\psi$ ) as WKB solution of (1) and denote by $\psi_{j}$ a solution of the form

(4) $\psi_{j}$ $=$ $\eta^{-1/2}\exp\int^{x}(\eta S_{-}1(X)+s0(_{X})+\eta^{-1}s1(x)+\cdots)dX$

$=$ $\exp(\eta\int^{x}\xi_{j}(x)dX)\sum_{n=0}^{\infty}\psi_{n}^{(j})(X)\eta-(1/2+n)$ ,

as it is more convenient when we discuss its Borel transform and Borel sum below.
WKB solutions are, in general, not convergent. To give an analytic meaning to

them, we employ the Borel resummation technique in the exact WKB analysis. That
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is, for an infinite series $\psi=\exp(\eta y0(x))\sum_{n}\geq 0\psi n(X)\eta-(n+\alpha)(\alpha\not\in \mathbb{C}\backslash \mathbb{Z})$ we define its
Borel transform (denoted by $\psi_{B}$ or $B\psi$ here and in what follows) by

(5) $\psi_{B}(x, y)$ (or $B\psi(_{X},$ $y)$ ) $= \sum_{n=0}^{\infty}\frac{\psi_{n}(_{X)}}{\Gamma(n+\alpha)}(y+y0(_{X)})n+\alpha-1$ ,

and further, if the Laplace integral

(6) $\int_{-y_{0}(x}^{\infty})de-\eta y\psi_{B}(X, y)y$

(where the path of integration is taken to be parallel with the positive real axis) is
well-defined, we regard the interal (6), which is called the Borel sum, as an analytic
substitute of $\psi$ .

As is clear from the above definition, when a singular point of the Borel transform
meets the path of integration of (6), the Borel sum of a WKB solution is not well-
defined and presents the so-called Stokes phenomenon there. To describe where the
Borel resummed WKB solutions present Stokes phenomena, we introduce the following
terminologies:

Definition 1 (i) A turning point is, by definition, a point where the characteristic
equation (3) has a multiple root, i.e., a zero of the discriminant of (3).
(ii) A real 1-dimensional curve (in the $x$-plane) defined by the following equation is
called a Stokes curve:

(7) $s^{\infty} \int_{a}^{x}(\xi_{j}(x)-\xi_{j’(_{X))d}}x=0$,

where $\xi_{j}(x)$ and $\xi_{j’}(x)$ are two roots of (3) that merge at a turning point $x=a$ .

In the case of second-order equations the whole of Stokes curves thus defined coincides
with the set where the Borel resummed WKB solutions present Stokes phenomena. In
the case of higher-order equations, applying the local theory near a (simple) turning
point developed in [AKTI], we can also find that Stokes phenomena are occurring on a
Stokes curve in a sufficiently small neighborhood of a (simple) turning point. However,
as is pointed out by Berk et al. ([BNR], cf. [AKTI] also), Stokes phenomena may occur
on some other curves different from the above Stokes curves for m-th order equations
where $m\geq 3$ .

One of the goals of this paper is to give a characterization of the set where the Borel
resummed WKB solutions present Stokes phenomena ( $‘(\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$ Stokes curves” or “effective
Stokes curves”) for equation (1) by using the integral representation of solutions.
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3 Integral representation
The Fourier-Laplace transformation with a large parameter

(8) $\hat{\psi}(\xi)=\int\exp(-\eta x\xi)\psi(X)dx$ , $\psi(x)=\int\exp(\eta x\xi)\hat{\psi}(\xi)d\xi$

transforms equation (1) into the following first-order differential equation:

(9) $\hat{P}\hat{\psi}^{\mathrm{d}\mathrm{e}\mathrm{f}}=\eta m-1(-C(\xi)\frac{\partial}{\partial\xi}-C’(\xi)+\eta D(\xi)\mathrm{I}\hat{\psi}=0$ ,

where

(10) $C(\xi)=c_{m-1}\xi m-1+\cdots+C0$ , $D(\xi)=\xi^{m}+d_{m-}1\xi m-1+\cdots+d_{0}$ .

Hence, by solving (9) explicitly, we can readily obtain the following integral represen-
tation of solutions of equation (1):

(11) $\psi(x)=\int e^{\eta(x\xi+(}g\xi))_{\frac{1}{C(\xi)}d\xi}$ ,

where $g(\xi)$ is a function satisfying $dg/d\xi=D(\xi)/C(\xi)$ .
The integral representation (11) is an integral containing a large parameter $\eta$ with

the phase function

(12) $f(x, \xi)=X\xi+g(\xi)$ .

(Note that $x$ should be regarded just as a parameter here.) Its asymptotic behavior for
$\etaarrow\infty$ can be analyzed by applying the saddle point method or the steepest descent
method to (11). Let us here recall the definition of saddle points and that of steepest
descent paths:

Definition 2 (i) A saddle point of (11) (or a saddle point of $f(x,$ $\xi)$ ) is a non-degenerate
critical point of $f(x, \xi)$ , i.e., a point where $\partial f/\partial\xi=0$ and $\partial^{2}f/\partial\xi^{2}\neq 0$ are satisfied.
(ii) A steepest descent path of (11) (or a steepest descent path of $\Re f(x,$ $\xi)$ ) is a solution
curve of the vector field

(13) $- \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{(\sigma,\mathcal{T})}\Re f(x, \xi)=-(\frac{\partial(\Re f)}{\partial\sigma},$ $\frac{\partial(\Re f)}{\partial\tau})$

(or, equivalently, $(-\partial(^{\mathrm{G}}sf)/\partial\tau,$ $\partial(\alpha Sf)/\partial\sigma)$ , the Hamilton vector field of $s^{\infty}f(X,$ $\xi)$ ), where
a and $\tau$ respectively denote the real part and the imaginary part of $\xi$ .

Let $\Sigma_{\mathrm{s}\mathrm{a}\mathrm{d}}$ denote the set of saddle points of (11). Since

(14) $\frac{\partial f}{\partial\xi}=x+\frac{dg}{d\xi}=x+D(\xi)/C(\xi)$,

the roots $\{\xi_{j}(x)\}_{j=}1,\cdots,m$ of (3) are the saddle points of (11), i.e.,
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Lemma 1

(15) $\Sigma_{\mathrm{s}\mathrm{a}\mathrm{d}}=\{\xi_{1}(x), \cdots, \xi_{m}(x)\}$ .

(Here and in what follows we consider the problem in a generic situation, that is, we
assume that the roots of $C(\xi)=0$ and those of $D(\xi)=0$ are mutually distinct and
further that every $\xi_{j}(x)$ is a simple root of (3).) On the other hand, letting $\Sigma_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}$ denote
the set of singular points of the integrand of (11), we find

(16) $\Sigma_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}=$ {zeros of $C(\xi)$ } $\cup\{\infty\}$ .

As we will see later, the steepest descent method for the integral representation (11)
is closely related to the exact WKB analysis of equation (1). To illustrate this close
relationship, we first discuss the Airy equation in the subsequent section.

4 An example
The Airy equation

(17) $( \frac{d^{2}}{dx^{2}}-\eta^{2_{X}})\psi_{=0}$

is the simplest example of Laplace-type equations (1). In this case, since $C(\xi)=-1$

and $D(\xi)=\xi^{2}$ , the phase function is given by $f(x, \xi)=x\xi-\xi^{3}/3$ and the integral
representation (11) becomes the following:

(18) $\psi(x)=Ie-\xi^{3}/3)d\eta(x\xi\xi$ .

(The insignificant minus sign has been omitted here.) There exist two saddle points:
$\xi=\pm x^{1/2}$ . In what follows, as there is no essential difference between them, we take up
a saddle point $\xi=x^{1/2}$ and consider the integral (18) along the steepest descent path
$\Gamma$ passing through $\xi=x^{1/2}$ .

Employing a change of variable defined by $y=-f(x, \xi)=-x\xi+\xi^{3}/3$ , we rewrite
the integral (18) along $\Gamma$ in the following manner (cf. Figure 1):

(19) $\psi(x)$ $=$ $\int_{\Gamma}e^{\eta(x\xi-}d\xi 3/3)\xi$

$=$ $\int_{\Gamma}e^{-\eta y}[(\frac{dy}{d\xi})^{-1}|_{\Gamma}+-(\frac{dy}{d\xi})^{-1}|_{\Gamma_{-}}]dy$

$=$ $\int_{\Gamma}e^{-\eta y}[\frac{1}{\xi^{2}-x}|_{\xi=\xi()}+x,y-\frac{1}{\xi^{2}-x}|_{\xi=\xi_{-}()}x,y]dy$.
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$\llcorner \mathbb{C}_{y}$

$y=y(x, \xi)$
$\tilde{\Gamma}$

$\xi=\xi_{\pm}(x, y)$
$- \frac{2}{3}x\mathrm{s}/2$

$-x^{1}/2$

Figure 1

Note that, since $\xi=x^{1/2}$ is a non-degenerate critical point of $f(x, \xi)$ , two steepest
descent paths (denoted by $\Gamma_{\pm}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\iota \mathrm{y}$, cf. Figure 1) emanate from $x^{1/2}$ and the
inverse change of $y=-f(x, \xi)$ has two branches $\xi=\xi_{\pm}(x, y)$ with the following Puiseux
expansion there:

(20) $\xi_{\pm}(x, y)=x^{1/2}\pm_{\frac{1}{x^{1/4}}}(y+\frac{2}{3}x^{3}\mathrm{I}/2+1/2\ldots$

The change of variable $y=-f(x, \xi)$ and its inverse enjoy the following homogeneity:
Letting $\zeta$ and $s$ denote $\xi/x^{1/2}$ and $(3y)/(4x^{3/2})+1/2$ respectively, we find that the
inverse change $\zeta_{\pm}=\zeta_{\pm}(s)$ corresponding to $\xi_{\pm}(x, y)$ becomes an algebraic function of
one variable $s$ determined by the equation $\zeta^{3}-3\zeta-4_{S}+2=0$ . Having this homogeneity
in mind, we denote the following functions by $\varphi_{\pm}(S)$ :

(21) $\varphi_{\pm}(s)=\frac{1}{(\zeta_{\pm}(s))^{2}-1}=\frac{x}{(\xi_{\pm}(_{X},y))^{2}-x}$ .

It follows from (20) that the difference $\varphi_{+}-\varphi$-has the Puiseux expansion

(22) $\varphi_{+}-\varphi_{-}=\frac{\sqrt{3}}{2}s^{-1/2}x(s)$ , $\chi(s)=1+\cdots$

at $s=0$ . Note that $\chi(s)$ is holomorphic at $s=0$ (i.e., it does not contain any term with
half-integral powers) since $\varphi_{+}-\varphi_{-}\mathrm{b}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{S}-(\varphi_{+}-\varphi_{-})$ after the analytic continuation
along a tiny circle turning around $s=0$ . Now, by a straightforward computations, we
can verify that both $\varphi\pm(s)$ satisfy

(23) $(s(1-s) \frac{d^{2}}{ds^{2}}+(\frac{3}{2}-3S)\frac{d}{ds}-\frac{8}{9})\varphi_{\pm}=0$ .
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This is Gauss’ hypergeometric differential equation with parameters $(\alpha, \beta, \gamma)=(2/3$ ,
4/3, 3/2). Hence, in view of (22) and Kummer’s list of solutions of the hypergeometric
equation (cf. [BMP, \S 2.9]), we obtain

(24) $\varphi_{+}-\varphi_{-}=\frac{\sqrt{3}}{2}s^{-1/2}F(\frac{1}{6}, \frac{5}{6}, \frac{1}{2},\cdot s)$ ,

where $F(\alpha, \beta, \gamma;z)$ denotes Gauss’ hypergeometric function. That is,

(25) $\frac{1}{\xi^{2}-x}|_{\xi=\xi(x}+,y)-\frac{1}{\xi^{2}-x}|_{\xi=\xi_{-}(x,y)}=\frac{\sqrt{3}}{2}\frac{1}{x}[s^{-1/2}F(\frac{1}{6}, \frac{5}{6}, \frac{1}{2};S)]|_{s=(3y})/(4x/23)+1/2$

The right-hand side of (25) is (a constant multiple of) the Borel transform of a WKB
solution of the Airy equation (17) (cf. $[\mathrm{K}\mathrm{T},$ \S 2.2]). We thus conclude that in the case
of the Airy equation the integral representation (19) along the steepest descent path
passing through a saddle point gives the Borel sum of a WKB solution.

5 Relationship between exact WKB analysis and
steepest descent method for the integral repre-
sentation

In this section we try to generalize the result for the Airy equation proved in the preced-
ing section and establish the correspondence between the Borel resummed WKB solu-
tions and the integral representation along the steepest descent paths passing through
saddle points for the Laplace-type equations (1).

Similarly to the preceding section, we take up a saddle point $\xi=\xi_{j}(x)$ and employ
a change of variable defined by $y=-f(x, \xi)=-(x\xi+g(\xi))$ to rewrite the integral (11)
along the steepest descent path $\Gamma^{(j)}$ passing through $\xi=\xi_{j}(x)$ in the following manner:

(26) $\psi(x)$ $=$ $\int_{\Gamma^{(j)}}e^{\eta}(x\xi+\mathit{9}(\xi))_{\frac{1}{C(\xi)}d\xi}$

$=$ $\int_{\Gamma^{(j)}}e^{-}\eta y[(C(\xi)\frac{dy}{d\xi})-1|_{\Gamma_{+}^{(j)}}-(C(\xi)\frac{dy}{d\xi})-1|_{\Gamma_{-}^{(j)}}]dy$

$=$ $- \int_{\Gamma^{(j)}}e^{-\eta}y[\frac{1}{C(\xi)_{X+}D(\xi)}|_{\xi=\xi_{+}(y)}x,-\frac{1}{C(\xi)_{X+}D(\xi)}|_{\xi=\xi_{-(}}x,y)]dy$,

where $\tilde{\Gamma}^{(j)}$ is a path emanating from $-y_{j}(x)\mathrm{d}\mathrm{e}\mathrm{f}=-f(X, \xi_{j(}X))$ and running parallel with
the positive real axis. Let us denote the following functions by $\varphi_{\pm}(x, y)$ :

(27) $\varphi_{\pm}(x, y)=-\frac{1}{C(\xi)x+D(\xi)}|_{\xi=\xi}\pm(x,y)$
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As a genaralization of (23), we can verify that both $\varphi_{\pm}(x, y)$ satisfy some partial dif-
ferential equation. To make the statement more specific, we introduce the following
notations:

(28) $P_{B}$ $=$ $\frac{\partial^{m}}{\partial x^{m}}+(c_{m}-1^{X}+dm-1)\frac{\partial^{m}}{\partial_{X^{m-1}}\partial y}+\cdots+(c_{0}X+d_{0})\frac{\partial^{m}}{\partial y^{m}}$ ,

(29) $\hat{P}_{B}$
$=$ $\frac{\partial^{m-1}}{\partial y^{m-1}}(-C(\xi)\frac{\partial}{\partial\xi}-c/(\xi)+D(\xi)\frac{\partial}{\partial y})$ .

Then we have

Proposition 1

(30) $P_{B}\varphi_{\pm}(_{X}, y)=0$ .

Proof. As the argument is the same for both $\varphi\pm$ , we omit the $\mathrm{s}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{x}\pm \mathrm{i}\mathrm{n}$ this proof.
Using Cauchy’s integral formula, we write $\varphi(x, y)$ as

(31) $\varphi(x, y)=-\frac{1}{2\pi i}\oint\frac{1}{C(\xi)_{X+}D(\xi)}|_{\xi=\xi(y’)}x,\frac{dy’}{y’-y}$ .

Employment of a change of variable $y’=-(x\xi+g(\xi))$ then tells us that

(32) $\varphi(x, y)=-\frac{1}{2\pi i}\oint\frac{1}{C(\xi)(y+x\xi+g(\xi))}d\xi$ ,

where the integration is done along a tiny circle around $\xi^{\uparrow}$ , the point corresponding to
$y$ through the above change of variable.

Letting $\phi(\xi, z)$ denote $(C(\xi)(z+g(\xi)))^{-1}$ , we find

(33) $\hat{P}_{B,(\xi,z)}\phi(\xi, z)$ $=$ $\frac{\partial^{m-1}}{\partial z^{m-1}}\{-C(\xi)\frac{\partial}{\partial\xi}-c’(\xi)+D(\xi)\frac{\partial}{\partial z}\}(\frac{1}{C(\xi)(_{Z+}g(\xi))})$

$=$ $\frac{\partial^{m-1}}{\partial z^{m-1}}\{-\frac{\partial}{\partial\xi}(\frac{1}{z+g(\xi)})+\frac{D(\xi)}{C(\xi)}\frac{\partial}{\partial z}(\frac{1}{z+g(\xi)})\}$ $=0$ .

On the other hand,

(34) $\frac{\partial^{m}}{\partial x^{m-j}\partial y^{j}}\oint\phi(\xi, y+X\xi)d\xi=\oint(\frac{\partial}{\partial y})^{m}(\xi m-j\emptyset(\xi, y+X\xi’))|_{\xi’=\xi}d\xi$,

and

(35)

$x \frac{\partial^{m}}{\partial_{X^{m-j}}\partial yj}\oint\phi(\xi, y+X\xi)d\xi=\oint(\frac{\partial}{\partial y})^{m}(x\xi m-j\phi(\xi, y+X\xi))d\xi$

87



$= \oint(\frac{\partial}{\partial y})^{m-1}\frac{\partial}{\partial\xi’}(\xi^{m-j}\phi(\xi, y+x\xi’))|_{\xi’=\xi}d\xi$

$= \oint(\frac{\partial}{\partial y})^{m-1}(-\frac{\partial}{\partial\xi})(\xi^{m-j}\emptyset(\xi, y+x\xi’))|_{\xi’=\xi}d\xi$ .

Note that, in obtaining the last equality, we have done the integration by parts based

on the following relation:

(36)
$\frac{\partial}{\partial\xi}(\xi^{m-j}\emptyset(\xi, y+X\xi’))=\frac{\partial}{\partial\xi’}(\xi^{m-j}\emptyset(\xi, y+X\xi’))|_{\xi’=\xi}+\frac{\partial}{\partial\xi}(\xi^{m-j}\emptyset(\xi, y+X\xi’))|_{\xi’=\xi}$

Using these relations (33)$-(35)$ , we obtain

(37) $P_{B} \varphi(x, y)=-\frac{1}{2\pi i}\oint[\hat{P}_{B,(\xi,y})\emptyset(\xi, y+x\xi’)]|_{\xi’=\xi}d\xi=0$.

This completes the proof. Q.E.D.

As in the preceding section, let us consider the difference $\varphi_{+}(x, y)-\varphi_{-}(x, y)$ . Thanks

to Proposition 1, we can verify that this difference gives the Borel transform of a WKB

solution by the following argument:
First, the reference $\mathrm{p}_{\mathrm{o}\mathrm{i}}\mathrm{n}\mathrm{t}-y_{j}(X)$ corresponding to the saddle point $\xi_{j}(x)$ in question

satisfies

(38) $\frac{dy_{j}(x)}{dx}=\frac{d}{dx}(x\xi_{j}(X)+g(\xi_{j}(x)))=\xi j+X\xi’jg^{l}+(\xi_{j})\xi’j\xi_{j(x)}=$ .

Hence $y_{j}(x)$ can be written as $\int^{x}\xi_{j}(X)dX$ . That is, $y_{j}(x)$ coincides with the phase factor

of the WKB solution $\psi_{j}$ . In what follows we assume that the phase factor of $\psi_{j}$ has the

same normalization with $y_{j}(x)$ .

Second, $\varphi_{+}-\varphi_{-}$ has the Puiseux expansion

(39) $\varphi_{+}-\varphi_{-}=(y+y_{j}(X))-1/2x(_{X}, y)$

at $y=-y_{j}(x)$ , where $\chi(x, y)$ contains terms with integral powers only. (This property

for $\chi(x, y)$ is proved by the same reasoning as the one used in the preceding section.)

In particular, the inverse Borel transform (formal Laplace transform) of $\varphi_{+}-\varphi_{-}$ is an
infinite series of the same form with the WKB solution $\psi_{j}$ :

(40) $B^{-1}( \varphi_{+}-\varphi_{-)}=\exp(\eta yj(_{X)})\sum_{0n=}^{\infty}x_{n}(X)\eta-(1/2+n)$ .
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Third, it follows from Proposition 1 that $B^{-1}(\varphi_{+}-\varphi-)$ satisfies the differential
equation (1). This together with the uniqueness of WKB solutions of (1) (i.e., the fact
that the coefficients $S_{n}(x)(n\geq 0)$ are uniquely determined once $s_{-1}(x)$ is fixed) implies
that

(41) $B^{-1}(\varphi+-\varphi-)=C(\eta)\psi_{j}$

holds with some infinite series $C(\eta)=C_{0}+\eta^{-1}C_{1}+\cdots$ where each $C_{n}$ is a constant.
We have thus verified that $\varphi_{+}(x, y)-\varphi-(x, y)$ is the Borel transform of $C(\eta)\psi_{j}$ . In

other words, we have proved the following

Proposition 2 For Laplace-type equations (1) the integral representation (26) along
the steepest descent path $\Gamma^{(j)}$ passing through a saddle point $\xi=\xi_{j}(x)$ gives the Borel
sum of an appropriately normalized $WKB$ solution with the top term $S_{-1}(X)=\xi_{j}(x)$ .

Note that the singular points of the integrand of the integral representation (11) is
described by $\Sigma_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}$ and that the change of variable $y=-f(x, \xi)=-(x\xi+g(\xi))$ employed
above becomes singular only at $\Sigma_{\mathrm{s}\mathrm{a}\mathrm{d}}\cup\Sigma_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}$ . Among these singular points each point
of $\Sigma_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}$ corresponds to the point at infinity in the $y$-variable (while every point of $\Sigma_{\mathrm{s}\mathrm{a}\mathrm{d}}$

corresponds to some finite point). Hence the singular points of $\varphi_{\pm}(x, y)$ except $y=\infty$

are described by the image of $\Sigma_{\mathrm{s}\mathrm{a}\mathrm{d}}$ under the change of variable $y=-f(x, \xi)$ . As a
consequence we obtain the following characterization of $‘(\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$ Stokes curves” :

Proposition 3 If the Borel resummed $WKB$ solutions of Laplace-type equation (1)
present Stokes phenomena (that $is_{f}x$ belongs to a “true Stokes curve”), then some
steepest descent path of $\Re f(x, \xi)$ connects two saddle points $\xi_{j}(x)$ and $\xi_{j’}(x)$ of the in-
tegral representation. Conversely, if a steepest descent path connects two saddle points,
the Borel resummed $WKB$ solutions generically present Stokes phenomena. (For the
meaning of $\iota$‘generically” see Remark (i) below.)

Remark (i) We believe that the $‘(\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{e}\mathrm{l}\mathrm{y}^{)}’$ part of the statement of Proposition 3 is
always true for Laplace-type equations, although a delicate cancellation may extinguish
a Stokes phenomenon even in such a situation that a steepest descent path connects
two saddle points for some integral representations. (For a concrete example of such
cancellations see [AKT2, Example 2.1].) In any case, practically speaking, Proposition
3 provides a sufficiently useful characterization of true Stokes curves, as it is not difficult
to check if a delicate cancellation occurs for concrete examples.
(ii) Occasionally a steepest descent path emanating from a saddle point $\xi_{j}(x)$ may
return to $\xi_{j}(x)$ itself. This situation is related to the degeneracy of Stokes geometry
(i.e., existence of Stokes curves connecting two turning points).
(iii) Since $1/(C(\xi)x+D(\xi))$ is bounded at each point of $\Sigma_{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}}$ , the argument of this
section also verifies the Borel summability of WKB solutions for Laplace-type equations.
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6Discussion on characterization of Stokes curves
A characterization of true Stokes curves for Laplace-type equations described in Propo-
sition 3 seems quite different from the original definition (7) of Stokes curves. Before
ending this paper, we discuss their relationship in this section.

Let us consider the situation that two saddle points $\xi_{j}(x)$ and $\xi_{j’}(x)$ are located
on a level curve $\mathrm{o}\mathrm{f}_{S}^{\alpha}f(X, \xi)$ . This is a slightly weaker situation than that discussed in
Proposition 3 as level curves of $s^{\infty}f(x, \xi)$ are not necessarily connected. Such a weaker
situation is, however, more closely related to the original definition (7) of Stokes curves.
As a matter of fact, we can prove the following

Proposition 4 Let $\xi_{j}(x)$ and $\xi_{j’}(x)$ be two saddle points of $f(x, \xi)$ . Then the following
two conditions are equivalent:
(i)

(42) $\propto sf(x, \xi j(_{X}))=sf\propto(x, \xi j’(_{X}))$ .

(ii) There exists a closed path $\gamma$ with the base point $x$ satisfying

(43) $\xi_{j}(x)$ becomes $\xi_{j’}(x)$ after the analytic continuation along $\gamma$ ,

(44) $\propto s\int_{\gamma}\xi_{j}(Z)dz=0$ .

Proof. Let $\mathcal{R}$ denote the Riemann surface of the algebraic equation (3) defined by

(45) $\mathcal{R}$ $=$ $\{(X, \xi);\xi^{m}+(c_{m-1}x+d_{m}-1)\xi^{m}-1+\cdots+(c_{0^{x+}}d_{0})=0\}$

$=$ $\{(x, \xi) ; x=x(\xi)=-\frac{D(\xi)}{C(\xi)}\mathrm{d}\mathrm{e}\mathrm{f}\}$ .

Note that $\mathcal{R}$ is a variety in $\mathbb{C}_{x}\cross \mathbb{C}_{\xi}$ parametrized by $\xi$ (cf. Figure 2). Let $(x,$ $\xi_{j(x))}$

and $(x, \xi_{j’}(x))$ be two points in $\mathcal{R}$ . Then integration by parts on a path (denoted by
$C)$ connecting $\xi_{j}(x)$ and $\xi_{j’}(x)$ verifies

(46) $f(x, \xi_{j}(X))-f(X, \xi j^{l}(x))$ $=$ $x( \xi_{j}(x)-\xi_{j}’(_{X}))+\int_{C}\frac{D(\xi)}{C(\xi)}d\xi$

$=$ $\int_{C}\xi x’(\xi)d\xi$

$=$ $\int_{\gamma}\xi(_{X})dx$ ,

where $\gamma$ is the projection onto the $x$-space of $\tilde{C}$ , the lift of $C$ to the Riemann surface $\mathcal{R}$ .
Taking the imaginary part of both sides of (46), we obtain the equivalence in question.

Q.E.D.
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Figure 2

Proposition 4 is a refined version of the discussion done in [AKT3].
The original definition (7) of Stokes curves can be regarded as a special case of the

condition (ii) in Proposition 4: If $x$ is a point on the curve defined by (7), then we find
that $x$ satisfies the condition (ii) with a closed path $\gamma$ running along the curve (7) from
$x$ to a turning point $a$ and returning to $x$ after making one turn around $a$ . Furthermore
the new Stokes curve of the example of Berk et al. $([\mathrm{B}\mathrm{N}\mathrm{R}])$ also has an expression both
of the form (7) and (44). It is not known, however, whether it is always possible to
write the condition (44) in the form of (7).

In this way the definition (7) of Stokes curves is related to the condition (i) in
Proposition 4, a slightly weaker condition than that in the statement of Proposition
3. Taking Proposition 3 and this observation into account, we can conclude that the
geometry of steepest descent paths is describing the so-called “Riemann sheet structure”
of the Borel trasform of WKB solutions of Laplace-type equations (1).

References
[A] T. Aoki: Exact WKB analysis of third-order linear ordinary differential equa-

tions with a large parameter, RIMS K\^oky\^uroku “Algebraic Analysis and Spe-
cial Functions, to appear. (In Japanese.)

[AKTI] T. Aoki, T. Kawai and Y. Takei: New turning points in the exact WKB
analysis for higher-order ordinary differential equations, Analyse alg\’ebrique
des perturbations singuli\‘eres. I, Hermann, 1994, pp. 69-84.

[AKT2] –: On the exact WKB analysis for the third order ordinary differential
equations with a large parameter, Asian J. Math., 2(1998), 625-640.

[AKT3] –: On a complete description of the Stokes geometry for higher order
ordinary differential equations with a large parameter via integral representa-

91



tions, Toward the Exact WKB Analysis of Differential Equations, Linear or
Non-Linear, Kyoto Univ. Press, 2000, pp. 11-14.

[BMP] A. Erd\’elyi et al.: Higher Transcendental Functions. Bateman Manuscript
Project, Vol. I, California Institute of Technology, $\mathrm{M}\mathrm{c}\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{w}$ -Hill, 1953.

[BNR] H. L. Berk, W. M. Nevins and K. V. Roberts: New Stokes lines in WKB theory,
J. Math. Phys., 23(1982), 988-1002.

[BH] M. V. Berry and C. J. Howls: Hyperasymptotics for integrals with saddles,
Proc. Roy. Soc. London, A 434(1991), 657-675.

[CNP] B. Candelpergher, J.C. Nosmas et F. Pham: Approche de la r\’esurgence, Her-
mann, 1993.

[DP] E. Delabaere and F. Pham: Resurgent methods in semi-classical asymptotics,
Ann. Inst. H. Poincar\’e, 71(1999), 1-94.

[H] C. J. Howls: Hyperasymptotics for multidimensional integrals, exact remain-
der terms and the global connection problem, Proc. Roy. Soc. London, A
453(1997), 2271-2294.

[KT] T. Kawai and Y. Takei: Algebraic Analysis of Singular Perturbations, Iwanami,
1998. (In Japanese. English translation will be published by Amer. Math. Soc.)

[O] F. W. J. Olver: Asymptotics and Special Functions, A K Peters, 1997. (Orig-
inally published by Academic Press, 1974.)

[SI1] A. Shudo and K. S. Ikeda: Chaotic tunneling: A remarkable manifestation of
complex classical dynamics in non-integrable quantum phenomena, Physica D,
115(1998), 234-292.

[SI2] –: Anti-integrable limit and Stokes geometry for quantum H\’enon maps,
in this volume. (In Japanese.)

[U1] K. Uchiyama: On examples of Voros analysis of complex WKB theory, Analyse
alg\’ebrique des perturbations singuli\‘eres. I, Hermann, 1994, pp. 104-109.

[U2] –: Graphical illustration of Stokes phenomenon of integrals with saddles,
Toward the Exact WKB Analysis of Differential Equations, Linear or Non-
Linear, Kyoto Univ. Press, 2000, pp. 87-96.

[V] A. Voros: The return of the quartic oscillator. The complex WKB method,
Ann. Inst. H. $\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{e}\text{ノ}$ , $39(1983)$ , 211-338.

92


