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Abstract.
In this article, we describe on a state of the art of validated numerical computations for solutions

of differential equations. A brief overview of the main techniques in self-validating numerics
for initial and boundary value problems in ordinary and partial differential equations including
eigenvalue problems will be presented. A fairly detailed introductions are given for the author’s
own method related to second-order elliptic boundary value problems. Many references which
seem to be useful for readers are supplied at the end of the article.
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1 Introduction

If we denote an equation for unknown $u$ by

$F(u)=0$ (1.1)

then the problem of finding the solution $u$ generally implies an $n$ dimensional simulta-
neous system of equations provided $u$ is in some finite dimensional ( $\mathrm{n}$-dimension) space.
Since very large scale, e.g. several thousand, linear system of equations can be easily
solved on computers nowadays, it is not too surprising that, even if (1.1) is nonlinear,
we can verify the existence and uniqueness of the solution as well as its domain by some
numerical computations on the digital computer. However, in the case where (1.1) is
a differential equation, it becomes a simultaneous equation which has infinitely many
unknowns because the dimension of the potential function space containing $\mathrm{u}$ is infinite.
Therefore, we might naturally feel that it is impossible to study the existence or unique-
ness of the solutions by finite procedures based upon the computer arithmetic. Actually,
when the author first ran across an assertion about the possibility of such arguments
by computer, in Kaucher-Miranker [13] about fifteen years ago, he could not believe it
and seriously attempted to find their theoretical mistakes. When itbecame clear that
the grounds of their arguments could not be denied, though the application area seemed
rather narrow, the author was greatly impressed and was also convinced that such a
study must be one of the most $\mathrm{i}\mathrm{m}$’portant research areas in computational mathematics,
particularly in numerical analysis. Subsequently, the author has learned that there had
been similar researches centered around ordinary differential equations(ODEs). However,
with his research background it was natural for this writer to be particularly interested
in numerical verification methods for partial differential equations(PDEs).

数理解析研究所講究録
1169巻 2000年 27-56 27



In this exposition, we will survey the state of the art, fairly emphasizing the author’s
own works, about the verification methods for the existence, uniqueness and enclosure of
solutions for differential equations based on numerical computations.

Many differential equations appearing in the mathematical sciences such as physics or
technology are numerically (approximately) solved by the use of contemporary super-
computers, and those computed results are supplied for simulations of phenomena, inde-
pendently of the guarantee of existence $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ uniqueness of solutions. Naturally, there
are not a few theoretical studies done by mathematicians for such equations. However,
because of the nonlinearity or variety of the problem and so on, applications of unified
theory are quite difficult and it is hard to say that those results sufficiently satisfy de-
mands of the people who are working on the numerical analysis in various areas. Also
even if the existence and uniqueness are already known, in general, we cannot confirm
the order of magnitude of the difference between the computed solutions and the exact
solutions. Actually in such a case, we are obliged to be satisfied with the ambiguous va-
lidity which may be interpreted as the comparison with experimental data. On the other
hand, in pure mathematics, the problem proving the existence of solutions for particular
differential equations can often arise. The principal purpose of numerical verification
methods here is the mathematically and numerically rigorous grasp of solutions of differ-
ential equations appearing in various mathematical sciences including pure mathematics.
Therefore, we note that the term ’numerical’ does not mean ’approximate’. Although it
is not too long time since this kind of research was started, a great number of develop-

ments will be expected in the 21st century as a new approach in numerical analysis which
exceeds the existing numerical methods in the sense of assurance of numerical qualities
for infinite-dimensional problems.

In the followings, in Section 2, we describe the case studies of numerical verification
methods for ODEs, stressing on Lohner’s method for initial value problems. And, in
Section 3, the methods for partial differential equations for elliptic and evolutional prob-
lems, around the author’s method, will be surveyed. Next, in section 4, we will treat the
eigenvalue problems of elliptic operators. Finally, we will give some concluding remarks
in Section 5.

2 Ordinary differential equations(ODEs)

A germ of numerical approaches to the verification of solutions for ODEs already ap-
peared in Cesari [7] in the first half of 1960, and since then not a few of case studies have
been done. Generally speaking, the functional equation is equivalent to the simultaneos
equations with infinite dimension. Therefore, it should be the essential point to consider
the errors caused by the truncation or discretization of the original problems. The enclo-
sure methods for function space problems, in the author’s opinion, will be classified into
the following three groups according to their verification techniques.

(l)Analytic method:
This is a method such that, by using the estimations of constants, norms of functions

including approximate solutions, and operators appearing in the equation, one prove
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that they satisfy a certain condition, e.g., the convergence condition in the Newton-
Kantorovich theorem in the below. Particularly, the norm estimation of an inverse lin-
earlized operator for the original problem is most important and essential task in this
method. The interval analysis is used only in the simple arithmetic calculations.

(2) Interval method:
An interval can be considered as the set of functions whose ranges are contained that

interval. For example, $[a, b]$ can be considered as the set:

$\{f\in C(\alpha, \beta)|f.(x)\in[a, b], \forall x\in(\alpha, \beta)\}$ .

In this method, using this infinite dimensional property of the interval, the truncation
errors are essentially grasped by the interval arithmtic. In order to apply this method,
usually, we need a transformation of the original differential equation to an equivalent
integral equation, but there are no norm estimations of the inverse linearlized operator.

(3) Mixed method:
This is an intermediate method between the above two. The interval plays an essential

role in this method, but the analytic arguments in a certain function space as well.
Although some kind of inverse linearlized operator is used, in general, but it is not
directly evaluated as an infinite dimensional operator.

We now introduce some of the typical studies of these categories.

Analytic methods The following Newton-Kantorovich theorem is used for the exis-
tence and local uniqueness of the solution of functional $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}$ (e.g., [87] for proof).

Theorem 2.1 Let $X,$ $Y$ be Banach spaces, and let $D\subset X$ be a convex set. For a map
$F:D\subset Xarrow Y,$ $F’,$ $F”$ denote the Fr\’echet derivatives. Assume that, for some $u_{0}\in D$

and constants $B,$ $\eta,$
$\kappa$ and $r$ ,

(i) $[F’(u_{0})]^{-1}$ exists, and $||[F^{;}(u\mathrm{o})]^{-1}||\leq B$ and $||[F’(u_{0})]^{-1}F(u_{0})||\leq\eta$ .
(ii) $||F’’(u)||\leq\kappa,$ $||u-u0||\leq r$ .
(iii) $h=\eta\cdot B\cdot\kappa<1/2$ .
(iv) $r\geq r_{0}=\eta(1-\sqrt{1-2h})/h$ .
Then, the equation $F(u)=0$ has one and only one solution $u^{*}$ in the ball: $||u-u0||\leq r_{0}$ .

$\mathrm{K}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{m}[15],$ $\mathrm{M}\mathrm{C}\mathrm{c}_{\mathrm{a}\mathrm{r}}\mathrm{t}\mathrm{h}\mathrm{y}[18]$ applied this theorem to the verification of solutions for non-
linear two pont boundary value problems. On the other hand, in Japan, Urabe [78], [79]
developed a useful version of the Kantorovich-like theorem for the verification of solu-
tions for multipoint and periodic boundary value problems. Plum’s method [59] is also
classified into this category. In his method, the norm of the inverse linearized operator is
bounded by using eigenvalue enclosing technique with homotopy $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}(\mathrm{s}\mathrm{e}\mathrm{e}$ also Section
3 and 4). Oishi [55] derived a version of the Theorem 2.1 by using some finite dimensional
projection and its a priori error estimates, and proved, as an example, the existence of
periodic solutions for the Duffing equation. Also, in [57], his method was extended for
the finite element projection in one dimension.
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Sinai’s work [74] on the verification of the existence of a closed orbit is based upon the

fixed point problem of a Poincar\’e map and the numerical proof of a Kantorovich type

convergence condition. He verified a closed orbit of the following Lorenz model :

$\{$

$x’$ $=$ $a_{1}x+b1yz+b1^{XZ}$

$y’$ $=$ $a_{2}y-b_{1}yz-b1xz$

$z’$ $=$ $-a_{3}z+(x+y)(b_{2^{X}}+b_{3y})$

(2.1)

Also, Nishida [52] solved, applying the theory of pseudo trajectory similar in [74], some

bifurcation problems appeared in nonlinear fluid dynamics by numerical enclosing tech-

nique of the critical eigenvalues of linearized problem.

Interval methods In Moore’s initial work [24], a basic idea of this method was already

presented. Such a primitive technique was, however, not so effective for the practical

problems. Nowadays, by the view point of the verification principle, the most famous

method will be Lorner’s $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}[17]$ which we describe an outline in the below. In

what follows, let $IR$ and $IR^{n}$ denote the set of real intervals and $n$-dimensional interval

vectors, respectively.
Consider the following initial value problem of autonomous system:

$u’=f(u)$ (2.2)

Here, $u=u(t)\in R^{n},$ $f$ is a $C^{p}$ map on $R^{n}$ for a fixed positive integer $p$ , and the initial

value is given as

$u(0)\in[u_{0}]=u_{0}+[z_{0}]$ . (2.3)

Here, $[u_{0}],$ $[z_{0}]$ denote the interval vectors, $u_{0}$ point vector. Note that, in case of non-

autonomous, according to add a new dependent variable $u_{n+1}=t$ and an equation

$u_{n+1}’=1$ , it can be reduced to the type (2.2). Our purpose is, for fixed $T>0$ , to get an

interval enclosure $[u(t)]$ for a solution $u$ of (2.2), (2.3) such that

$u(t)\in[u(t)]$ , $t\in[0, T]$ .

First, we consider an explicit one step method for (2.2), (2.3) with step size $h$ based

on a function $\Phi=\Phi(u)$ . Setting $t_{j}\equiv jh$ and $u_{j}\equiv u(t_{j})$ , where $u(t)$ stands for an exact

solution. When we denote the local discretization error between $t_{j}$ and $t_{j+1}$ by $z_{j+1}/h$ ,

it holds that

$u_{j+1}=u_{i}+h\Phi(uj)+Z_{j}+1$ , $j\geq 0$ , (2.4)

where $u_{0}\in[u_{0}]$ . Suppose that $\Phi$ is chosen so that $z_{j+1}$ can be estimated by $u$ and its

derivative. For example, if the scheme (2.4) is order $p$ , then we have, using the Taylor

expansion of $u_{j+1}=u(t_{j}+h)$ at $t_{j}$ ,

$z_{j+1}= \frac{h^{p}}{p!}u^{(p)}(\hat{t}_{j+1})$ , $\hat{t}_{j+1}\in(t_{j}, t_{i+1})$ . (2.5)

When an assured interval $[u_{j}]$ at $t_{j}$ is obtained, we can enclose $u_{j+1}$ by using (2.5).

But such a simple method would yield the monotone and rapid increasing of the width
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of the assured interval. The basic idea of Lohner’s method consists in the representation
of $u_{j+1}$ as a function of the $n$-dimensional vector variable $z_{0},$ $Z_{1},$ $\cdots,$ $z_{j+}1$ . That is, the
exact value at $t_{j+1}$ is determined by all the local discretization errors up to $j$ instead of
$u_{j}$ and $z_{j+1}$ only.

If $\Phi$ is continuously differentiable with respect to $j+2$ variables $z0,$ $z_{1,j+}\ldots,$$Z1$ , then
$u_{j+1}=u_{j+1}(z_{0}, Z_{1}, \cdots, z_{j}+1)$ as well. Therefore, by using the mean value theorem around
(so, $s1,$ $\cdots,$ $sj+1$ ), we have the follO.wing representation

$u_{j+1}= \overline{u}_{j+1}+\sum_{k=0}^{j+1}\frac{\partial u_{j+1}(z\wedge)}{\partial z_{k}}(z_{k}-s_{k})$ , (2.6)

where $s_{k}$ is usually chosen as the midpoint of $z_{k}$ . And, $z\wedge$ is an unknown vector which is de-
termined by $z=$ $(z_{0}, z_{1}, \cdots , z_{j+1})$ and $s=(s_{0}, s_{1}, \cdots , s_{j+1})$ . Since $\overline{u}_{j+1}=u_{j+1}(s0, s1, \cdots, sj+1)$ ,
we have

$\tilde{u}_{j+1}=\overline{u}_{j}+h\Phi(\overline{u}_{j})+s_{j+1}$ , $j\geq 0$ , (2.7)

where, $\overline{u}_{0}=u0$ and $s_{0}=0$ .
Next, we briefly mention about an interval enclosing algorithm of (2.6). Assume that

we have already got the enclosure until $t_{j}$ .

1. First step : Calculation of a rough enclosure $[u_{j+1}^{0}]$ for $u(t)$ on $[t_{j}, t_{j+1}]$ .
This can be done by computing a constant interval which encloses the solution of
the equivalent integral equation on $[t_{j}, t_{j+1}]$ of the form:

$u(t)=u_{j}+ \int_{t_{j}}^{t}f(u(s))d_{S}$ , $u_{j}\in[u_{j}],$ $t\in[t_{j}, t_{j+1}]$ , (2.8)

where $[u_{j}]$ implies the interval enclosure of the solution at $t=t_{j}$ .
For an interval $X$ such that $[u_{j}]\subset X$ , we define $Y$ as

$Y\equiv[u_{j}]+[0, h]\cdot f(X)$ . (2.9)

If $Y\subset X$ then, by Schauder’s fixed point theorem, it holds that

$u(t)\in Y$, $\forall t\in[t_{j}, t_{j+1}]$ .

Therefore, we set $[u_{j+1}^{0}]\equiv Y$ . If $Y\subset X$ does not hold, then, for an appropriately
small $\in>0$ , setting

$X:=(1+\epsilon)Y-\epsilon Y$ (2.10)

( $\epsilon$ -inflation), we retry the computation (2.9) for this $X$ and check the same relation.
If we could not get the desired inclusion within the definite times, then we adopt a
smaller step size.

2. Second step: Calculate the local discretization error $[z_{j+1}]$ by the use of $[u_{j+1}^{0}]$ in the
first step.

3. Third step: Compute a new (narrow) enclosure $[u_{j+1}]$ by using $[z_{j+1}]$ .
4. Forth step: Replace the rough enclosure $[u_{j+1}^{0}]$ obtained in the first step by a new

interval $[u_{j+1}]$ in the third step, and repeat the second-forth step until we get the
interval as small as possible.
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5. Fifth step: Determine $s_{j+1}\in[z_{j+1}]$ and calculate $\overline{u}_{j+1}$ .

In [17], this method was applied to enclose a solution of the following Kepler-Ellipse

problem, by using Taylor’s method of order 18 and step size 0.1,

$\{$

$u_{1}’$ $=$ $u_{3}$ ,
$u_{2}’$ $=$ $u_{4}$ ,
$u_{3}’$ $=$ $-u_{1}(u_{1}^{2}+u_{2})^{-1.5}2$ ,
$u_{4}’$ $=$ $-u_{2}(u_{12}^{2}+u2)^{-1}\cdot 5$ ,

(2.11)

with initial condition: $u_{1}(0)=1.2,$ $u_{2}(0)=0,$ $u_{3}(0)=0,$ $u_{4}(0)=\sqrt{\frac{2}{3}}$ .
He got the enclosure of solution within $10^{-5}$ accuracy for each $t\in[0,70]$ . This method can
also be applied to the boundary value problems combining with the shoooting technique.

There are another works on the interval methods for initial value problems, e.g., [2],

[13], [75] etc. Especially, $\mathrm{R}\mathrm{i}\mathrm{h}\mathrm{m}[68]$ described a good survey of the techniques including

the fundamental ideas.

Mixed methods The author’s method $(\mathrm{e}.\mathrm{g}.,[33])$ , which originally proposed for PDEs,

belongs to this category. The method uses both the constructive error analysis for the

finite element method and the interval coefficient functions of a finite dimensional space,

which will be described in detail in the next section. [51] and [73], which uses some
properties of monotone operator, are regarded as another examples for the mixed method.

Oishi [54] proposed a kind of mixed method combining an approximate fundamental
matix with the interval representation of functions. He recently applied the method

to the numerical verification of the existence of solutions for a connecting orbit in the

continuous $\mathrm{d}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{S}[56]$ . Mrozek et $\mathrm{a}1.[25]$ presented an interesting computer assited

approach on the proof of a chaos property of the Lore.n$\mathrm{Z}$ model besed on the Conley

index theory.

3 Partial differential equations(PDEs)

There has been not so many works on the numerical verification for PDEs. As far

as the author is concerned, it was hard to find any methods except for Plum and the

author’s own work up to recently. As mentioned before, the former is an analytic method

and the latter a mixed method. There is no interval method for PDEs, for it is difficult to

transform a PDE to an equivalent integral equation. In the below, we present the outline

of both methods for second-order elliptic problems, particularly around the author’s

method. Moreover, since, quite recently, some case studies have appeared for computer

assited proof in the actual nonlinear analysis, we will also briefly refer to them.
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3.1 elliptic problems

We consider the following nonlinear elliptic boundary value problem on a bounded
convex domain $\Omega$ in $R^{n},$ $1\leq n\leq 3$ :

$\{$

$-\triangle u$ $=$ $f(x, u, \nabla u)$ $x\in$
.

$\Omega$ ,

$u$ $=$ $0$ $x\in\partial\Omega$ ,
(3.1)

where the map $f$ is assumed to satisfy appropriate conditions on the smoothness. For
an integer $m$ , let $H^{m}(\Omega)\equiv H^{m}$ denote $L^{2}$-Sobolev space of order $m$ on $\Omega$ . And set
$H_{0}^{1}\equiv$ { $\phi\in H^{1}|tr(\emptyset)=0$ on $\partial\Omega$ } with the inner product $<\phi,$ $\psi>\equiv(\nabla\phi, \nabla\psi)$ , where
$(\cdot, \cdot)$ means the inner product on $L^{2}(\Omega)$ .

In the below, we denote $||\cdot|.|_{L^{2}}(\Omega)\equiv||\cdot||_{L^{2}}$ by $||\cdot||$ . And define

$| \phi|_{H^{2}}^{2}\equiv\sum_{1i,,j=}^{n}||\frac{\partial^{2}\phi}{\partial x_{i}\partial_{X_{j}}}||^{2}L^{2}$ .

3.1.1 The author’s method

The verification principle of this method is first originated in 1988 by [29] and, in the
meantime, several improvements have been done up to now.

In what follows, the map $f$ in (3.1) is assumed to be continuous from the Sobolev
space $H_{0}^{1}(\Omega)$ into $L^{2}(\Omega)$ such that having a bounded image in $L^{2}(\Omega)$ on a bounded set
in $H_{0}^{1}(\Omega)$ . For example, when $n=2,$ $f(u)\equiv f(x, u, \nabla u):=g_{1}\cdot\nabla u+g_{2}u^{p}$ satisfies above
assumption, where $g_{1}=(g_{1}^{1}, g_{1}^{2})$ and $g_{2}$ are in $L^{\infty}(\Omega)$ , and $p$ an arbitrary nonnegative
integer. And, for $n=3$ , the same assumption holds for any $p$ such that $1\leq p\leq 3$ by the
Sobolev imbedding theorem $(\mathrm{e}.\mathrm{g}., [1])$ .

Now let $S_{h}$ be a finite dimensional subspace of $H_{0}^{1}$ dependent on $h(0<h<1)$ . Usually,
$S_{h}$ is taken to be a finite element subspace with mesh size $h$ . And let $P_{h}$ : $H_{0}^{1}arrow S_{h}$

denote the $H_{0}^{1}$ -projection defined by

$(\nabla u-\nabla(Phu), \nabla\hat{\emptyset})=0$ , $\hat{\phi}\in S_{h}$ . (3.2)

We now suppose the following approximation property of $P_{h}$ .
For any $\phi\in H^{2}\cap H_{0}^{1}$ ,

$||\phi-P_{h}\emptyset||_{H_{0}^{1}}\leq C_{0}h|\emptyset|_{H^{2}}$ , (3.3)

where $C_{0}$ is a positive constant numerically determined and independent of $h$ . This
assumption holds for many finite elernent subspace of $H_{0}^{1}$ defined by piecewise

$\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{l}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{s}$

with quasi-uniform mesh $(\mathrm{e}.\mathrm{g}., [8],[53])$ . For example, it can be taken as $C_{0}=\overline{\pi}$ and $\frac{1}{2\pi}$

for bilinear and biquadratic element, respectively, in case of the rectangular mesh [42].
For the triangular and uniform mesh of the domain in $R^{2}$ , we can take, $\mathrm{e}.\mathrm{g}.,$ $C_{0}=0.81$

for linear element [49], and for the more fine constant, see the arguments in the end of
this sub-subsection.
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Now, it is well known [11] that for arbitrary $\psi\in L^{2}(\Omega)$ there exists a unique solution
$\phi\in H^{2}\cap H_{0}^{1}$ of the following Poisson’s equation:

$\{$

$-\triangle\emptyset$ $=$ $\psi$ , $x\in\Omega$ ,

$\phi$ $=$ $0$ , $x\in\partial\Omega$ .
(3.4)

When we denote the solution of (3.4) by $\phi\equiv K\psi$ , the map $K$ : $L^{2}arrow H_{0}^{1}$ is compact

as well as the following estimate holds:

$|\phi|_{H^{2}}\leq||\psi||$ . (3.5)

Defining the nonlinear map $F(u):=Kf(u),$ $F$ is a compact map on $H_{0}^{1}$ and we get the

following fixed point equation of the operator $F$ equivalent to (3.1):

$u=F(u)$ . (3.6)

Therefore, if we find a nonempty, bounded, convex and closed subset $U$ in $H_{0}^{1}$ satisfying

$F(U)=\{F(u)|u\in U\}\subset U$, (3.7)

then by the Schauder fixed point theorem, there exists an element $u\in F(U)$ such that

$u=F(u)$ . Usually, we choose such a set $U$ , which is referred a candidate set of solutions,

of the form $U=U_{h}\oplus U_{\perp}$ , where $U_{h}\subset S_{h}$ and $U_{\perp}\subset S_{h}^{\perp}$ . Here, $S_{h}^{\perp}$ stands for the

orthogonal complement subspace of $S_{h}$ in $H_{0}^{1}$ . Then, the verification condition can be

written as

$\{$

$P_{h}F(U)$ $\subset$ $U_{h}$

$(I-P_{h})F(U)$ $\subset$ $U_{\perp}$ .

(3.8)

Sometimes we call the quantities $R(F(U)):=PhF(U)$ and $RE(F(U)).–(I-P_{h})F(U)$

as the rounding into $S_{h}$ and the rounding error of $F(U)$ , respectively.

Then (3.8) implies that

$R(F(U))\oplus RE(F(U))\subset U$, (3.9)

which is the basic principle of our verification method. The set $U_{h}$ is taken to be a set of

linear combinations of base functions in $S_{h}$ with interval coefficients, while $U_{\perp}$ a ball in
$S_{h}^{\perp}$ with radius $\alpha\geq 0$ .
Namely,

$U_{h}= \{\phi_{h}\in S_{h}|\phi_{h}=\sum_{=j1}^{M}[\underline{A}j’ j\overline{A}]\phi j\}$ (3.10)

and

$U_{\perp}=\{\phi\in S_{h}^{\perp}|||\phi||_{H_{0}^{1}}\leq\alpha\}$ , (3.11)
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respectively, where $\{\phi_{j}\}_{j=1}M$ is a basis of $S_{h}$ . Here, $\sum_{j=1}^{M}[\underline{A}_{j}, \overline{A}_{j}]\phi_{j}$ is interepreted as the set

of functions in which each element is a linear combinaion of $\{\phi_{j}\}_{j=1}^{M}$ whose coefficient of
$\phi_{j}$ belongs to the corresponding interval $[\underline{A}_{j},\overline{A}_{j}]$ for each $1\leq j\leq M$ . We denote the set
of such interval functions by $S_{h,I}$ , that is,

$S_{h,I}:= \{\hat{\phi}\in S_{h}|\hat{\phi}=\sum_{j=1}^{M}Aj\emptyset j, A_{j}\in IR\}$ .

Then it can be considered as $S_{h}\subset S_{h,I}$ . Note that each element $\phi_{h}\in P_{h}F(U)$ satisfies
the following finite element solution for some $\psi\in U$

$(\nabla\phi h, \nabla\hat{\emptyset})=(f(\psi),\hat{\emptyset})$ , $\forall_{\hat{\phi}}\in S_{h}$ . (3.12)

Therefore, it can be eeasily seen that $P_{h}F(U)$ is directly computed or enclosed from
$U_{h}$ and $U_{\perp}$ by solving a linear system of equations with interval right-hand side using
some interval arithmetic approaches, e.g., [3], [50]. On the other hand, $(I-P_{h})F(U)$ is
unknown but can be evaluated by the following constructive a priori error estimates for
the finite element solution of Poisson’s equation:

$||(I-P_{h})F(U)||_{H_{0}^{1}} \leq C_{0}h\sup_{u\in U}||f(u)||$ . (3.13)

which is obtained by (3.3) and (3.5).
Thus, the former condition in (3.8) is validated as the inclusion relations of corre-

sponding coefficient intervals, and the latter part can be confirmed by comparing two
nonnegative real numbers which correspond to the radii of balls. In the actual computa-
tion, we use an iterative method for both part of $P_{h}F(U)$ and $(I-P_{h})F(U)$ as below.

(1) Verification by the simple iteration method
As stated above, we usually find a candidate set of the form

$U=U_{h^{\oplus}}U\perp$ . (3.14)

In the below, we fix an approximate solution $\hat{u}_{h}$ of (3.1) such that $\hat{u}_{h}=\sum_{i=1}^{n}u_{i}\phi i\in S_{h}$ .

We consider the set of functions $U_{h}\in S_{h,I}$ of the form

$U_{h}= \sum_{1i=}^{n}(u_{i}+A_{i})\phi_{i}$ , (3.15)

where $A_{i}$ are intervals, in general, centered at $0$ . And the set $U_{\perp}$ is same as (3.11).
Then we take an interval vector $(B_{i})$ satisfying

$P_{h}F(U) \subset\sum_{i=1}^{n}B_{i}\phi i$ , (3.16)

where $(B_{i})$ is usually determined by a solution of the linear system of equations with
intereval right-hand side. Namely, for the $M\mathrm{x}M$ matrix $G:=((\nabla\phi_{i}, \nabla\phi_{j}))$ and the $M$
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dimensional interval vector $\mathrm{b}:=((f(U), \phi_{i}))$ , the interval vector $(B_{i})$ can be computed

as a solution of the following equation

$G\cdot(B_{i})=\mathrm{b}$ . (3.17)

Here, $(f(U), \phi_{i})\in IR$ stands for the interval enclosure of the set $\{(f(u), \phi_{i})\in R|u\in U\}$ .

And we set

$\beta$

$:=C_{0}hu \sup_{\in U}||f(u)||_{L^{2}}$
. (3.18)

On the actual and detailed computational procedures for the determining the interval
vector $\mathrm{b}$ and the estimation of the right-hand side in (3.18), refer [29], [30], [34] etc. Now

the computable verification condition is described as

Theorem 3.1 For the sets defined by (3.14), (3.15) and (3.11), if the following conditions

hold
$B_{i}\subset u_{i}+A_{i}$ , $i=1,$ $\cdots,$ $n$ ,

(3.19)
$\beta$ $\leq$ $\alpha$ ,

then there exists a solution $u$ of $u=F(u)$ in $U$ .

Based on Theorem 3.1, we obtain the following verification algorithm by using the
simple iteration method with $\delta- \mathrm{i}\mathrm{n}\mathrm{f}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ (cf. [69]). In what follows, we define $[\alpha]\equiv\{\phi\in$

$S_{h}^{\perp}|||\phi||_{H_{0}^{1}}\leq\alpha\}$ for a nonnegative real number $\alpha$ .

Verification algorithm S-l

1. Setting $A_{i}^{(0)}:=[0,0](i=1, \cdots, n)$ and $\alpha^{(0)}$ $:=0$ , initial candidate set is defined by
$U^{(0)}:=\hat{u}_{h}$ .

2. For the candidate set $U^{(k)}$ determined by $(A_{i}^{(k)})$ and $\alpha^{(k)}$ , compute $(B_{i}^{(k)})$ and $\beta^{(k)}$

from (3.17) and (3.18), respectively.
If (3.19) holds, then there exist a desired solution in the set

$U^{(k)}= \hat{u}_{h}+\sum_{i=1}^{M}A\phi_{i}+i(k)[\alpha^{(})k]$ .

Otherwise, go to the next step.
3. Using some fixed small constant $\delta>0$ , after setting

$A_{i}^{(k+1)}$ $:=$ [-1, 1] $\delta+A_{i}^{(k)}$ , $i=1,$ $\cdots,$ $n$ ,
$\alpha^{(k+1)}$

$:=$ $(1+\delta)\beta^{(k})$ ,

return to the previous step.

Remark 3.1 The above algorithm using Theorem 3.1 could work only for limited case.
However, we can say that not only the implememtation of the procedures is quite simple

and easy but also the essential point of our vemfication principle, $i.e.$ , the direct solv-

ing a fnite dimensional problem with addtional error estimates, is clearly shown in this

algorithm.
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Numerical example 1 ([30]).
The algorithm S-l has not so wide applications, because it needs that the map $F$

is retractive in some neighborhood of the fixed point to be verified. But, we actually
succeeded the verification for several realistic problems, e.g., as below [30]:

$\{$

$-\triangle u$ $=$ $f(x)u^{2}+g(x)$ $.x\in\Omega.\equiv(0,1)\cross(0,1)$ ,

$u$ $=$ $0$ $x\in\partial\Omega$ ,
(3.20)

where $f(x)$ and $g(x)$ are arbitrary $L^{\infty}$-functions on $\Omega$ whose ranges are in [-2, 2] and
$[0,7]$ , respectively. Here, as the finite element subspace $S_{h}$ , we used the bilinear elements
on the uniform rectangular mesh with mesh size $h=1/15$ .

(2) Verification by Newton-like method
In order to apply our verification method for more general problems, we introduce a

kind of Newton-like method.
First, note that (3.6) can also be rewritten as the following decomposed form in $S_{h}$ and

$S_{h}^{\perp}:$

$\{$

$P_{h}u$ $=$ $P_{h}F(u)$

$(I-P_{h})u$ $=$ $(I-P_{h})F(u)$
(3.21)

In order to consider the Newton type operator for (3.21), define the nonlinear operator
$N$ on $H_{0}^{1}(\Omega)$ by

$N(u).–u-[P_{h}-P_{h}A’(\hat{u}_{h})]_{h}-1(P_{hh}u-PF(u))$ ,

where $A’(\hat{u}_{h})\equiv(-\triangle)^{-1}f’(\hat{u}_{h})$ and ’ means the Fr\’echet derivative of $f$ at $\hat{u}_{h}$ . Here,
$[P_{h}-P_{h}A’(\hat{u}_{h})]_{h}-1$ denotes the inverse on $S_{h}$ of the restriction operator $(P_{h}-P_{h}A’(\hat{u}_{h}))|s_{h}$ .
The existence of such a finite dimensional inverse operator can be validated by the usual
invertibility of a matrix corresponding to the restriction operator $(\mathrm{e}.\mathrm{g}., [70])$ . Also note
that we can replace $P_{h}A’(\hat{u}_{h})$ by some approximate operator.
We now define

$T(u)$ $:=$ $P_{h}N(u)+(I-P_{h})F(u)$ .

Then $T$ is considered as the Newton-like operator for the former part of (3.21) but
the simple iterative operator for the latter part. Moreover, $T$ is compact on $H_{0}^{1}(\Omega)$ by
compactness of $F$ . Furthermore, it can readily be seen that

Proposition 3.1 The fixed point equation

$u=T(u)$ (3.22)

is equivalent to (3.6).

Indeed, if (3.21) holds, then we have, by using the former part,

$0=[P_{h}-P_{h}A’(\hat{u}_{h})]_{h}-1(P_{h}u-P_{h}F(u))$ , (3.23)
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which yields

$P_{h}u=P_{h}N(u)$ . (3.24)

Therefore, $u=Tu$ follows by adding (3.24) to each side of the latter part of (3.21).
Conversely, if $u=Tu$ , then we immediately obtain (3.24), and thus (3.23) follows. The
conclusion would be now straightforward. $\square$

If we find a nonempty, bounded, convex and closed subset $U$ in $H_{0}^{1}(\Omega)$ satisfying
$T(U)=\{T(u)|u\in U\}\subset U$ , then by the Schauder fixed point theorem there exists an
element $u\in T(U)$ such that $u=T(u)$ . If we choose a bounded set $U$ such as $U=U_{h}\oplus U_{\perp}$ ,
where $U_{h}\in S_{h,I}$ and $U_{\perp}\subset S_{h}^{\perp}$ , the verification condition can be written by

$\{$

$P_{h}N(U)$ $\subset$ $U_{h}$ ,
$(I-P_{h})F(U)$ $\subset$ $U_{\perp}$ .

(3.25)

Notice that if we use the symbol rounding $R(\cdot)$ and rounding error $RE(\cdot)$ , then (3.25) is
represented as

$R(\tau(U))\oplus RE(T(U))\subset U$ (3.26)

which is the corresponding relation to (3.9).
The computational procedure for $P_{h}N(U)(rounding)$ consists of the solving linear sys-

tem of equations with interval right-hand side which is similar to that in the case of
simple iteration method. But concerned matrix is a Newton type one which is exactly
the same matrix as in the usual simplified Newton method for the discretized problem of
(3.1) determined by the following nonlinear system of equations:

$(\nabla\hat{u}_{h}, \nabla v_{h})=(f(\hat{u}_{h}), v_{h})$ , $v_{h}\in S_{h}$ . (3.27)

We consider the more detailed procedure as below.
Observe that, for arbitrary $u=u_{h}\oplus u_{\perp}\in U=U_{h}\oplus U\perp$ ,

$P_{h}N(u)$ $=$ $P_{h}u-[I-P_{h}A’(\hat{u}_{h})]_{h}-1(P_{h}u-P_{h}F(u))$

$=$ $[\mathrm{I} -P_{h}A’(\hat{u}_{h})]_{h}-1$ ( $P_{h}F(u)-P_{h}A’$ (\^uh)uh)

$=$ $[I-P_{h}A’(\hat{u}_{h})]hP-1Kh(f(u)-f’(\hat{u}_{h})u_{h})$ ,

where we used the fact that $P_{h}u=u_{h}$ , and in t.he last right-hand side, we supposed that
$A’(u_{h})\wedge=f’(u_{h})\wedge$ for simplicity. It is not necessary but, usually, we take $A’(\hat{u}_{h})\approx f’(\hat{u}_{h})$ .
Therefore, as in the previous paragraph, we choose the interval vector $((B_{N})_{i})$ satisfying

$P_{h}N(U) \subset\sum_{i=1}^{M}(BN)_{i}\emptyset i$ . (3.28)

Actually, if we define the $M\cross M$ matrix $G_{N}.--((\nabla\phi_{i}, \nabla\phi_{j})-(f’(\hat{u}_{h})u_{h}, \phi_{j}))$ and the $M$

dimensional interval vector $\mathrm{b}_{N}:=((f(U)-f’(u\wedge h)uh, \phi_{i}))$ , then $((B_{N})_{i})$ is determined
by solving the linear equation

$G_{N}\cdot((B_{N})_{i})=\mathrm{b}_{\mathrm{N}}$ . (3.29)
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Here, $(f(U)-f’(u_{h})\wedge uh, \phi_{i})\in IR$ means the interval enclosure of the set {($f(U)$ -

$f’(\hat{u}_{h})u_{h},$ $\phi_{i})\in R|u=u_{h}\oplus u_{\perp}\in U\}$ as before.
On the other hand, the error bound (rounding error) $\beta_{N}$ is determined exactly same

as (3.18), i.e.,

$\beta_{N}=C_{0}h\sup_{\in uU}|1f(u)||_{L^{2}}$ . (3.30)

Then, we get the following computable verification condition of the same type as in
Theorem 3.1.

Theorem 3.2 For the sets (3.14), (3.15) and (3.11), let $((B_{N})_{i})$ be a solution of (3.29)
and $\beta_{N}$ a real number defined by (3.30). If the following conditions hold

$(B_{N})_{i}\subset u_{i}+A_{i}$ , $i=1,$ $\cdots,$ $n$ ,
(3.31)

$\beta_{N}$ $\leq$ $\alpha$ ,

then there exists a solution $u$ of $u=F(u)$ in the set $V:= \hat{u}_{h}+\sum_{i=1}^{M}(BN)_{i}\emptyset i+[\beta_{N}]$ .

By using the above theorem, one can readily obtain a verification procedure based on
the Newton-like iteration, which is similarly described to that of the simple iteration
algorithm S-l.

Numerical example 2 ([80]).
We considered the following two dimensional Allen-Cahn equation which plays an im-

portant role in the mathematical biology:

$\{$

$-\triangle u$ $=$ $\lambda u(u-a)(1-u)$ in $\Omega$ ,

$u$ $=$ $0$ on $\partial\Omega$ .
(3.32)

Here, $\Omega=(0,1)\cross(0,1)$ and the constant $a$ is taken to be $0<a<1/2$ by the reason
in actual problems. And $\lambda$ is a positive parameter. For fixed $a$ , it is known that the
equation (3.32) has two non-trivial solutions for each $\lambda\geq\lambda^{*}$ with a certain positive $\lambda^{*}$ .
But the exact value for the critical $\lambda^{*}$ corresponding to the turning point is unknown by
any theoretical approaches.

We verified several upper and lower bifurcated solutions on the approximate bifurcation
diagram by using the same finite element subspace $S_{h}$ as in the previous paragraph. For
example, We enclosed an upper branch solution with the following data:

. conditions: $a=0.\mathrm{O}1,$ $\lambda=150$ , mesh size: $h=1/80$ .

. results: $||\hat{u}_{h}||_{L^{\infty}}\approx 0.96$ , Maximum width of $(B_{N})_{i}\leq 0.025,$ $.H_{0}^{1}$ error bound: $\alpha\leq$

0.0107.

Accuracy improvement by the residual method In this pargraph, we present
some improvement of accuracy and efficiency of verification by some residual technique
based on an a posteriori error estimation for the higher order finite element $([84])$ .
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Let $u_{h}\wedge$ be an approximate solution of (3.1) satisfying (3.27). We take an element
$\overline{u}\in H^{2}(\Omega)\cap H_{0}^{1}(\Omega)$ as the solution to the following Poisson equation:

$\{$

$-\triangle\overline{u}$ $=$ $f(\hat{u}_{h})$ in $\Omega$ ,

$\overline{u}$ $=$ $0$ on $\partial\Omega$ .
(3.33)

We intend to find the exact solution $u$ around $\overline{u}$ . Then, notice that $v_{0}\equiv\overline{u}-\hat{u}_{h}\in S_{h}^{\perp}$ ,
which also implies that $P_{h}\overline{u}$ coincides with $\hat{u}_{h}$ . Therefore, while the explicit form of $v_{0}$ is
unknown, the norm can be estimated as follows, by using (3.3) and (3.5):

$||v_{0}||_{H_{0}}1\leq C_{0}h||f(\hat{u}h)||_{L^{2}}$ . (3.34)

Thus, in this case, we consider the candidate set $U$ of the form

$U= \hat{u}_{h}+v_{0}+\sum^{M}Wi\phi_{i}+[\alpha i=1]$ ,

where $W_{i}\in IR$ .
Setting $u=\overline{u}+w,$ $(3.1)$ is rewritten as the following residual form finding $w$ .

$\{$

$-\triangle w$ $=$ $f(\hat{u}_{h}+v_{0}+w)-f(\hat{u}_{h})$ in $\Omega$ ,

$w$ $=$ $0$ on $\partial\Omega$ .
(3.35)

Now, let $S_{h}^{*}\subset H^{1}$ be a finite element subspace whose basis consists of the basis of
$S_{h}$ and the base functions having nonzero values on the boundary $\partial\Omega$ . We define the
two dimensional vector valued $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\overline{\nabla}\hat{u}_{h}\in S_{h}^{*}\cross S_{h}^{*}$ by the $L^{2}$ -projection of $\nabla\hat{u}_{h}\in$

$L^{2}(\Omega)\cross L^{2}(\Omega)$ into $S_{h^{\mathrm{X}S}h}^{*}*$ and set $\overline{\triangle}\hat{u}_{h}\equiv\nabla\cdot\overline{\nabla}\hat{u}_{h}$ .
Then we can easily obtain the $\mathrm{f}o$llowing identity:

$(\overline{\nabla}\hat{u}_{h}, \nabla\phi)+(\overline{\triangle}\hat{u}_{h}, \phi)=0$ , $\forall_{\phi}\in H_{0}^{1}(\Omega)$ . (3.36)

By using the above equality, we have

$(\nabla v_{0}, \nabla\emptyset)=(\overline{\nabla}\hat{u}_{h}-\nabla\hat{u}h, \nabla\phi)+(\overline{\triangle}\hat{u}_{h}+f(\hat{u}_{h}), \emptyset)$ , $\forall\phi\in H_{0}1(\Omega)$ .

Choosing $\phi=v_{0}$ and using the Aubin-Nitsche inequlity $||v_{0}||_{L^{2}}\leq C_{0}h||v0||_{H_{0}^{1}}$ , we get the

following estimate:

$||v_{0}||_{H_{0}^{1}}$
$\leq$ $||\overline{\nabla}\hat{u}_{h}-\nabla\hat{u}_{h}||_{L^{2}}+C_{0}h||\overline{\triangle}\hat{u}h+f(\hat{u}_{h})||_{L^{2}}$ . (3.37)

Notice that, if we use the higher order element, the right-hand side of (3.37) will converge
to $0$ with higher than $O(h)$ . Thus we can expect that the a posteriori error estimates
for the right-hand side can be actually smaller than the a priori estimates (3.34), i.e.,
$O(h)$ . Therefore, it will be possible that, if we use a higher order finite element to obtain

the approximation $\hat{u}_{h}$ , then it will enable us to verify with high accuracy even for the

relatively rough mesh. Moreover, this technique can also be extended for the nonconvex
and nonsmooth domain such as $L$-shape domain in which the solution has low regularity
and we could no longer apply the a priori estimates ([83]).
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Remark 3.2 We consider the meaning of the initial error $v_{0}$ . Let denote the dual space
of $H_{0}^{1}$ by $H^{-1}$ and $lei\ll.,$ $\cdot\gg be$ the duality pairing on $H^{-1}\mathrm{x}H_{0}^{1}$ . Taking account of
$\triangle\hat{u}_{h}\in H^{-1}$ , observe that

$||\triangle\hat{u}_{h}+f(uh)\wedge||_{H}-1$ $=$
$\sup_{0\neq\phi\in H_{0}^{1}}\frac{\ll\triangle\hat{u}_{h}+f(\hat{u}_{h}),\phi\gg}{||\phi||_{H_{0}^{1}}}$

$=$
$0 \neq\phi\in H\mathrm{s}\mathrm{u}\mathrm{p}\frac{(\nabla(-\hat{u}_{h}+\overline{u}),\nabla\phi)}{||\phi||_{H_{0}^{1}}}0^{1}$

$=$ $||-\hat{u}_{h}+\overline{u}||H^{1}0$

$=$ $||v_{0}||_{H}0^{1}$ .

Therefore, we can say that $v_{0}$ stands for an element in $H_{0}^{1}(\Omega)$ which is determined by the
Riesz representation theorem from the residual functional $\triangle\hat{u}_{h}+f(\hat{u}_{h})\in H^{-1}$ .

Numerical example 3 ([84]).
We verified a solution of the following Emden’s equation on the unit square in $R^{2}$ .

$\{$

$-\triangle u$ $=$ $u^{2}$ in $\Omega$ ,

$u$ $=$ $0$ on $\partial\Omega$ .
(3.38)

We used the biquadratic finite element subspace $S_{h}$ on the uniform rectangular mesh with
rnesh size $h$ . Therefore, we can use the constant: $C_{0}= \frac{1}{2\pi}$ . We show the verification
results in Table 1. for several mesh sizees $h=1/12,$ $\cdot’$ . , 1/20. Note that, in case of the
linear element with some other residual technique, we needed at least $h=1/80$ for the
verification due to the large righthand $\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\rangle$ i.e., $||\hat{u}_{h}^{2}||_{L\infty}\approx 900([80])$ , which confirms us
the effectiveness of the present a posteriori technique. On furher comparison with linear
a posteriori method, see [84].

Table 1. Verifiation results for Emden’s equation

Some other extentions: We briefly mention about the improvements or extentions
of the present method.

(i) $L^{\infty}$ error bounds This can be done by using the following constructive a priori $L^{\infty}$

error estimates for the $H_{0}^{1}$ -projection of the Poisson equation (3.4) :

$||\phi-P_{h}\emptyset||_{L^{\infty}(\Omega)}\leq c_{0^{\infty}}^{()_{h|}}|\psi||$. (3.39)

For example, it can be taken as $C_{0}^{(\infty)}=1.054([35])$ and 0.831([41]) for the uniform
bilinear and biquadratic element with rectangular mesh, respectively. For the trian-
gular case, we can take, e.g., $C_{0}^{(\infty)}=1.818$ for the linear element with uniform mesh
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([35]). The residual method using a posteriori $L^{\infty}$ error estimates was also presented
in [41]. As a numerical example, in [41], the solution $u$ for Emden’s equation (3.38)

was verified with the following error bound in the neighborhood of the approximate
solution $\hat{u}_{h}$ :

$||u-\hat{u}_{h}||_{L^{\infty}}\leq 0.814$ $( \frac{||u-\hat{u}_{h}||_{L^{\infty}}}{||\hat{u}_{h}||_{L^{\infty}}}\leq 0.0275)$ ,

where the same finite element subspace as in Numerical example 3. was adopted
with $h=1/20$ .

(ii) Verification with local uniqueness Based on the verification method described
above, one can formulate a method to prove the existence and local uniqueness by
using the Banach fixed point theorem. We now, by using the Newton-like operator
$T$ , write the residual equation (3.35) as:

$w=T(w)$ .

Then we consider the following set of functions

$T(0)+T’(W)W$ $:=$ $\{v\in H_{0}^{1}(I)|v=T(0)+T’(\tilde{w})w, \tilde{w}, w\in W\}$ ,

where $T’$ stands for the Fr\’echet derivative of $T$ . By appropriate bounding of this

set, one can prove that $T$ is a contraction map on the candidate set $W=W_{h}\oplus W_{\perp}$

satisfying $T(W)\subset W$ . Therefore, by Banach’s fixed point theorem, we obtain the
inclusion result that there exists a unique solution $w\in W$ with $w=T(w)$ . For
details and examples, see [85].

(iii) Parameter dependent equations For the parameter dependent elliptic problems
such as (3.32), it is important to enclose the solution curve itself or to verify the

existence of some singular points, e.g., turning point or bifurcation point. It is also
possible to apply our verification method to these problems by using some additional
techniques such as the solution curve enclosing for regular solutions [43] and the bor-

dering technique for turning p\‘Oints [76], [21]. The verification for simple bifurcation
points would also be possible by applying the similar method to that in $[77],[66]$ .

(iv) Navier-Stokes equations In [45], an a posteriori and a constructive a priori error
estimates for finite element solutions of the Stokes equations were presented. By
using these results a prototype verification has been derived in [82] for the solutions
of Navier-Stokes problems with small Reynolds number and small solutions. Re-
cently, the present method was applied to verify the bifurcated periodic solutions of
the Rayleigh-B\’enard problem for the heat convection in a two dimensional domain
[47]. By these validated computational results, several properties which were not yet
proved by the theoretical approaches were numerically verified.

(v) Variational inequalities Our method can also be applied to the enclosing solutions

of the variational inequalities with nonlinear right-hand side of the form [71]:

$\{$

Find $u\in K$ such that

$(\nabla u, \nabla(v-u))\geq(f(u), v-u),$ $\forall v\in K$,
(3.40)
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which appears in arguments on the obstacle problems $([10])$ . Here, $K=\{v\in$
$H_{0}^{1}(\Omega)|v$ $\geq 0\}$ . Furthermore, in [46] and [72], somewhat different kind of varia-
tional inequalities are treated.

(vi) Estimation of the optimal constant When we apply our verification method to
the boundary value problems in non-rectangular polygonal domains, we need the
constant $C_{0}$ in (3.3) as small as possible. Therefore, it is important to estimate the
optial value of the constant $C_{0}$ . The problem of finding such a constant is reduced
to the following an eigenvalue-like problem of the Laplacian:

$\{$

$-\triangle u$ $=$ $\lambda u+\lambda\psi+\triangle\psi$ in $\Omega$ ,

$\frac{\partial u}{\partial n}$ $=$ $0$ $on\partial\Omega$ ,

$\int_{\Gamma_{3}}ud_{S}$ $=$ $0$ ,

(3.41)

where $\Omega$ is the standard triangle in $R^{2}$ whose vertices are points $(0,0),$ $(0,1)$ and
$(1, 0)$ , and $\Gamma_{3}$ is the edge from (0.0) to $(0,1)$ in $\partial\Omega$ on the $\mathrm{y}$-axis. When we denote
the minimal value $\lambda$ in the set of the all solutions of (3.41) by $\lambda_{0}$ , the optimal constant
$C_{0}$ looking for satisfies $C_{0} \leq\frac{1}{\sqrt{\lambda_{0}}}$ . By applying our numerical verification method for

the solution of (3.41), we obtained the estimate $C_{0}\leq 0.494[48]$ which is considered
as a really significant improvement of the existing best constant $C_{0}\leq 0.81$ . On the
other hand, since it is known that 0.467 $\leq C_{0}$ , we can say this would be ‘nearly’
optimal estimate of $C_{0}$ .

3.1.2 Plum’s method

Plum presented a verification principle, which belongs to the category of analytic
method, for the solutions of nonlinear elliptic problems in [61], [62] incorporating with
his results on the enclosing eigenvalues for elliptic operators.
Let assume that the nonlinear function $f$ in (3.1) is sufficiently smooth in with respect
to each variable.

Also assume that an approximate solution $\omega$ of (3.1) with $H^{2}(\Omega)$ smoothness is ob-
tained. This means that we use the $C^{1}$ -element when the finite element approximation
is adopted for (3.1). And the residual is bounded by a sufficiently small $\delta$ as follows:

$||-\triangle\omega+f(\omega)||_{L^{2}}\leq\delta$. (3.42)

Also, suppose that there exists a constant $K$ satisfying

$||u||_{L}\infty\leq K||Lu||_{L^{2}}$ , $\forall u\in H^{2}$ , (3.43)

where $Lu \equiv-\triangle u+\frac{\partial f}{\partial u}(\omega)u$ . The above constant $K$ is determined by the arguments
described in later.

Next, assume that the following non-decreasing function $g$ : $[0, \infty)arrow[0, \infty)$ can be
chosen as

$|f(\omega(X)+y)-f(\omega(X))-J(x)y|\leq g(|y|)(_{X\in\Omega,y\in}R)$ , (3.44)
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where $g(t)=o(t)$ as $tarrow \mathrm{O}$ and $J(x) \equiv\frac{\partial f}{\partial u}(\omega(x))$ .

Moreover, let us suppose that there exist positive constants $K_{i},$ $i=0,1,2$ such that,
for any $u\in H^{2}$ ,

$||u||_{L^{2}}\leq K_{0}||Lu||L^{2}$ , $||\nabla u||_{L^{2}}\leq K_{1}||Lu||_{L^{2}}$ , $|u|_{H^{2}}\leq K_{2}||Lu||_{L^{2}}$ . (3.45)

Here, $K_{i}$ can be determined by the later consideration. Then the following theorem
provides the verification condition of the exact solution $u$ to (3.1) in a neighborhood of
$\omega$ .

Theorem 3.3 For $\alpha\geq 0$ , if the inequality

$\delta\leq\frac{\alpha}{K}-\sqrt{|\Omega|}\cdot g(\alpha)$ , (3.46)

holds, then there exists a solution $u$ of (3.1) satisfying $||u-\omega||_{L^{\infty}}\leq\alpha$ . Here, $|\Omega|$ means
the measure of $\Omega$ .

The condition (3.46) implies that the map on $L^{\infty}(\Omega)$ defined by the residual simpli-
fied Newton operator for the equation (3.1) at $\omega$ is retractive on the set $D\equiv\{u\in$

$L^{\infty}(\Omega)|||u|\}_{L^{\infty}}\leq\alpha\}$ . Therefore, the verification is based on the Schauder fixed point
theorem in $L^{\infty}(\Omega)$ . In order to verify the solution by this method, we need a fine approx-
imation $\omega\in H^{2}\cap H_{0}^{1}$ as well as the estimates of the constants appeared in the above.
Particularly, the constant $K$ in (3.43), which provides the inverse norm for the linearlized
operator of the original equation, plays the most essential role. This constant is estimated
as follows (see [62] for details):
First, we need an estimate of the following positive constant a.

$\sigma\leq\min${ $|\lambda||\lambda$ is the eigenvalue of operator $L$ on $H^{2}\cap H_{0}^{1}$ }.

In order to get a lower bound of the eigenvalues for $L$ , he uses the homotopy method
starting with some simple operator, e.g., $L=\triangle$ , whose lower bound of eigenvalue is
already known ([58]).
Next, using this $\sigma$ , the constants $K_{i}$ in (3.45) are determined as follows.
We only describe here for the case that $f$ is independent of $\nabla u$ .
First, it can be taken as $K_{0}=1/\sigma$ . And defining the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}_{\mathrm{S}}\underline{c}\mathrm{a}\mathrm{n}\mathrm{d}_{\overline{C}}$ such that

$\underline{c}\leq J(x)\leq\overline{c}$ , $\forall_{X\in\overline{\Omega}}$ , (3.47)

$K_{1}$ is given by

$K_{1}=\{$

$[K_{0}(1-\underline{C}K0)]^{1/2}$ , if $\underline{c}K_{0}\leq 1/2$ ,

$\frac{1}{2\sqrt{\underline{c}}}$ otherwise. (3.48)

Also, $K_{2}$ is decided as:

$K_{2}=1+K0^{\cdot} \max\{-\underline{C}, \frac{1}{2}(\overline{c}-\underline{C})\}$ .
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Thus, if the constants $C_{j},$ $j=0,1,2$ in the Sobolev inequality:

$||u||L\infty\leq C_{0}||u||_{L^{2}}+C_{1}||\nabla u||_{L^{2}}+C_{2}|u|_{H^{2}}$ (3.49)

can be numerically estimated, then the desired constant $K$ in (3.43) is obtained by
$K\equiv C_{0}K_{0}+C_{1}K_{1}+C_{2}K_{2}$ . On the other hand, $C_{j}$ in (3.49) is computed as follows [62].

$C_{j}= \frac{\gamma_{j}}{|\Omega|}\cdot[\mathrm{m}\mathrm{a}_{\frac{\mathrm{x}}{\Omega}}x\mathrm{o}\in\int_{\Omega}|x-x0|2\mathcal{U}dX]^{1}/2$, $j=0,1,2$ , (3.50)

where, $(\gamma 0, \gamma 1, \gamma 2)=(1$ , 1.1548, 0.22361 $)$ for $n=2$ , and $(\gamma 0, \gamma 1, \gamma 2)=$

(1.0708, 1.6549, 0.41413) for $n=3$ .
As the numerical examples, in [61], he verified the solutions $\mathrm{o}\mathrm{f}-\triangle u=\lambda e^{u}$ , for sev-

eral parameter $\lambda$ , on the unit square in $R^{2}$ with homogeneous Dirichlet condition. The
approximate solution $\omega$ is constituted as the piecewise biquintic $C^{1}$ -spline on the 8 $\cross 8$

finite element mesh.
In the meantime, he extended the method to the equation having turning points and

bifurcation points in [65] and [66], respectively, as well as the problem on the nonconvex
nonsmooth domain in [64].

3.1.3 Heywood’s method

In [12], Heywood et al. presented a numerical verification method for the spatially
periodic solutions of the steady Navier-Stokes equations by usihg the spectral techniques.
They considered the following problem on the fundamental domain $\Omega=(0,1)\mathrm{x}(0,1)$ of
periodicity :

$\{$

$-I\text{ノ}\triangle u+(u\cdot\nabla)u+\nabla p-f$ $=$ $0$ , $x\in\Omega$ ,
$\nabla\cdot u$ $=$ $0$ $x\in\Omega$ ,

$u(x+K)$ $=$ $u(x)$ , $\forall x\in R^{2},$ $K\in Z^{2}$ ,
$\int_{\Omega}u(x)dx$ $=$ $0$ ,

(3.51)

where $f$ is a prescribed force satisfying the same periodic condition as $u$ , and lノ is the
kinematic viscosity.

Under some appropriate setting of the spatially periodic function space, i.e., $V\approx$

$H^{2}(\Omega)\cap$ { $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{c}$ and divergence free}, the original equation (3.51) can be written as :
find $\exists u\in V$ such that

$F(u)\equiv-I\text{ノ}\triangle u+(u\cdot\nabla)u-f=0$ . (3.52)

Now let $M$ be a constant satisfying

$||(u\cdot\nabla)v||_{L^{2}}\leq M||u||_{V}||v||_{V}$ , $\forall u,$ $v\in V$. (3.53)

For some approximate solution \^u of (3.52), denoting the Fr\’echet derivative of $F$ at \^u by
$L\equiv F’$ (\^u) : $Varrow L^{2}$ , the following theorem is obtained.
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Theorem 3.4 If $L$ is invertible with a bound $||L^{-1}||$ and

$4M||L^{-}1||^{2}||F(\hat{u})||_{L}2\leq 1$

holds, then (3.52) has a locally unique solution $u$ satisfying

$||u-\hat{u}||_{V}\leq 2||L^{-1}|||F(\hat{u})||_{L^{2}}$ .

This theorem can be proved by the fact that the simplified Newton operator at \^u defines
a contraction mapping on a neighborhood of it under the above condition.

The main task of the verification procedure by the application of Theorem 3.4 is con-
cerned with estimating the norm $||L^{-1}||$ . This is done by a reduction in two steps. The
first step is to approximate $L$ with a simpler, but still infinite dimensional, linear opera-
tor $L_{N}$ having the same finite part as $L$ , where $N$ is a positive interger, and converging
to $L$ as $Narrow\infty$ . Next, a finite dimensional operator $\overline{L}_{N}$ is introduced as the spectral
Galerkin approximation of $L$ , which is the restriction of $L_{N}$ to some finite dimensional
space, and it is shown that $L_{N}$ is invertible and $||L_{N}^{-1}||$ is bounded through a reduction
to the property with respect to $\overline{L}_{N}$ . Thus, the general perturbation theorem yields the
inveritibility of $L$ and the bound $||L^{-1}||$ by using the error estimate $||L-L_{N}||$ .

They applied the method to the case that $l\text{ノ}=0.001$ and $f(x)\equiv f(x_{1}, x_{2})$ is a simple
sine function in $x_{2}$ and got some verified results by constructing $\overline{L}_{120}$ numerically which
is the spectral Galerkin approximation of $L$ resticted to a finite dimensional space with
dimension 2,820. Then, the quantities in Theorem 4 were estimated as follows:

$M=15.42493$ , $||L^{-1}||<390.16$ , $||F(\hat{u})||_{L^{2}}=3.421\cross 10^{-8}$ .

and thus they obtained
$M||L^{-1}||^{2}||F(\hat{u})||_{L^{2}}\leq 0.32132$,

which implies by the theorem that there exists a locally unique solution $u$ of (3.52) with
the error bound

$||u-\hat{u}||_{V}\leq 2.7\cross 10^{-5}$ .

In these numerical computations, they neglected the round-off error of floating point
arithmetic with double precision as well as used commercially available software concerned
with linear algebra without verification.

3.2 Evolution equations

The study for the numerical verification method for evolution problems has been still
made less progress than for the elliptic case.
We consider the following parabolic problems

$\{$

$\frac{\partial u}{\partial t}-\triangle u$ $=$ $f(x, t, u)$ , $(x, t)\in\Omega\cross J$ ,

$u(x, t)$ $=$ $0$ , $(x, t)\in\partial\Omega\cross J$,
$u(x, 0)$ $=$ $0$ , $x\in\Omega$ ,

(3.54)
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where $\Omega$ is a convex domain in $R^{1}$ or $R^{2}$ and $J=(0, T)(T>0)$ . If the time $T$ is
fixed, then the equation (3.54) can be treated as a kind of stationary problem. Thus,
for example, the the author’s method in the previous subsection can also be applied, in
principle, to the verification of solutions of this problem. In such applications, the simple
linear problem which corresponds to the Poisson equation in the elliptic case is as follows:

$\{$

$\frac{\partial\phi}{\partial t}-\triangle\emptyset$ $=$ $g$ $(x, t)\in\Omega\cross J$,

$\phi(x, t)$ $=$ $0$ , $(x, t)\in\partial\Omega\cross J$,
$\phi(x, 0)$ $=$ $0$ , $x\in\Omega$ ,

(3.55)

where $g$ is the prescribed function. Therefore, if one obtain a fixed point formulation
in the appropriate function space and the constructive a priori error estimates for the
finite element solution of (3.55), then the arguments in the elliptic case can be applied
to the verification for the problem (3.54). In [32] and [38], the verification examples were
presented based on the simple iteration method for one and two space dimensional cases,
respectively.

On the other hand, noting that it is read\’ily possible to estimate the norm of the inverse
of a linearized operator for (3.54), Plum’s method can also be applied to the same problem
without any complicated work concerning the eigenvalue enclosing for the operator. In
line with this direction, Minamoto [19], [22] formulated and presented some verification
examples based on the residual Newton type operator. Also for the case of the following
hyperbolic equations, in [20], [23], by using the similar arguments to parabolic case,
several verification results were obtained.

$\{$

$\frac{\partial^{2}u}{\partial t^{2}}-\triangle u$

$=$ $f(x, t, u)$ , $(x, t)\in\Omega\cross J$,

$u(x, t)$ $=$ $0$ , $(x, t)\in\partial\Omega\cross J$,
$u(x, 0)$ $=$ $0$ , $x\in\Omega$ ,

$\partial u$

$\overline{\partial t}(x, 0)$
$=$ $0$ , $x\in\Omega$ .

(3.56)

Since, in these verification procedures by analytic methods, the residual Newton method
are utilized, the accuracy of the appriximate solution essentially affects the success of
verification. Usually, due to the difficulty to improve the accuracy for time direction, it is
not so easy to compute an approximation with sufficiently small residue for the practical
problems.

Recently, in [14], Kawanago proposed a method to verify a time periodic solution for
some bifurcation problem on the following semilinear dissipative wave equation:

$\{$

$u_{tt}-u_{xx}+u_{t}+u^{3}$ $=$ $\lambda\sin x\cos t$ , $(x, t)\in(0, \pi)\cross(0, \infty)$ ,

$u(\mathrm{O}, t)=u(\pi, t)$ $=$ $0$ , $t\in(0, \infty)$ ,
(3.57)

where $\lambda$ is a positive parameter. He numerically proved that the above equation has a
symmetry-breakung pitchfork bifurcation point $(\lambda_{0}, u_{0})$ around an approximate solution
pair $(\tilde{\lambda}_{0},\tilde{u}_{0})$ . He used a kind of analytic method of Newton type by using spectral basis
for both of space and time.
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4 Eigenvalue problems

Consider the following self-adjoint elliptic eigenvalue problem:

$\{$

$Au\equiv-\Delta u+qu$ $=$ $\lambda u$ , $x\in\Omega$ ,

$u$ $=$ $0$ , $x\in\partial\Omega$ ,
(4.1)

where $\Omega$ is a bounded convex domain in $R^{2}$ and $q\in L^{\infty}(\Omega)$ . We normalize the problem
(4.1) as :
find $\exists(u, \lambda)\in H_{0}^{1}(\Omega)\cross R$ satisfying

$\{$

$-\triangle u+(q-\lambda)u$ $=$ $0$ , $x\in\Omega$ ,

$\int_{\Omega}u^{2}$ $=$ 1.
(4.2)

As in the usual elliptic problems, it is readily seen that the problem (4.2) can be rewritten
as a fixed point equation of a compact map on $H_{0}^{1}(\Omega)\cross R$ , and that, in order to enclose
the eigenpair $(u, \lambda)$ around an approximate pair $(\hat{u}_{h}, \lambda_{h})\in S_{h}\cross R$ , we can also apply
the author’s verification method described in the previous section (see [44], [26], [27]
for details). Namely, the exact eigenvalue $\lambda$ and the corresponding eigenfunction $u$ are
enclosed in an interval A $\in IR$ and in a candidate set $U\subset H_{0}^{1}(\Omega)$ of the form $U=$

$\hat{u}_{h}+v_{0}+U_{h}+[\alpha]$ , respectively. Here, as in the previous section, $U_{h}\in S_{h,I},$ $v_{0}\in$

$S_{h}^{\perp}$ and $[\alpha]\subseteq S_{h}^{\perp}$ . Furthermore, in the present case, we can assert the uniqueness
of the eigenvalue in A by the almost same verification condition as in Theorem 3.1 or
3.2([27]). Note that this method gives the enclosure of eigenvalues as well as verifies the
corresponding eigenfunctions in contrast to other methods, described later, which present
only eigenvalue enclosing.

We now briefly remark on the method to enclose the eigenvalues in order of magnitude.
In such a case, an eigenvalue excluding procedure plays an essentially important role. This
can be done as follows.
We consider an sufficiently narrow interval $\Lambda$ , and set, for a $\lambda\in\Lambda$ ,

$L(\lambda)\equiv-\triangle u+(q-\lambda)u$ .

Then, since $L(\lambda)$ is a linear elliptic operator, the following equation has a trivial solution
$u=0$ :

$\{$

$L(\lambda)u$ $=$ $0$ , $x\in\Omega$ ,

$u$ $=$ $0$ , $x\in\partial\Omega$ .
(4.3)

Therefore, if we validate the uniqueness of the solution in (4.3), then it implies that $\lambda$ is
not an eigenvalue of (4.1). The uniqueness property can be proved, taking into account
that the operator $L(\lambda)$ is linear, by the method analogous to that in the previous section.
Thus, by using some interval computing techniques, it is easily to verify that there is no
eigenvalue of (4.3) in A. Thus the eigenvalue excluding process advances from the one to
the next, backward or forward to the adjacent intervals.

We now note that, by some eigenvalue shift, we can easily present the lower bound of
the spectrum of (4.1). Therefore, by appropriately combining this excluding procedure
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with the enclosing technique described before, we make the eigenvalue ordering as far as
each eigenvalue is geometrically simple $([28])$ .

A numerical example:
Particularly, the eigenvalue with smallest absolute value(ESAV), which is important to

verify the solution of the corresponding nonlinear elliptic equations, was verified for the
following problem$([44])$ :

$\{$

$-\triangle u+l\text{ノ}(3v_{h}^{2}-2\wedge(a+1)v_{h}\wedge+a)u$ $=$ $\lambda u$ , $x\in\Omega$ ,

$u$ $=$ $0$ , $x\in\partial\Omega$ .
(4.4)

This is the eigenvalue problem for the linearlized operator of the Allen-Cahn equation
(3.32) at $v_{h}\wedge$ . Here $v_{h}\wedge$ is an approximate lower branch solution of the original problem in
the finite element subspace $S_{h}$ of biquadratic polynomials as in the numerical example 2
in the previous section with $l\text{ノ}=150,$ $a=0.\mathrm{O}1$ and mesh size $h=1/20$ . The ESAV of
(4.4) were enclosed using the present method in the interval:

$\Lambda=[-16.67017, - 16.55062]$

and the corresponding eigenfunction was enclosed in the set : $U=\hat{u}_{h}+v_{0}+U_{h}+[\alpha]$ ,
where $||\hat{u}_{h}||_{L^{\infty}}\approx 2.308,$ $||v_{0}||_{L^{2}}\leq 0.0001372$ , [maximum width of the coefficient intervals
in $U_{h}$ ] $\leq 0.00321$ and $\alpha\leq 0.00105$ .

Remark 4.1 It is seen that the above method can also be applied to the non-selfadjoint
eigenvalue problems of the form:

$\{$

$-\triangle u+p\cdot\nabla u+qu$ $=$ $\lambda u$ , $x\in\Omega$ ,

$u$ $=$ $0$ , $x\in\partial\Omega$ .
(4.5)

Now, we will mention about other methods. The following proposition is well known
as the Weinstein bounds for the eigenvalues of the form $Au=\lambda u$ :

Proposition 4.1 Let $(\tilde{u},\tilde{\lambda})$ be an approximate eigenpair for $Au=\lambda u$ such that $\tilde{u}\in$

$D(A)$ , where $D(A)$ is the domain of $A$ , and let $\epsilon:=\frac{||A\tilde{u}-\tilde{\lambda}\tilde{u}||}{||\tilde{u}||}$ . Then there exists at

least one exact eigenvalue in the interval $[\tilde{\lambda}-\epsilon,\tilde{\lambda}+\epsilon]$ .

This proposition was extended to more practical version known as Kato’s bound$([67])$ .
On the other hand, Lehman-Goerisch method [9], [4] is well-known, and is based on
the Rayleigh-Ritz method which gives only upper bounds to the eigenvalues. We now
describe the outline of this method. Let denote the N-th eigenvalue by $\lambda_{N}$ ordered from
the smallest one, and let $\Lambda_{N}$ be the largest eigenvalue of the discretized problem for (4.1)
by using the approximate eigenfunctions $\{\tilde{u}_{i}\}_{i=1}^{N}$ as a set of trial functions. We assume
that some $\rho\in R$ is known satisfying

$\Lambda_{N}<\rho<\lambda_{N+1}$ . (4.6)
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Moreover, define the following matrices:

$(A_{1})_{ij}:=(A\overline{u}i, A\tilde{u}j)$ , (4.7)

$(A_{2})_{ij}:=((A-\rho)\tilde{u}_{i},\tilde{u}j)$ ,

$(A_{3})_{ij}:=((A-\rho)\overline{u}i, (A-\rho)\tilde{u}_{j})$ ,

where $i,$ $j=1,$ $\cdots,\dot{N}$ and $(\cdot, \cdot)$ stands for the $L^{2}$ inner product on $\Omega$ . Then, by the as-
sumption (4.6), the generalized eigenvalue problem: $A_{2}x=\mu A3X$ has negative eigenvalues
$\{\mu_{i}\}_{i=1}^{N}$ . Then we have

Theorem 4.1 Assuming the above conditions, it holds that

$\lambda_{N+1-i}\geq\rho+\frac{1}{\mu_{i}}$ for $i=1,$ $\cdots,$
$N$ .

By using this theorem one can determine the lower bounds of eigenvalues provided that

the spectral parameter is a priori known by some other consideration.

An example:
In [6], Behnke applied some extended method of the above to the following eigenvalue

problem of forth order related to the vibrations of a clamped plate:

$\frac{\partial^{4}}{\partial x^{4}}u+P\frac{\partial^{4}}{\partial x^{2}\partial y^{2}}u+Q\frac{\partial^{4}}{\partial y^{4}}u=\lambda u$ $x\in\Omega$ ,

$u=0$ and $\frac{\partial u}{\partial n}=0$ $x\in\partial\Omega$ ,

where $P,$ $Q$ are positive constants and $\Omega=\cross(-\frac{b}{2}, \frac{b}{2})$ . He considered the eigen-

values as functions of $s=a/b$ and numerically proved a curve veering phenomena$(Cf$.
[5] $)$ .

Now, the Lehman-Goerisch method a priori needs a spectral parameter $\rho$ in (4.6). It

is, in general, not necessarily easy to decide such a parameter. Plum [58], [60], [67]

introduced a homotopy method which overcomes this difficlty by connecting the given
problem (4.1) with a simple problem whose spectrum is already known.

For example, the problem (4.1) is connected to the simple eigenvalue problem for the
Laplacian by the following homotopy, for $t\in[0,1]$ ,

$\{$

$A_{t}u\equiv-\triangle u+tqu$ $=$ $\lambda u$ , $x\in\Omega$ ,

$u$ $=$ $0$ , $x\in\partial\Omega$ .
(4.8)

When we denote the n-th eigenvalue of (4.8) by $\lambda_{n}^{t}$ the homotopy is set such that $\lambda_{n}^{t}$

is monotonically non-decreasing with respect to $n$ . Therefore, basically both spectra

have invariant structure. Starting at some $t=t_{1}\in(0,1]$ , by repeated applications of
the Lehmann-Goerisch method or other bounding methods with additional procedures,

ordered eigenvalues $\lambda_{n^{1}}^{t}$ are enclosed, then increase $t$ , e.g., $t=t_{2}\in(t_{1},1]$ , little by little

up to the final stage: $t=1$ .
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Examples:
In [60], he enclosed several eigenvalues of the following problems on the rectangular

domain $\Omega=(0, \pi)\cross(0, \pi)$ with Dirichlet boundary condition:

1. $- \triangle u+10\cos^{2}[\frac{1}{6}(2x+y)]u=\lambda u$ .

$2.- \triangle u=\frac{\lambda u}{1+\frac{1}{\pi^{2}}(_{X^{2}}1^{+2_{X_{2}}})2}$ .

5 Conclusions

We have surveyed numerical verification methods for differential equations, especially
around PDEs and the author’s works. But the period of this research is shorter than the
history of the numerical methods for differential equations by computer and we can say it
is still in the stage of case studies. Indeed, recently, this kind of studies have been referred
little by little for practical applications in PDEs but there are many open problems to be
resolve. Therefore, we can make no prediction that these approaches will grow into really
useful methods for various kinds of equations in mathematical analysis. Also, since the
program description of the verification algorithm is very complicated in general, there
is another problem like software tecnology associated with assurance for the correctness
of th everification prograqm itself. Actually, some of the mathematician would not give
credit the computer assisted proof in analysis as correct as they believe the theoretical
proof, which might cause a kind of seriously emotional problemm in the methodology of
mathematical sciences. And there is another difficulty from the huge scale of numerical
computations which often exceed the capacity of the concurrent computing facilities.

However, in the 21st century, the computing environment would make more and more
rapid progress, which should be beyond conception in the present state. The author
believes that the above difficulties should be overcome by this evolution and that the
computer would greatly contribute to the theory of analysis in mathematics and create
a new research area which should be called computer aided analysis. On the other hand,
numerical methods with guaranteed accuracy for differential equations would highly im-
prove the reliability in the numerical simulation of the complicated phenomena in sience
and technology.
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