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Abstract

It is shown that KP tau functions can be characterized by a single, linear integral equation. The
measure and contour appearing in the integral are directly related to the representation of a tau
function by an element of $gl(\infty)$ (or a suitable completion thereof). Furthermore, it turns out that
this measure and contour can be determined $\mathrm{h}\cdot \mathrm{o}\mathrm{m}$ the values a tau function $\tau(x_{1}, x_{\sim^{)}}., x_{3}, \ldots)$ takes in
the $x_{1}x.$)-plane, thereby $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ a method for $\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{n}_{\mathrm{o}}\sigma$ a tau function from an initial proffie
defined in the $x_{1}x$ )

$\sim$
-plane.

1 Direct linearization for the KP equation
The original motivation for the work reported here is a rather remarkable direct linearization procedure [1]
by which solutions for the Kadomtsev-Petviashvili $(\mathrm{I}<\mathrm{P})$ equation can be obtained. It is remarkable in
the sense that it only requires very little input but yet covers a very broad range of solutions.
The procedure first of all consists of solving the linear integral equation

$\varphi(k)=e^{\theta(k)}-e^{\theta(k)}\int_{c}\int \mathrm{d}\eta(\lambda,\mu)\frac{e^{-\theta(\mu)}}{k-\mu}\varphi(\lambda)$ (1)

with $\theta(k)\equiv kx+k^{2}y+k^{3}t$ , for a contour $C$ and measure $\eta(\lambda,\mu)$ which are essentialy arbitrary except for
the requirernent that the homogeneous equation:

$F(k)=-e^{\theta(k)} \int_{c}\int \mathrm{d}\eta(\lambda, \mu)\frac{e^{-\theta(\mu)}}{k-\mu}F(\lambda)$

should have $F(k)\equiv 0$ as its unique solution. $\mathrm{t}\mathrm{V}\mathrm{e}$ also dernand that the measure be suitably well-behaved
such that differentiation with respect to the variables $x,$ $y$ and $t$ can be interchanged with the integrations
in (1). Under these assumptions it can be shown that the solution $\varphi(k)$ to (1) solves the Lax pair for the
KP equation:

$\psi_{y}=\psi_{2x}+2u\psi$ (2)

$\psi_{t}=\psi_{3x}+3u\psi_{x}+.3(u_{x}+v)\psi$ , where $v_{x}= \frac{1}{2}(u_{y}-u_{2x})$ (3)

for a potential $u$ defined in terms of the function $\varphi(k)$ and the same contour $C$ and measure $\eta(\lambda,\mu)$ :

$u(x, y, i)= \frac{\partial}{\partial x}\int_{c}\int \mathrm{d}\eta(\lambda, \mu)e^{-\theta(\mu)}\varphi(\lambda)$ . (4)
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Hence, with this expression for $u(x, y, t)$ one has effectively (re-)constructed a solution to the KP $\mathrm{e}\mathrm{q}\iota \mathrm{l}\mathrm{a}$tion

$4u_{x,t}-3u_{2y}-u_{4x}-12(uu_{x})_{x}=0$ ,

from the mere input of a contour $C$ and a measure $\eta(\lambda, \mu)$ . The above procedure was actually ffist
introduced for the case of the Korteweg-de Vries equation [2], were the great freedom which is allowed in
choosing contours and measures was exploited to construct solutions to the Painlev\’e II equation. solutions
which were not accessible using the usual inverse scattering method based upon the Gel’fand-Levitan
equation. As a matter of fact, it can be shown that the modern formulation of the inverse scattering
problem for the KP equation(s) (if one distinguishes between the KPI and II cases) as a Rienlann-Hilbert
problem is actually contained in the above approach (see e.g. [3] and references therein). Furthermore,

Nijhoff et al. [4] studied so $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ B\"acklund transformations for the measures used in the integral equation
(1) and were able to construct a discrete (lattice) version of the KP equation from the compatibility
conditions of those $\mathrm{B}\dot{\tilde{\mathrm{a}}}\mathrm{c}\mathrm{k}\mathrm{l}\mathrm{u}\mathrm{n}\mathrm{d}$ transformations. A result which suggests that the measures involved play
an fundamental r\^ole in the integrability of the KP equation.

In part, the aim of this paper is to $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{i}\mathrm{r}_{1}$ the above results in the light of the Sato theory [5] for
the KP equation (and its associated hierarchy) as it will be shown that equation (1) allows for a natural
interpretation in terms of KP tau functions. But most importantly, in doing so it will become clear
that the solution of a different type of inverse $\mathrm{p}r$oblem also lies at hand, i.e. : the reconstruction of a
tau function from the knowledge of an initial profile which is only defined in the two (lowest weight)

coordinates $x$ and $y$ .

2 Tau functions and infinite dimensional algebras

First. let us introduce some notation and definitions regarding tau functions and especiall.,$\mathrm{v}$ concerning
the algebraic formulation of the Sato-theory $[6, 7]$ for the KP hierarchy.

For an algebra of (charged) free fermion creation and annihilation operators. satisfying the anti-
commutation relations:

$[\psi_{i}, \psi_{j}^{*}]_{+}\equiv\psi_{i}\psi_{j}^{*}+\psi_{j}^{*}\psi_{i}=\delta_{i+j,0}$ , $[\psi_{i}, \psi_{j}]_{+}=[\psi_{i}^{*}, \psi_{j}^{*}]_{+}=0$ , for $i,j \in \mathbb{Z}+\frac{1}{2}$ ,

one has the standard Fock representation defining the Fock space $\mathcal{F}$ as well as its dual $F^{*}$ , with cyclic

vectors $|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$ $\in \mathcal{F}$ and $\langle$ $\mathrm{v}\mathrm{a}\mathrm{c}|\in \mathcal{F}^{*}$ :
$|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$ $=$ $\psi_{1/2}^{*}\psi_{3/\underline{)}}^{*}.\psi_{5/2}^{*}\cdots|0\rangle$

$\langle \mathrm{v}\mathrm{a}\mathrm{c}|$ $=$ $\langle 0|\cdots\psi_{-5/2}\psi_{-3/2}\psi_{-1/2}$ ,

themselves defined in terms of “fake” vacuum states $|0\rangle$ and $\langle$ $0|$ , respectively annihilated by all operators
$\psi_{j}$ or $\psi_{j}^{*}(j\in \mathbb{Z}+1/2)$ . A usual, expectation values for the states in the Fock space are defined using

the pairing $\mathcal{F}^{*}\cross \mathcal{F}arrow \mathbb{C}$ with $\langle \mathrm{v}\mathrm{a}\mathrm{c}|1|\mathrm{v}\mathrm{a}\mathrm{c}\rangle=1$ ; these can be c.alc.ulated using Wick’s theorem.

Let us also introduce (formal) fermion operators

$\psi(k)\equiv\sum_{j\in \mathrm{z}+1/2}\psi_{j}k^{-j-1/2}$ $\psi^{*}(k)\equiv\sum_{j\in \mathrm{z}+1/2}\psi_{j}^{*}k^{-j-1/2}$
,

for which “time” evolutions with respect to (infinitely many) time variables $\mathrm{x}\equiv(x_{1}, x_{\mathit{2}}, x_{3}\ldots.)$ can be

introduced using a Hamiltonian :

$H( \mathrm{x})\equiv\sum_{n=1}^{\infty}x_{n}H_{n}$ with
$H_{n} \equiv\sum_{j\in \mathrm{Z}+1/2}$

: $\psi_{-j}\psi_{j+n}^{*}$ : $\forall n\geq 1$ (5)

(the symbol : : denotes normal ordering as in : $\psi_{i}\psi_{j}^{*}$ $:=\psi_{i}\psi_{j}^{*}-\langle \mathrm{v}\mathrm{a}\mathrm{c}|\psi_{i}\psi_{j}^{*}|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$ ). Note also that

$H_{n}|\mathrm{v}\mathrm{a}\mathrm{c}\rangle=0(\forall n\geq 1)$ and hence that $e^{H(\mathrm{x})}|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$ $=0$ .
In terms of the above Hamiltonian, the evolutions of $\psi(k)$ and $\psi^{*}(k)$ w.r.t. the coordinates $\mathrm{x}$ are

defined as
$\psi(k;\mathrm{x})$ $\equiv$

$e^{H(\mathrm{x})}\psi(k)e^{-H(\mathrm{x})}=\psi(k)e^{\xi(\mathrm{x}.k)}$ (6)

$\psi^{*}(k;\mathrm{x})$ $\equiv$ $e^{H(\mathrm{x})}\psi^{*}(k)e^{-H(\mathrm{x})}=\psi^{*}(k)e^{-\xi(\mathrm{x},k)}$, (7)

for phase functions $\xi(\mathrm{x}, k)=\sum_{n=1}^{\infty}x_{n}k^{n}$ .
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The connection between this algebro-field theoretic construction and integrable (partial) $\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}r\mathrm{e}\mathrm{n}\mathrm{t}_{J}\mathrm{i}\mathrm{a}1$

equations is provided by the so called fermion - boson correspondence , stating that the (fermionic)
operators $\psi(k)$ and $\psi^{*}(k)$ possess a realization on a bosonic Fock space. In $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{I}^{\backslash }$ , the fermion-boson
correspondence allows one to define a tau function as the orbit of the cyclic vector $|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$ under the action
of the Lie group associated with the infinite dimensional Lie algebra :

$gl(\infty)$ : {
$\sum_{i,j\in \mathrm{Z}+1/2}a_{ij}$

: $\psi_{i}\psi_{j}^{*}$ $:+a_{0}|\exists R\mathrm{s}.\mathrm{t}$ . $a_{ij}=0\forall|i-j|>R$ , with $a_{ij},$
$a_{0}\in \mathbb{C}$ } ;

the corresponding Lie group is denoted by $GL(\infty)$ and in the following the symbol $\mathrm{g}$ will be used to
denote an element of $GL(\infty)$ . A tau ffinction is then defined by the pairing :

$\tau\equiv\langle \mathrm{v}\mathrm{a}\mathrm{c}|e^{H(\mathrm{x})}\mathrm{g}|\mathrm{v}\mathrm{a}\mathrm{c}\rangle=\langle \mathrm{v}\mathrm{a}\mathrm{c}|\mathrm{g}(\mathrm{x})|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$ (8)

where $\mathrm{g}(\mathrm{x})\equiv e^{H(\mathrm{x})}\mathrm{g}e^{-H(\mathrm{x})}$ . In $\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}_{5}$, it will prove necessary to extend the Lie group $GL(\infty)$ to what one
might call its formal completion $\overline{GL}(\infty))$ containing elements generated by products of formal operators
such as $\psi(\lambda)\psi^{*}(\mu)$ –which are not contained in $gl(\infty)$ –provided that such $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}_{}\mathrm{s}$ still give rise to a
well defined pairing (8).

The fundamental property of the tau functions is of course that they satisfy the bilinear identity :

${\rm Res}_{k}[\tau(\mathrm{x}-\epsilon[k])\tau(\mathrm{x}’+\circ-[k-])e^{\xi(\mathrm{x}-\mathrm{x}’.k)}]=0$ , $\forall \mathrm{x}.\mathrm{x}’$ (9)

where the symbol $\epsilon[k]$ stand for the infinite sequence of shifts $( \frac{1}{k} . \frac{1}{2k\sim},\mathrm{s}^{1}\neg_{k},\cdot\cdots)$ . In this $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{t}_{}\mathrm{y}$ , the
operation ${\rm Res}_{k}[E(k)]$ denotes the residue for (formal) expansions of $E(k)$ at $k=\infty$ . As is well known,
the bilinear identity (9) can be used as a generator for the equations in the KP hierarchy expressed
in terms of the Hirota $\mathrm{D}$-operators [8] (i.e. expressed in terms of tau functions instead of the field
$u=\partial_{x_{1}}^{2}\log\tau)$ . For example, the KP equation takes the following form :

$[4D_{x_{1}}D_{x_{3}}-D_{x_{1}}^{4}-3D_{x_{2}}^{2}]\tau\cdot\tau=0$ .

To complete the desccription of the KP theory, one also defines wave functions $\Psi_{\lambda}(\mathrm{x})$ and adjoint
wave functions $\Psi_{\lambda}^{*}(\mathrm{x})$

$\Psi_{\lambda}(\mathrm{x})$ $\equiv$
$\frac{\langle \mathrm{v}\mathrm{a}\mathrm{c}|\psi_{1/2}^{*}\psi(\mathrm{x},\lambda)\mathrm{g}(\mathrm{x})|\mathrm{v}\mathrm{a}\mathrm{c}\rangle}{\langle \mathrm{v}\mathrm{a}\mathrm{c}|\mathrm{g}(\mathrm{x})|\mathrm{v}\mathrm{a}\mathrm{c}\rangle}=\frac{\tau(\mathrm{x}-\in[\lambda])}{\tau(\mathrm{x})}e^{\xi(\mathrm{x},\lambda)}$

$\Psi_{\lambda}^{*}(\mathrm{x})$ $\equiv$ $. \frac{\langle \mathrm{v}\mathrm{a}\mathrm{c}|\emptyset_{1/2}\psi^{*}(\mathrm{x},\lambda)\mathrm{g}(\mathrm{x})|\mathrm{v}\mathrm{a}\mathrm{c}\rangle}{\langle \mathrm{v}\mathrm{a}\mathrm{c}|\mathrm{g}(\mathrm{x})|\mathrm{v}\mathrm{a}\mathrm{c}\rangle}.=\frac{\tau(\mathrm{x}+\vee[c\lambda])}{\tau(\mathrm{x})}e^{-\xi(\mathrm{x},\lambda)}$

which solve the KP linear problem

$p_{r\iota}(-\overline{\partial})\Psi_{\lambda}(\mathrm{x})=\Psi_{\lambda}(\mathrm{x})p_{n-1}(-\tilde{\partial})[\log\tau(\mathrm{x})]_{x_{1}}$ , $\forall n\geq 2$

and adjoint linear problem

$p_{n}(\tilde{\partial})\Psi_{\lambda}^{*}(\mathrm{x})=\Psi_{\lambda}^{*}(\mathrm{x})p_{n-1}(\overline{\partial})[\log\tau(\mathrm{x})]_{x_{1}}’$ , $\forall n\geq 2$ .

Here the operators $p_{n}$ are defined as the Schur polynomials $\sum_{n=0}^{\infty}p_{n}(-\tilde{\partial})\lambda^{n}=\exp[\sum_{n=1}^{\infty}-\frac{1}{n}\frac{\partial}{\partial x_{n}}\lambda^{n}]$ . Note

that the KP Lax pai$r(2)$ and (3) is of course obtained at $n=2$ and 3, upon identifying $x=x_{1},$ $y=x_{2}$

and $t=x_{3}$ and consequently $u=\partial_{x}^{2}\log\tau$ .
In this context it is important to mention that a general solution to the KP linear problem. can always

$\mathrm{b}.\mathrm{e}$ expressed in the form [9] :
$\Phi(\mathrm{x})=\int_{C}\frac{\mathrm{d}\lambda}{2_{\mathcal{T}\iota}i}h(\lambda)\Psi_{\lambda}(\mathrm{x})$ (10)

for a density function
$h( \lambda)=\frac{1}{\lambda}\Phi(\mathrm{x}’+\epsilon[\lambda])\Psi^{*}(\mathrm{x}^{l})$ $\forall \mathrm{x}’$ ,
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which can be taken $\mathrm{a}\mathrm{t}_{\text{・}}$ any vaJue of $\mathrm{x}’$ . The integral eepression (10) should in fact be understood as a
${\rm Res}_{\lambda}[\cdots]$ operation similar to that in the bilinear identity (9), i.e. for formA expansions of both $\Psi_{\lambda}(\mathrm{x})$

and $h(\lambda)$ near $\lambda=\infty$ . The contour $C$ is chosen such that it always includes the singularities induced by
the exponential factor $\mathrm{e}\mathrm{x}p\xi(\mathrm{x}, \lambda)$ present in the wave functions $\Psi_{\lambda}(\mathrm{x})$ and in particular it should include
the essenti \‘al singularit,y at $\lambda=\infty$ . Excluded however are all singularities present in the density $h(\lambda)$ as
well as those which might arise from the tau functions making up the wave function (i.e. arising from
the shift $\tau(\mathrm{x}-\epsilon[\lambda]))$ . See ref. [9] for an $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{t},\mathrm{i}\mathrm{o}\mathrm{n}$ of the rationale behin$\mathrm{d}$ these restrictions as well as
for a similar discussion concerning the adjoint wave functions.

3 Direct linearization for the KP hierarchy

We can now state the main result connecting the tau function approach to the KP hierarchy with the
direct linearization procedure described in Sec. 1. Here and in what follows only the principal results will
be stated. The relevant proofs, requiring careful consideration as well as considerable detail, will appear
in a forthcoming paper [10].

It can be shown that all KP tau functions satisfy the integral equation

$\tau(\mathrm{x}-\epsilon[k])=\tau(\mathrm{x})-\int_{C_{\lambda}}\frac{\mathrm{d}\lambda}{2\overline{\prime 1}i}\int_{C_{\mu}}$. $\frac{\mathrm{d}\mu}{2\tau_{1}i}h(\lambda.\mu)\frac{e^{-\xi(\mathrm{x}.\mu)+\xi(\mathrm{x},\lambda)}}{k-\mu}\tau(\mathrm{x}-\epsilon[\lambda])$ (11)

with a density $h(\lambda,\mu)$ which is given by the following expression :

$h( \lambda, \mu)=\frac{\tau(\mathrm{x}’-\hat{\circ}[\mu]+c[\lambda])}{(\mu-\lambda)\tau(\mathrm{x}’)}.e^{\xi(\mathrm{x}’,\mu)-\xi(\mathrm{x}’,\lambda)}-\frac{1}{\mu-\lambda}$
$\forall \mathrm{x}’$ ; (12)

the combined contours $C_{\lambda}$ and $C_{\mu}$ are subject to requirements similar to those for formula (10).
As it is written in expression (12) the density $h(\lambda,\mu)$ depends explicitly on an arbitrary set of co-

ordinates $\mathrm{x}’$ ; one can however show that the combined integrals in the equation (11) are invariant for
changes in $\mathrm{x}’$ . Hence, all KP tau functions $\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathfrak{h}^{r}$ a linear integral equat,ion with a measure which can
be calculated from the tau function itself (by using formula (12) at any convenient choice of coordinates
$\mathrm{x}’)$ . The converse also holds : every function $\tau(\mathrm{x})$ which satisfies equation (11) for a density (12) is a
KP tau function. A coroll.xy of equation (11) –used in the proof of the converse $\mathrm{s}\mathrm{t}$,atement–is that all
wave functions satisfy the integral equat,ion:

$\Psi_{k}(\mathrm{x})=e^{\xi(\mathrm{x},k)}-e^{\xi(\mathrm{x},k\dot{)}}\int_{C_{\lambda}}\frac{\mathrm{d}\lambda}{2_{\overline{J\downarrow}}i}\int_{C_{\dot{\mu}}}\frac{\mathrm{d}\mu}{2_{J1}^{\wedge}i}h(\lambda, \mu)\frac{e^{-\xi(\mathrm{x}.\mu)}}{k-\mu}\Psi_{\lambda}(\mathrm{x})$.

This integral equation is of course nothing but equation (1) for a measure defined in terms of the density
$h(\lambda, \mu)$ introduced above and extended to evolutions involving the entire KP hierarchy (i.e. $x_{n\geq 1}$ ).
Moreover, expanding equation (11) in $\mathrm{t}_{}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}$ of $\lambda^{-1}$ , we find expressions for the logaritmic derivatives of
the tau function in terms of the wave functions, as in the formulae

$( \log\tau)_{x}=\int_{C_{\lambda}}\frac{\mathrm{d}\lambda}{2\tau\downarrow i}\int_{C_{\mu}}$. $\frac{\mathrm{d}\mu}{2\pi i}h(\lambda.\mu)e^{-\xi(\mathrm{x},\mu)}\Psi_{\lambda}(\mathrm{x})$

$( \log\tau)_{y}=(\log\tau)_{2x}+(\log\tau)_{x}^{2}+2\int_{C_{\lambda}}\frac{\mathrm{d}\lambda}{2\tau_{1}i}\int_{C_{\dot{\mu}}}\frac{\mathrm{d}\mu}{2\pi i}\mu h(\lambda.\mu)e^{-\xi(\mathrm{x}_{t}\iota)}’\Psi_{\lambda}(\mathrm{x})$

: etc. ,

the first one of which coincides with the reconstruction formula (4) for the potential $u$ presented in Sec. 1.
This then provides a direct connection between the direct linearization described in that section and the
Sato theory. It does however not explain why the reconstruction formula (4) can yield a solution to the KP
hierarchy for almost any contour or measure. Furthermore, up to this point there is no major advantage
in adopting the tau function reformulation of the method. For if one would like to reconstruct a tau
function from its corresponding density and contour, one is still required to solve an integral equation,
after whic.h one has to reconstruct the tau $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}_{J}\mathrm{i}\mathrm{o}\mathrm{n}$ from relations such as the logarithmic derivatives
given above. It is here that the algebraic approach introduced in the previous section will come into play.

114



4 Initial value problems for tau functions

Quite generally, we can consider tau functions $\tau(\mathrm{x})=\langle \mathrm{v}\mathrm{a}\mathrm{c}|e^{H(\mathrm{x})}e^{X}|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$ by starting from generators $X$

which $\mathrm{a}r\mathrm{e}$ defined as a general hsuperpositions” of products of formal operat $o\mathrm{r}\mathrm{s}\psi(k)$ and $\psi^{*}(k)$ :

$X=c+ \int_{c}\int.\mathrm{d}\eta(\lambda,\mu)\psi(\lambda)\psi^{*}(\mu)$
$(c\in \mathbb{C})$

as long as both measure and contour are such that $e^{X}\in\overline{GL}(\infty)$ , i.e. as long as the expectation value
defining the tau function makes sense. For such general tau functions it can be shown that if the generator
$X$ is separable in the sense that there exists a sequence of pairs of operators $\phi_{j}$ and $\phi_{j}^{*}(\forall j\in J)$

$\phi_{j}\equiv\int_{C_{\lambda}}\frac{\mathrm{d}\lambda}{2\tau\downarrow i}h_{j}(\lambda)\psi(\lambda)$ , $\phi_{j}^{*}\equiv\int_{C_{\mu}}\frac{\mathrm{d}\mu}{2\pi i}h_{j}^{*}(\mu)\psi^{*}(\mu)$

(or for that matter, sequences of densities $h_{j}(\lambda)$ and $h_{j}^{*}(\mu)$ for $j$ in some index set $J$ , possibly infinite)
such that $X$ can be expressed in the form:

$X=c+ \sum_{j\in J}\phi_{j}\delta_{j}^{*}$
,

then the resulting tau function $\tau(\mathrm{x})=\langle \mathrm{v}\mathrm{a}\mathrm{c}|e^{H(\mathrm{x})}e^{X}|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$ will satisfy equation (11) for the density

$h( \lambda, \mu)\equiv\sum_{j\in J}h_{j}(\lambda)h_{j}^{\star}(\mu)$
. (13)

Here again, the integral expressions defining the operators $\phi_{\mathrm{j}}$ and $\phi_{j}^{*}$ should in fact be understood as
${\rm Res}_{\lambda}[\cdots]$ operations, i.e. for formal expansions of both $\Psi_{\lambda}(\mathrm{x})$ and $h(\lambda)$ around $\lambda=\infty$ . The contours
are subject to the same constraints as before.

Obviously, this now provides a way to reconstruct an element of $gl(\infty)$ (or rather in an (
$‘ \mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$

” of
$gl(\infty)$ in the sense explained above) for any given tau function. It suffices to calculate the density (12) for
a particularly convenient value of the coordinates $\mathrm{x}’$ (such as to facilitate the resulting expression; most
often this will simply be $\mathrm{x}’=0\equiv(0,0, \ldots)$ if this is not a zero of the tau function) and subsequently
decompose it as in expression (13). From the resulting densities $h_{j}(\lambda)$ and $h_{j}^{*}(\mu)$ one can then calculate
the operators $\phi_{j}$ and $\phi_{j}^{*}$ and hence the generator $X$ . The constant $c$ appearing in this generator can be
determined afterwards, by normalizing the resulting expectation value such that it coincides with $\tau(\mathrm{x})$ .
Note that the decomposition (13) is only subject to the requirement that, ultimately, $e^{X}$ has to be part
of $\overline{GL}(\infty)$ . Which also offers an explanation for the remarkable ffeedom one has in choosing measures
and contours in the integral equation (11).

As a simple example illustrating this method, let, us calculate the densitiy $h(\lambda, \mu)$ (at $\mathrm{x}=0$ ) for the
trivial tau function $e^{\xi(\mathrm{x},p)}$ :

$\tau(\mathrm{x})\equiv e^{\xi(\mathrm{x},p)}$
$\Rightarrow(12)$

$h^{0}( \lambda, \mu)=\frac{1}{\mu-\lambda}(\frac{1-p/\mu}{1-p/\lambda}-1)=\frac{p}{\mu}\frac{1}{\lambda-p}$

which gives rise to the generator

$x \equiv(\sum_{j\leq-1/2}\psi_{jp^{1/2-j}})\psi_{-1/2}^{*}$
,

as can be seen from the following epressions for the operators $\phi_{j}$ and $\phi_{j}^{*}$ :

$\emptyset=\int_{C_{\lambda}}\frac{\mathrm{d}\lambda}{2\pi i}\frac{\psi(\lambda)}{\lambda-p}=\sum_{j\leq-1/2}\psi_{jp^{-j-1/2}}$ , $\phi^{*}=\int_{C_{\mu}^{*}}\frac{\mathrm{d}\mu}{2\pi i}\frac{1}{\mu}\psi^{*}(\mu)=\psi_{-1/2}^{*}$

(for contours $C_{\lambda}$ and $C_{\mu}$ around $\lambda=\infty$ , excluding the point $\lambda=p$). It is easily verified that this generator
does produce the correct tau hnction $\tau(\mathrm{x})=\langle \mathrm{v}\mathrm{a}\mathrm{c}|e^{H(\mathrm{x})}e^{X}|\mathrm{v}\mathrm{a}\mathrm{c}\rangle\equiv e^{\xi(\mathrm{x},p)}$ (i.e. $c=0$).
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Reconstruction methods for tau functions (or rather for their generators) were already described
by Takasalci [11] and Takebe $[12, 13]$ . Whereas these approaches provide deep insight in the algebraic
nature of the reconstruction problem, the

$\mathrm{p}‘ \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}$

(

approach has the apparent advantage of allowing for
a reconstruction of the tau function from partial” data: it turns out that the density $h(\lambda,\mu)$ can be
calculated even in the case where only the $x_{1}x_{2}$-dependence of the tau function is lmown ! This then
opens the door to solving genuine initial value problems (in the sense of inverse scattering) directly on the
level of the tau functions. An earlier description of an inverse scattering technique for $\mathrm{t}_{J}\mathrm{a}\mathrm{u}$ functions was
given by Oishi [14]. There however extensive use was made of the standard inverse scattering approach
(i.e. of the Gel’fand-Levitan equation) and the method therefore essentially amounted to (and suffered
from the same restrictions as) the traditional inverse scattering.

Here instead we propose the following reconstruction procedure. For a given initial profile
$\tau^{0}(x=x_{1}, y=x_{2})$ one first has to solve the system of (linear) equations :

$[D_{y}-D_{x}^{2}-2\mu D_{x}]S_{\mu}\cdot\tau^{0}=0$

(14)
$[D_{y}+D_{x}^{2}-2\lambda D_{x}]S_{\mu}^{\lambda}\cdot S_{\mu}=0$

under the restriction that the solutions $S_{\mu}$ and $S_{\mu}^{\lambda}$ should allow for the following asymptotic expansions
in the parameters $\lambda$ and $\mu$ :

$S_{\mu}= \tau^{0}-\frac{1}{\mu}\tau_{x}^{0}-\frac{1}{2\mu^{2}}(\tau_{y}^{\mathrm{O}}-\tau_{2x}^{0})+\sum_{n=\mathrm{s}}^{\infty}s_{n}\mu^{-n}$

$S_{\mu}^{\lambda}=S_{\mu}+ \frac{1}{\lambda}(S_{\mu})_{x}+\frac{1}{2\lambda^{2}}[(S_{\mu})_{y}+(S_{\mu})_{2x}]+\sum_{n=3}^{\infty}S_{n}\lambda^{-n}$

(where, in principle, the functions $s_{n}$ and $S_{n}(n\geq 3)$ can be found recursively ffom (14)). The function
$S_{\mu}^{\lambda}$ also has to $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\theta$ the additional requirement :

$\lim_{\lambda->\mu}S_{\mu}^{\lambda}=\tau^{0}(x, y)$ .

If such solutions $S_{\mu}$ and $S_{\mu}^{\backslash }’$ exist, it can be shown $[egg1]$ that the function $S_{\mu}^{\lambda}$ is uniquely determined for a
given $S_{\mu}$ and $[egg2]$ that it allows one to calculate a density

$h^{0}( \lambda,\mu)=\frac{S_{\mu}^{\lambda}e^{\xi_{\mu}^{0}-\xi_{\lambda}^{0}}}{(\mu-\lambda)\tau^{0}(x,\uparrow/)}-\frac{1}{\mu-\lambda}$ $(\xi_{k}^{0}$. $\equiv kx+k^{2}y)$

determining–up to a normalization constant–a tau function $\tau(\mathrm{x})$ which coincides $\mathrm{w}\mathrm{i}\mathrm{t}_{0}\mathrm{h}\tau^{0}(x, y)$ in the
plane of the initial data : $\tau^{0}(x, y)=\tau(\mathrm{x})|_{x_{n\geq 3}=0}$ .

Of course such a tau function can not be unique, as can be seen from the simple fact that multipli-
cation of a tau $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}_{\mathfrak{a}}\mathrm{i}\mathrm{o}\mathrm{n}$ by an exponential factor $( \exp\sum_{n=3}^{\infty}a_{n}x_{n})(a_{n}\in \mathbb{C})$ yields another tau function
correspondsing to the sam$\mathrm{e}$ initial data $\tau(\mathrm{x})|_{x_{n\geq 3}=0}$ . It can however be shown that, under the above
requirements on $S_{\mu}$ and $S_{\mu}^{\lambda}$ , two tau functions corresponding to the saxne initial data can only differ
by such trivial gauges. Note that this gauge ffeedom results in a certain ambiguity in determining the
function $S_{\mu}$ , a particular choice however always producing a single $S_{\mu}^{\lambda}$ and ultimately only manifesting
itself in a trivial exponential factor which does not complicate or change the reconstructed tau function
in any real way. On the other hand, the question of which initial profiles $\tau^{0}(x, y)$ actually allow for such
a reconstruction is a far more difficult one and will be discussed elsewhere [10].

Let us instead give some simple examples in order to illustrate the procedure:

$[egg1]$ starting ffom the initial profile for a 1-soliton solution : $\tau^{0}(x,y)=c+\frac{e^{\xi_{p}^{0}-\xi_{q}^{0}}}{p-q}(\xi_{k}^{0}\equiv kx+k^{2}y$,

$c,p,$ $q\in \mathbb{C})$ , the following solutions to the linear system (14) can be easily found:

$S_{\mu}=c+ \frac{\mu-p}{\mu-q}\frac{e^{\xi_{\mathrm{p}}^{0}-\xi_{q}^{0}}}{p-q}$ , $S_{\mu}^{\lambda}=c+ \frac{(\mu-p)(\lambda-q)}{(\mu-q)(\lambda-p)}\frac{e^{\xi_{\mathrm{p}}^{0}-\xi_{q}^{0}}}{p-q}$.
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At $x=y=0$ , the function $S_{\mu}^{J}\backslash$ gives rise to the density:

$h^{0}( \lambda,\mu)=\frac{1}{c+\frac{1}{\mathrm{p}-q}}\frac{1}{(\lambda-p)(\mu-q)}$ (15)

which is already of the form (13) and which gives rise the pair of operators :

$\phi=\sum_{j<0}\psi_{jp^{-j-1/}’}\sim$ and
$\phi^{*}=\sum_{j<0}\psi_{j}^{*}q^{-j-1/2}$

.

From the $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}_{f}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ value

$\langle \mathrm{v}\mathrm{a}\mathrm{c}|e^{H(\mathrm{x})}e^{\phi\phi^{*}}|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$ $=$ $1+\langle \mathrm{v}\mathrm{a}\mathrm{c}|e^{H(\mathrm{x})}\phi\phi^{*}|\mathrm{v}\mathrm{a}\mathrm{c}\rangle$

$=$ $\frac{1}{c+\frac{1}{p-q}}(c+\frac{e^{\xi_{p}^{0}-\xi_{q}^{0}}}{p-q})$

it is easily seen that one recovers the correct tau function (i.e. one that corresponds to $\tau^{0}$ in the plane

be shown (by deforming the contours $C_{\lambda}$ and $C_{\mu}$ ) that the densities $h( \lambda)=\frac{1}{\lambda-p}$ and $h^{*}( \mu)=\frac{1}{\mu-p}$ can
actually be replaced by delta functions $\delta(p/\lambda)$ and $\delta(q/\mu)$ respectively (the delta function being defined
as : $\delta(p/\lambda)\equiv\frac{1}{\lambda}\sum_{n\in \mathbb{Z}}(p/\lambda)^{n})$ for an appropriate normalization of the resulting tau function. From such
delta functions one then obtains operators $\phi=\psi(p),$ $\phi^{*}=\psi^{*}(q)$ and the well known generator for the

1-soliton solution: $X= \frac{1}{c}\psi(p)\psi^{*}(q)$ .
$\Theta>$ another simple example is provided by the initial profile $\tau^{0}=c+x+ky$ which actually falls outside

the class of functions addressed by traditional inverse scattering methods, as it corresponds to a potential
$u=\partial_{x}^{2}\log\tau$ which is singular in $x$ and $y$ and has polynomial asymptotic behaviour elsewhere. In the
present approach however, one immediately finds the following solutions for the linear system (14) :

$S_{\mu}=c- \frac{1}{\mu-k/2}+x+ky$ , $S_{\mu}^{\lambda}=c- \frac{1}{\mu-k/2}+\frac{1}{\lambda-k/2}+x+ky$

and hence the corresponding density and resulting polynomial tau function:

$h^{0}( \lambda.\mu)=\frac{1}{c}\frac{1}{\lambda-\frac{k}{2}}\frac{1}{\mu-\frac{k}{2}}$
$\Rightarrow$ $\tau(\mathrm{x})=c+x+ky+\sum_{n=3}^{\infty}\frac{n}{2^{n-1}}k^{n-1}x_{n}$ .

Note that this density can be obtained by a coalescence $p=q=k/2$ of the poles in the 1-soliton density
(15) (for a suitable redefinition of the constant $c$). For the case of $N$-soliton solutions, such a coalescense
leads to tau $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}_{J}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ which will produce the lump solutions [15] for the KP I equation. An extension
of this idea gives rise the so called multipole solutions recently described by Ablowitz et al. [16], a case
which can also be easily handled in the present $\mathrm{a}p$proach.

Finally, adaptations of this method to the case of the discrete KP equation or to reductions of the
KP hierarchy are the subject of ongoing and future research.
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