
Gr\"obner Bases of Acyclic Tournament Graphs and
Hypergeometric Systems on the Group of Unipotent Matrices

Takayuki Ishizeki and Hiroshi Imai
Department of Information Science, Faculty of Science, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
{ishizeki, $\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{i}$ } $@\mathrm{i}\mathrm{s}.\mathrm{s}.\mathrm{u}$-tokyo. $\mathrm{a}\mathrm{c}$ . jp

Abstract

Gelfand, Graev and Postnikov have shown that the number of independent solutions of
hypergeometric systems on the group of unipotent matrices is equal to the Catalan number.
These hypergeometric systems are related with the vertex-edge incidence matrices of acyclic
tournament graphs. In this paper, we show that their results can be obtained by analyzing
the Gr\"obner bases for toric ideals of acyclic tournament graphs. Moreover, we study an open
problem given by Gelfand, Graev and Postnikov.

1 Introduction

In recent years, Gr\"obner bases for toric ideals of graphs have been studied and applied to many
combinatorial problems such as triangulations of point configurations, optimization problems in
graph theory, enumerations of contingency tables, and so on [3, 4, 11, 13, 14, 15]. On the other
hand, Gr\"obner bases techniques can be applied to partial differential equations via left ideals
in the Weyl algebra $[12, 16]$ . Especially, in [16] Gr\"obner bases techniques have been applied to
$GKZ$-hypergeometric systems (or $A$ -hypergeometric equations).

Gelfand, Graev and Postnikov [5] studied GKZ-hypergeometric systems called hypergeomet-
ric systems on the group of unipotent matrices. The hypergeometric systems on the group of
unipotent matrices are hypergeometric systems associated with the set of all positive roots $A_{n-1}^{+}$

of the root system $A_{n-1}$ . They showed that the hypergeometric system on the group of unipo-
tent matrices gives a holonomic $D$-module and the number of linearly independent solutions of
the system in a neighborhood of a generic point is equal to the normalized volume of the convex
hull of the point set $A_{n-1}^{+}$ and the origin. They also showed that the normalized volume is equal
to the Catalan number $C_{n}$ by giving the triangulations of the convex hull. Since these trian-
gulations are unimodular (i.e. the normalized volume of each maximal simplex equals 1), the
normalized volume of the convex hull can be calculated by enumerating all maximal simplices.

On the other hand, $A_{n-1}^{+}$ can be viewed as the vertex-edge incidence matrix of acyclic
tournament graph with $n$ vertices. The toric ideals of acyclic tournament graphs have been
studied in [11]. Sturmfels [17, Chapter 8] showed that for each Gr\"obner basis for toric ideal of
a matrix $A$ , we can define the regular triangulation of $A$ . Sturmfels [17, Corollary 8.9.] also
showed that for homogeneous toric ideals, a regular triangulation becomes unimodular if and
only if the initial ideal of the toric ideal is square-free.

In this paper, we apply the result in [11] to the hypergeometric systems on the group of
unipotent matrices. The toric ideals of acyclic tournament graphs are not homogeneous for
standard positive grading, though those of undirected graphs [3, 4, 13] are all homogeneous.
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We can homogenize the toric ideals of acyclic tournament graphs by (i) changing the positive

grading or (ii) introducing an extra variable [2, Chapter 8]. We homogenize the toric ideals in

[11] by (ii), and apply Sturmfels’ result to triangulations of the convex hull of the point set $A_{n-1}^{+}$

and the origin. For some Gr\"obner bases, they remain square-free when they are homogenized,
so that we can construct unimodular triangulations. These triangulations are same as those

constructed by Gelfand, Graev and Postnikov. Thus we give an alternative proof for the result
by Gelfand, Graev and Postnikov from the view point of Gr\"obner bases of non-homogeneous
toric ideals. Next we consider the triangulations of $A_{n-1}^{+}\cup\{0\}$ ( $0$ is the origin in $\mathbb{R}^{n}$ ) which all

of maximal simplices contain the origin. Such triangulations are called local triangulations [5].

To find all regular local triangulations is an open problem. We enumerate all regular local
triangulations for small $n$ using $\mathrm{T}\mathrm{i}\mathrm{G}\mathrm{E}\mathrm{R}\mathrm{S}[9]$ .

2 Preliminaries

In this section, we give basic definitions of Gr\"obner bases, toric ideals and regular triangulations.
We refer to [2] for introductions of Gr\"obner bases, and [17] for introductions of toric ideals and
regular triangulations.

2.1 Gr\"obner Bases

Let $k$ be a field and $k[x_{1}, \ldots, x_{n}]$ be a polynomial ring. For a non-negative integer vector
$\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{Z}_{\geq 0}^{n}$ ( $\mathbb{Z}\geq 0$ means the set of all non-negative integers), we denote $x^{cx}$ $:=$

$x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}}$ .

Definition 2.1 Let $I\subseteq k[x_{1}, \ldots , x_{n}]$ be an ideal $and\prec$ be a term order. $A$ finite subset
$\mathcal{G}=\{g_{1}, \ldots,g_{s}\}\subseteq I$ is $a$ Gr\"obner basis for I with respect $to\prec if$ the initial ideal $in_{\prec}(I)$ $:=$

$\langle in_{\prec}(f):f\in I\rangle$ is generated by $in_{\prec}(g_{1}),$
$\ldots$ , $in_{\prec}(g_{s})$ . In addition, Gr\"obner basis $\mathcal{G}$ is reduced

if $\mathcal{G}$ satisfies the following:

1. For any $i$ , the coefficient of $in_{\prec}(g_{i})$ equals 1.

2. For any $i$ , any term of $g_{i}$ is not divisible by $in_{\prec}(g_{j})(i\neq j)$ .

Proposition 2.2 For an ideal and a term order, the reduced Gr\"obner basis is defined uniquely.

Definition 2.3 Let $I\subseteq k[x_{1}, \ldots, x_{n}]$ be an ideal. Then the union of all reduced Gr\"obner bases

for I with respect to all term orders is a Gr\"obner basis for I with respect to any term order.
This basis is called the universal Gr\"obner basis for $I$ .

Although there are infinite term orders, the elements of a universal Gr\"obner basis are finite.

2.2 Toric Ideals

Fix a subset $A=\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{d}\}\subset \mathbb{Z}^{n}$ . Each vector $\mathrm{a}_{i}$ is identified with a monomial $\mathrm{t}^{\mathrm{a}_{i}}$ in the
Laurent polynomial ring $k[\mathrm{t}^{\pm 1}]:=k[t_{1}, \ldots, t_{d}, t_{1}^{-1}, \ldots, t_{d}^{-1}]$ .

Definition 2.4 Consider the homomorphism

$\pi:k[x_{1}, \ldots, x_{n}]arrow k[\mathrm{t}^{\pm 1}]$ , $x_{i}\mapsto \mathrm{t}^{\mathrm{a}_{i}}$ .

The kernel of $\pi$ is denoted $I_{A}$ and called the toric ideal of $A$ .
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Every vector $\mathrm{u}\in \mathbb{Z}^{n}$ can be written uniquely as $\mathrm{u}=\mathrm{u}^{+}-\mathrm{u}^{-}$ where $\mathrm{u}^{+}$ and $\mathrm{u}^{-}$ are non-
negative and have disjoint support.

Lemma 2.5

$I_{A}=\langle \mathrm{x}^{\mathrm{u}_{l}^{+}}-\mathrm{x}^{\mathrm{u}_{i}^{-}} : \mathrm{u}_{i}\in \mathrm{K}\mathrm{e}\mathrm{r}(A)\cap \mathbb{Z}^{n}, i=1, \ldots, s\rangle$

Furthermore, a toric ideal is generated by finite binomials.

Definition 2.6 A binomial $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in I_{A}$ is called circuit if the support of $\mathrm{u}$ is minimal with
respect to inclusion in $\mathrm{K}\mathrm{e}\mathrm{r}(A)$ and the coordinates of $\mathrm{u}$ are $re$latively- prime. $We$. denote the set
of all circuits in $I_{A}$ by $C_{A}$ . . .. .

$\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{v}^{+}2.7$
A binomial $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in I_{A}$ is called primitive if there exists no other binomial

$\mathrm{x}$ $-\mathrm{x}^{\mathrm{v}^{-}}\in I_{A}$ such that both $\mathrm{u}^{+}-\mathrm{v}^{+}$ and $\mathrm{u}^{-}-\mathrm{v}^{-}$ are non-negative. The set of all primitive
binomials in $I_{A}$ is called the Graver basis of $A$ and written as $Gr_{A}$ .

Let $\mathcal{U}_{A}$ be the universal Gr\"obner basis of $I_{A}$ .

Proposition 2.8 ([17, Proposition 4.11.]) For any matrix $A$ ,

$C_{A}\subseteq \mathcal{U}_{A}\subseteq Gr_{A}$ .

2.3 Regular biangulations

Assume that a subset $A=\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{d}\}\subset \mathbb{Z}^{n}$ is the set of $d$ points in $\mathbb{R}^{n}$ . Let conv$(A)$ be the
convex hull of $A$ .

Definition 2.9 Let $q=\dim \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(A)$ . $T=\{T_{1}, \ldots, T_{p}\}$ is $a$ triangulation of conv$(A)$ if
1. $T_{i}\subseteq A,$ $|T_{i}|=q+1,$ $\dim \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(T_{i})=q$ .

2. $\bigcup_{i=1}^{p}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(T_{i})=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(A)$ .

3. conv $(T_{i})\cap \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(T_{j})=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(T_{i}\cap T_{j})$ $(i\neq j)$ .

Sturmfels [17, Chapter 8] showed that for each point set $A$ and generic term $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\prec$ , we can
define a triangulation of $A$ with respect $\mathrm{t}\mathrm{o}\prec$ .

Definition 2.10 $Let\prec be$ a generic term order and $\sqrt{in_{\prec}(I_{A})}$ a radical ideal of the initial ideal
$in_{\prec}(I_{A})$ . Then we can define the triangulation $\Delta_{\prec}(I_{A})$ as follows:

$\triangle_{\prec}(I_{A}):=\{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(F):F\subseteq A,\prod_{i:\mathrm{a}_{i}\in F}x_{i}\not\in\sqrt{in_{\prec}(I_{A})}\}$ .

We call $\Delta_{\prec}(I_{A})$ the regular triangulation of $A$ with $respect\prec$ .

Definition 2.11 Let $q=\dim \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(A)$ . Then we define the normalized volume of conv $(A)$ as
$q!$ times the Euclidean volume of conv$(A)$ .

Hilbert polynomial $H_{A}(r)$ of $k[x_{1}, \ldots, x_{n}]/I_{A}$ is the $k$-dimension of the r-th grade component
of $k[x_{1}, \ldots, x_{n}]/I_{A}$ for $r>>0$ .
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Theorem 2.12 ([17, Theorem 4.16.]) Let $q=\dim \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(A)$ . Then $q!$ times the leading coef-
ficient of the Hilbert polynomial $H_{A}(r)$ of $k[x_{1}, \ldots, x_{n}]/I_{A}$ is equal to the normalized volume of
conv$(A)$ .

Definition 2.13 The triangulation $T=\{T_{1}, \ldots, T_{p}\}$ of conv $(A)$ is unimodular if for any
$T_{i}\in T$ , the normalized volume of $T_{i}$ equals 1. The matrix $A$ is also called unimodular if
all triangulations of conv$(A)$ are unimodular.

The unimodularity of a matrix induces good properties as follows.

Proposition 2.14 ([17, Corollary 8.9.]) Suppose that $I_{A}$ be a homogeneous toric ideal. Then
the initial ideal $in_{\prec}(I_{A})$ is square-free $(i.e. \sqrt{in_{\prec}(I_{A})}=in_{\prec}(I_{A}))$ if and only if the corresponding
regular triangulation $\Delta_{\prec}(I_{A})$ of conv$(A)$ is unimodular.

Proposition 2.15 ([17, Proposition 8.11.]) If $A$ is a unimodular matrix, then $C_{A}=\mathcal{U}_{A}=$

$Gr_{A}$ .

3 Result of Gelfand, Graev and Postnikov

Gelfand, Graev and Postnikov [5] studied hypergeometric systems on the group of unipotent
matrices. They showed that these systems give holonomic $D$-modules, and calculated the number
of independent solutions. In this section, we summarize their results.

3.1 Hypergeometric Systems on the Group of Unipotent Matrices

Let $\mathrm{e}_{i}$ be the i-th standard basis in $\mathbb{R}^{n}$ . We denote

$A_{n-1}^{+}:=\{\mathrm{a}_{ij}:=\mathrm{e}_{i}-\mathrm{e}_{j} : 1\leq i<j\leq n\}\subset \mathbb{R}^{n}$

and $\overline{A}_{n-1}^{+}=A_{n-1}^{+}\cup\{0\}\subset \mathbb{R}^{n}$ where $0$ is the origin. $A_{n-1}^{+}$ is the set of all positive roots of the
root system $A_{n-1}:=\{\mathrm{e}_{i}-\mathrm{e}_{j} : 1\leq i,j\leq n, i\neq j\}\subset \mathbb{R}^{n}$ . Let conv$(A_{n-1}^{+})$ be the convex hull of
all points in $A_{n-1}^{+}$ and conv $(\overline{A}_{n-1}^{+})$ the convex hull of all points in $\overline{A}_{n-1}^{+}$ .

Definition 3.1 The hypergeometric system on the group of unipotent matrices is the following
system of differential equation with coordinates $z_{ij},$ $1\leq i<j\leq n$ :

$- \sum_{i=1}^{j-1}z_{ij}\frac{\partial f}{\partial z_{ij}}+\sum_{k=j+1}^{n}z_{jk}\frac{\partial f}{\partial z_{jk}}=\alpha_{j}f$, $j=1,2,$ $\ldots,$
$n$ (1)

$\frac{\partial f}{\partial z_{ik}}=\frac{\partial^{2}f}{\partial z_{ij}\partial z_{jk}}$ $0\leq i<j<k\leq n$ (2)

where $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{C}^{n}$ such that $\sum_{j=1}^{n}\alpha_{j}=0$ .

Theorem 3.2 ([5, Theorem $2.3.$ ] $\rangle$

(i) The hypergeometric system (1), (2) gives a holonomic $D$ -module. The number of linearly
independent solutions of this system in a neighborhood of a generic point is equal to the
normalized volume of conv $(\overline{A}_{n-1}^{+})$ .
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(ii) The normalized volume of conv $(\overline{A}_{n-1}^{+})$ is equal to the Catalan number

$C_{n-1}= \frac{1}{n}$ .

Definition 3.3 Let $T$ be a tree on the set $\{1, 2, \ldots, n\}$ .

$\bullet$ $T$ is admissible if there are no $1\leq i<j<k\leq n$ such that both $(i,j)$ and $(j, k)$ are edges
of $T$ .

$\bullet$ $T$ is standard if $T$ is admissible and there are no $1\leq i<j<k<l\leq n$ such that both
$(i, k)$ and $(j, l)$ are edges of $T$ .. $T$ is anti-standard if $T$ is admissible and there are no $1\leq i<j<k<l\leq n$ such that
both $(i, l)$ and $(j, k)$ are edges of $T$ .

Theorem 3.4 ([5, Theorem 6.3. and Theorem 6.6.]) Let

$\tau_{s\tau=}\{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\bigcup_{(i,j)\in ST}\mathrm{a}_{ij}\cup\{0\})$ : $ST$ is standard tree on $\{1, \ldots, n\}\}$

$T_{AT}= \{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\bigcup_{(i,j)\in AT}\mathrm{a}_{ij}\cup\{0\})$ : AT is anti-standard tree on $\{1, \ldots,n\}\}$ .

Both $T_{ST}$ and $T_{AT}$ give local unimodular triangulations of $\overline{A}_{n-1}^{+}$ .

Theorem 3.5 ([5, Theorem 6.4. and Corollary 6.7.]) The number of standard trees (resp.
anti-standard trees) on the set $\{1, 2, \ldots, n\}$ is equal to the Catalan number

$C_{n-1}= \frac{1}{n}$ .

Theorem 3.2 follows from Theorem 3.4 and Theorem 3.5.

4 Gr\"obner Bases for Acyclic Tournament Graphs

In this section, we summarize our results in [11].
Let $D_{n}$ be an acyclic tournament graph with $n$ vertices which have labels 1, 2, . . . , $n$ such that

each edge $(i,j)(i<j)$ is directed from $i$ to $j$ . Let $m=$ be the number of edges in $D_{n}$ . We
associate each edge $(i,j)$ with a variable $x_{ij}$ in the polynomial ring $k[\mathrm{x}]:=k[x_{ij} : 1\leq i<j\leq n]$ .
Since we can consider $A_{n-1}^{+}$ as the vertex-edge incidence matrix of $D_{n}$ , we can also associate
each edge $(i,j)$ with a point $\mathrm{a}_{ij}\in A_{n-1}^{+}$ . In this section, we analyze the toric ideal $I_{A_{n-1}^{+}}$ .
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4.1 Toric Ideals of $A_{n-1}^{+}$

A walk of $D_{n}$ is the sequence of vertices $(v_{1}, v_{2}, \ldots, v_{p})$ such that $(v_{i}, v_{i+1})$ or $(v_{i+1}, v_{i})$ is an arc of
$D_{n}$ for each $1\leq i<n$ . A cycle is a walk $(v_{1}, v_{2}, \ldots, v_{p}, v_{1})$ . A circuit is a cycle $(v_{1}, v_{2}, \ldots, v_{p}, v_{1})$

such that $v_{i}\neq v_{j}$ for any $i\neq j$ .

Definition 4.1 Let $C$ be a circuit of $D_{n}$ . If we fix a direction of $C$ , we can partition the edges

of $C$ into two sets $C^{+}$ and $C^{-}$ such that $C^{+}$ is the set of forward edges and $C^{-}$ is the set of
backward edges. Then the vector $\mathrm{c}=(c_{ij})_{1\leq i<j\leq n}\in \mathbb{R}^{m}$ defined by

$c_{ij}=\{$

1 if $(i,j)\in C^{+}$

$-1$ if $(i,j)\in C^{-}$

$0$ if $(i,j)\not\in C$

is called the incidence vector of $C$ .

Lemma 4.2 ([1]) A binomial $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in I_{A_{n-1}^{+}}$ is a circuit if and only if $\mathrm{u}$ is the incidence

vector of a circuit of $D_{n}$ .

By Proposition 2.15, $C_{A_{n-1}^{+}}=\mathcal{U}_{A_{n-1}^{+}}=Gr_{A_{n-1}^{+}}$ since the incidence matrix $A_{n-1}^{+}$ is unimodu-
lar.

Corollary 4.3 The universal Gr\"obner basis $\mathcal{U}_{A_{n-1}^{+}}$ is the set of binomials which correspond to

all of the circuits of $D_{n}$ .

Corollary 4.4 The number of elements in $\mathcal{U}_{A_{n-1}^{+}}$ is of exponential order with respect to $n$ .

Since $x_{12}x_{23}-x_{13}\in I_{A_{n-1}^{+}},$ $I_{A_{n-1}^{+}}$ is not homogeneous for the standard grading $\deg(x_{ij})=$

$1(^{\forall}.i,j)$ .
Corollary 4.5 $I_{A_{n-1}^{+}}$ is not unimodular for the grading $\deg(x_{ij})=1(^{\forall}i,j)$ .

But we can change the positive grading such that $I_{A_{n-1}^{+}}$ is homogeneous.

Theorem 4.6 If we set a positive grading as

$\deg(x_{ij})=j-i$ , $1\leq i<j\leq n$ , (3)

then $I_{A_{n-1}^{+}}$ is a homogeneous ideal.

(Proof) It suffices to show that any elements in the universal Gr\"obner basis $\mathcal{U}_{A_{n-1}^{+}}$ are homo-

geneous with respect to the positive grading (3).
Let $C=i_{1},$ $i_{2},$

$\ldots,$
$i_{s},$ $i_{1}$ be a circuit in $D_{n}$ . Let $C^{+}:=\{k:i_{k}<i_{k+1}\}$ and $C^{-}:=\{k:i_{k}>$

$i_{k+1}\}$ (we set $i_{s+1}=i_{1}$ ). The binomial $f_{C}$ corresponding to $C$ is

$f_{C}= \prod_{k\in c+}x_{i_{h}i_{k+1}}-\prod_{k\in C^{-}}x_{i_{k+1}i_{k}}$
.

Then, since $C^{+}\cap C^{-}=\emptyset$ ,

$\deg(\prod_{k\in c+}x_{i_{k}i_{k+1}})-\deg(\prod_{k\in C^{-}}x_{i_{k+1}i_{k)}}$ $=$
$\sum_{k\in c+}(i_{k+1}-i_{k})-\sum_{k\in C^{-}}(i_{k}-i_{k+1})$

$=$ $\sum_{k=1}^{s}(i_{k+1}-i_{k})$

$=$ $0$

Thus $f_{C}$ is homogeneous. 1
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4.2 Some Reduced Gr\"obner Bases of $I_{A_{n-1}^{+}}$

In this section, we show that the elements in reduced Gr\"obner bases with respect to some specific
term orders can be given in terms of graphs. As a corollary, we can show that there exist term
orders for which reduced Gr\"obner bases remain in polynomial order.

Remark 4.7 In this section, we line under the initial term of each polynomial.

Theorem 4.8 There exists a term order on $k[\mathrm{x}]$ for which the reduced Gr\"obner basis for $I_{A_{n-1}^{+}}$

$is$

$\{x_{ij}x_{jk}-x_{ik} : 1\leq i<j<k\leq n\}\cup\{x_{ik}x_{j\iota}-x_{il}x_{jk} : 1\leq i<j<k<l\leq n\}$. (4)

Let $g_{ijk}:=x_{ij}x_{jk}-x_{ik}$ and $g_{ijkl}:=x_{ik}x_{jl}-x_{il}x_{jk}$ . Then the set $\{g_{ijk} : 1\leq i<j<k\leq n\}$

corresponds to all of the circuits of length three in $D_{n}$ , and $\{g_{ijkl} : 1 \leq i<j<k<l\leq n\}$

corresponds to some of the circuits of length four (Figure 1).

Figure 1: The circuit corresponding to $g_{ijk}$ and the circuit corresponding to $g_{ijkl}$ .

(Proof) Let $\prec \mathrm{b}\mathrm{e}$ a purely lexicographic term order induced by the following variable ordering:

$x_{ij}\succ x_{kl}\Leftrightarrow i<k$ or ($i=k$ and $j<l$ ).

We show that (4) is the reduced Gr\"obner basis for $I_{A_{n-1}^{+}}$ with respect to $\prec$ .
For any circuit of length three defined by three vertices $i,j,$ $k(i<j<k)$ , the associated

binomial equals $x_{ij}x_{jk}-x_{ik}$ , which is $g_{ijk}$ .
The circuits $\overline{\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}}\mathrm{d}$ by four vertices $i<j<k<l$ are $C_{1}:=i,j,$ $k,$ $l,$ $i,$ $C_{2}:=i,$ $j,$ $l,$ $k,$ $i$ ,

$C_{3}:=i,$ $k,$ $j,$ $l,$ $i$ and their opposites. The binomial which corresponds to $C_{1}$ or its opposite is
$x_{ij}x_{jk}x_{kl}-x_{il}$ , whose initial term is divisible by $in_{\prec}(g_{ijk})$ . Similarly, the initial term of binomial
which corresponds to $C_{2}$ or its opposite is divisible by $in_{\prec}(g_{ijl})$ . The binomial which corresponds
to $C_{3}$ or its opposite is $g_{ijkl}$ .

$\iota_{f}$ $\iota_{\mathit{2}}$
$\iota_{\mathit{3}}$

Figure 2: The circuits $C_{1},$ $C_{2},$ $C_{3}$ .

Let $C$ be a circuit of length more than five. Let $i_{1}$ be the vertex whose label is minimum in
$C$ , and $C:=i_{1},$ $i_{2},$

$\ldots,$
$i_{s},$ $i_{1}$ . Without loss of generality, we set $i_{2}<i_{s}$ . Let $f_{C}$ be the binomial
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corresponding to $C$ , then $in_{\prec}(f_{C})$ is product of all variables whose associated edges have same
direction with $(i_{1}, i_{2})$ on $C$ . We show that $in_{\prec}(f_{C})$ is divisible by initial term of some $g_{ijk}$ or
$g_{ijkl}$ , which implies that (4) is Gr\"obner basis of $I_{A_{n-1}^{+}}$ with respect to prec.

If $i_{2}<i_{3}$ , then $(i_{1}, i_{2})$ and $(i_{2}, i_{3})$ have same direction on $C$ . Thus the variables $x_{i_{1}i_{2}}$ and
$x_{i_{2}i_{3}}$ appear in $in_{\prec}(f_{C})$ , and $in_{\prec}(f_{C})$ is divisible by $in_{\prec}(g_{i_{1}i_{2}i_{3}})$ (Figure 3 left).

If $i_{2}>i_{3}$ , then since $i_{3}<i_{2}<i_{s}$ , there exists $k(3\leq k<s)$ such that $i_{1}<i_{k}<i_{2}<i_{k+1}$ .
Then the variables $x_{i_{1}i_{2}}$ and $x_{i_{k}i_{k+1}}$ appear $\mathrm{i}\mathrm{n}^{\iota}in_{\prec}(f_{C})$ , and $in_{\prec}(f_{C})$ is divisible by $in_{\prec}(g_{i_{1}i_{k}i_{2}i_{k+1}})$

(Figure 3 right).

Figure 3: $x_{i_{1}i_{2}}$ and $x_{i_{2}i_{3}}$ (left) or $x_{i_{1}i_{2}}$ and $x_{i_{k}i_{k+1}}$ (right) appear in $in_{\prec}(f_{C})$ .

Any term of gijk is not divisible by the initial term of any other binomials $g_{ijk}$ or gijkl, and
so as gijkl. This implies that (4) is reduced. 1

Theorem 4.9 There exists a term order on $k[\mathrm{x}]$ for which the reduced Gr\"obner basis for $I_{A_{n-1}^{+}}$

$is$

$\{x_{ij}x_{jk}-x_{ik} : 1\leq i<j<k\leq n\}\cup\{x_{il}x_{jk}-x_{ik}x_{jl} : 1\leq i<j<k<l\leq n\}$ . (5)

Let $g_{ijk}:=x_{ij}x_{jk}-x_{ik}$ and $g_{ijkl}:=x_{il}x_{jk}-x_{ik}x_{jl}$ . Then the set $\{g_{ijk} : 1\leq i<j<k\leq n\}$

corresponds to all of the circuits of length three in $D_{n}$ , and $\{g_{ijk}\iota:1\leq i<j<k<l\leq n\}$

corresponds to the circuits of length four same as in Figure 1, but the directions are opposite.
(Proof) Let $\prec \mathrm{b}\mathrm{e}$ a purely lexicographic term order induced by the following variable ordering:

$x_{ij}\succ x_{kl}\Leftrightarrow j-i<l-k$ or ($j-i=l-k$ and $i<k$ ).

We show that (5) is the reduced Gr\"obner basis for $I_{A_{n-1}^{+}}$ with respect to $\prec$ .
For any circuit of length three defined by three vertices $i,j,$ $k(i<j<k)$ , the associated

binomial equals $x_{ij}x_{jk}-x_{ik}$ , which is $g_{ijk}$ .
The circuits $\overline{\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}}\mathrm{d}$ by four vertices $i<j<k<l$ are $C_{1}:=i,j,$ $k,$ $l,$ $i,$ $C_{2}:=i,j,$ $l,$ $k,$ $i$ ,

$C_{3}:=i,$ $k,$ $j,$ $l,$ $i$ and their opposites. The binomial which corresponds to $C_{1}$ or its opposite is
$\underline{x_{ij}x_{jk}x_{kl}}-x_{il}$ , whose initial term is divisible by $in_{\prec}(g_{ijk})$ . The binomial which corresponds to
$C_{2}$ or its opposite is $x_{ij}x_{jl}-x_{ik}x_{kl}$ . If its initial term is $x_{ij}x_{jl}$ , it is divisible by $in_{\prec}(g_{ijl})$ . If
initial term is $x_{ik}x_{kl}$ , it is divisible by $in_{\prec}(g_{ik}\iota)$ . The binomial which corresponds to $C_{3}$ or its
opposite is $g_{ijkl}$ .

Let $C$ be a circuit of length more than five. Let $(i_{1}, i_{2})(i_{1}<i_{2})$ be a edge which the difference
of labels is minimum in $C$ , and $C:=i_{1},$ $i_{2},$

$\ldots,$
$i_{s},$ $i_{1}$ . Let $f_{C}$ be the binomial corresponding to

$C$ , then $in_{\prec}(f_{C})$ is product of all variables whose associated edges have same direction with
$(i_{1}, i_{2})$ on $C$ .

If $i_{2}<i_{3}$ , then the variables $x_{i_{1}i_{2}}$ and $x_{i_{2}i_{3}}$ appear in $in_{\prec}(f_{C})$ , and $in_{\prec}(fc)$ is divisible by
$in_{\prec}(g_{i_{1}i_{2}i_{3}})$ . Similarly, if $i_{s}<i_{1}$ , then $in_{\prec}(f_{C})$ is divisible by $in_{\prec}(g_{i_{s}i_{1}i_{2}})$ .
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Let $i_{3}<i_{2}$ and $i_{1}<i_{n}$ . Then $i_{3}<i_{1}<i_{2}<i_{n}$ by the definition of $i_{1}$ and $i_{2}$ . If there exists
some $p$ such that $i_{\mathrm{p}}<i_{p+1}<i_{p+2}$ , then $in_{\prec}(f_{C})$ is divisible by $in_{\prec}(g_{i_{p}i_{P+1}i_{p+2}})$ . We show that
when there is not such $p$ , there exists some $q(3\leq q\leq n-1)$ such that $i_{q}<i_{1}<i_{2}<i_{q+1}$

(Figure 4 left) $)$ .

$\underline{l_{q}i}_{q*f}$
$i_{r}j_{r*\mathit{2}\simeq^{i_{f*l}}}\ldots\ldots.\mathrm{s}\cdots:..\cdot$

,

$-\mathrm{o}\mathrm{f}_{1}\overline{i},\cdots\ldots\ldots../\cdot \mathrm{a}.b\mathrm{e}/$ $-_{\overline{i_{1}}}\mathrm{r}_{l_{p}/\epsilon b\mathrm{e}/}\ldots\ldots\ldots\ldots$

.
Figure 4: $i_{q}<i_{1}<i_{2}<i_{q+1}(^{\exists}q)$ (left).If $i_{r}<i_{1}<i_{r+1}<i_{2}$ , it must be $i_{r+2}<i_{1}$ (right).

Let $i_{r}<i_{1}<i_{r+1}<i_{2}$ (Figure 4 right). Then $i_{r+2}<i_{r+1}$ , and $i_{r+2}<i_{1}$ by the definition
of $i_{1}$ and $i_{2}$ . Thus there must be some $q(3\leq q\leq n-1)$ such that $i_{q}<i_{1}<i_{2}<i_{q+1}$ since
$i_{3}<i_{1}<i_{2}<i_{s}$ .

Then $in_{\prec}(f_{C})$ is divisible by $in_{\prec}(g_{i_{\mathrm{q}}i_{1}i_{2}i_{q+1}})$ .
Any term of $g_{ijk}$ is not divisible by the initial term of any other binomials $g_{ijk}$ or $g_{ijkl}$ , and

so as gijkl. This implies that (5) is reduced. I

Theorem 4.10 There exists a term order on $k[\mathrm{x}]$ for which the reduced Gr\"obner basis for $I_{A_{n-1}^{+}}$

$is$

$\{\underline{x_{ij}}-x_{i,i+1}x_{i+1,i+2}\cdots x_{j-1,j} : 1\leq i<j-1<n\}$. (6)

Let $g_{ij}:=x_{ij}-x_{i,i+1}x_{i+1,i+2}\cdots x_{j-1,j}$ . Then the set $\{g_{ij} : 1 \leq i<j-1<n\}$ corresponds
to all of the fundamental circuits of $D_{n}$ for the spanning tree $T:=\{(i, i+1):1\leq i<n\}$ .
(Proof) Let $\prec \mathrm{b}\mathrm{e}$ a purely lexicographic term order induced by the following variable ordering:

$x_{ij}\succ x_{kl}\Leftrightarrow i<k$ or ($i=k$ and $j>l$ ).

We show that (6) is the reduced Gr\"obner basis for $I_{A_{n-1}^{+}}$ with respect to $\prec$ .
Let $C$ be a circuit which is not a fundamental circuit for $T$ . Let $i_{1}$ be the vertex whose label

is minimum in $C$ , and $C:=i_{1},$ $i_{2},$
$\ldots,$

$i_{s},$ $i_{1}$ . Without loss of generality, we set $i_{2}<i_{s}$ . Then the
variable $x_{i_{1}i_{s}}$ appears in the initial term of associated binomial $fc$ . Thus $in_{\prec}(fc)$ is divisible by
$in_{\prec}(g_{i_{1}i_{s}})$ .

The initial term of $g_{ij}$ corresponds to an edge which is not contained in $T$ , and other term
corresponds to several edges which are contained in $T$ . Thus any term of $g_{ij}$ is not divisible by
the initial term of other binomial in (6), which implies that (6) is reduced. I

Remark 4.11 Since Gr\"obner basis of $I_{A_{n-1}^{+}}$ is a basis of $I_{A_{n-1}^{+}}$ , the number of elements in
Gr\"obner basis of $I_{A_{n-1}^{+}}$ is more than the number of elements in the basis for $I_{A_{n-1}^{+}}$

corresponds to the cycle space of $D_{n}$ . Thus the number of elements in reduced Gr\"obner
$\dot{b}asisforI_{A_{n-1}^{+}}$

$I_{A_{n-1}^{+}}$ equals the dimension of the cycle space, which is $-(n-1)$ , and the reduced Gr\"obner
basis in Theorem 4.10 is the example achieving this bound.
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5 Regular Triangulations of $\overline{A}_{n-1}^{+}$

In this section, we study the regular triangulations of $\overline{A}_{n-1}^{+}$ . To analyze the triangulation from
the view point of toric ideals, we consider the $(n+1)\mathrm{x}(m+1)$ matrix

$A_{n-1}^{\prime+}$ $:=\subset \mathbb{R}^{n+1}$

where $t_{1}$ is a row vector whose components are all 1, and $0$ is a column zero vector. Then the
toric ideal of $A_{n-1}^{\prime+}$ is homogeneous.

Remark 5.1

1. The triangulation $\triangle$ of conv $(A_{n-1}^{\prime+})$ can be associated with the triangulation of conv $(\overline{A}_{n-1}^{+})$

by projecting $\Delta$ to the hyperplane $x_{n+1}=0$ in $\mathbb{R}^{n+1}$ .

2. If $\mathrm{x}^{\mathrm{u}}-\mathrm{x}^{\mathrm{v}}\in I_{A_{n-1}^{+}}$ and $\deg(\mathrm{x}^{\mathrm{u}})-\deg(\mathrm{x}^{\mathrm{v}})=k$ , then $\mathrm{x}^{\mathrm{u}}-\mathrm{x}^{\mathrm{u}}x_{0}^{k}\in I_{A_{n-1}^{+}},$ . Conversely, If
$\mathrm{x}^{\mathrm{u}}-\mathrm{x}^{\mathrm{v}}x_{0}^{k}\in I_{A_{n\infty 1}^{+}},$, then $\mathrm{x}^{\mathrm{u}}-\mathrm{x}^{\mathrm{v}}\in I_{A_{n-1}^{+}}$ .

In the rest of this section, we consider the toric ideal of $A_{n-1}^{\prime+}$ . We associate the point
$\mathrm{a}_{ij}\in\tilde{A}_{n-1}^{+}$ with the point $\mathrm{a}_{ij}’$ $:=\in A_{n-1}^{\prime+}$ and the variable $x_{ij}$ in the polynomial ring
$k[\mathrm{x}, x_{0}]:=k[x_{12}, \ldots, x_{1n}, x_{23}, \ldots, x_{n-1,n}, x_{0}]$, and the point $0\in\overline{A}_{n-1}^{+}$ with $\mathrm{a}_{0}’$ $:=\in A_{n-1}^{J+}$

and the variable $x_{0}$ in $k[\mathrm{x}, x_{0}]$ .
For the case of $n\geq 4$ , Proposition 2.15 does not hold since $A_{n-1}^{;+}$ is not unimodular.

Claim 5.2 If $n=3,$ $C_{A_{2}^{+}},=\mathcal{U}_{A_{2}^{+}},$ . If $n\geq 4$ , then $C_{A_{n-1}^{+}}$, is a proper subset of $\mathcal{U}_{A_{n-1}^{+}},$ .

(Proof) If $n=3$ , Proposition 2.15 holds since $A_{2}^{\prime+}$ is unimodular.
Let $n\geq 4$ . Then $x_{13}^{2}x_{34}-x_{12}x_{14}x_{23}\not\in C_{A_{n-1}^{+}}$, but $x_{13}^{2}x_{34}-x_{12}x_{14}x_{23}\in \mathcal{U}_{A_{n-1}^{\mathrm{T}}},$ . I
Thus analyzing reduced Gr\"obner bases for $I_{A_{n-1}^{+}}$, is much difficult.
Theorem 4.8 (or Theorem 4.9) shows that $I_{A_{n-1}^{+}}$, is generated by { $x_{ij}x_{jk}-x_{ik}x_{0}$ : $1\leq i<$

$j<k\leq n\}\cup\{x_{ik}x_{jl}-x_{il}x_{jk} : 1 \leq i<j<k<l\leq n\}$ . Thus in these case, we can extend the
term order $\prec$ in Theorem 4.8 (resp. Theorem 4.9) to the term order $\prec’$ on $k[\mathrm{x}, x_{0}]$ such that
$in_{\prec}(I_{A_{n-1}^{+}})=in_{\prec};(I_{A_{n-1}^{+}},)$ .

Corollary 5.3

(i) There exists a term order on $k[\mathrm{x}, 0]$ for which the initial ideal of $I_{A_{n-1}^{+}}$, is $\langle$ { $x_{ij}x_{jk}$ : $1\leq i<$

$j<k\leq n\}\cup\{x_{ik}x_{jl} : 1\leq i<j<k<l\leq n\}\rangle$ .

(ii) There exists a term order on $k[\mathrm{x}, 0]$ for which the initial ideal of $I_{A_{n-1}^{+}}$, is $\langle$ { $x_{ij}x_{jk}$ : $1\leq i<$

$j<k\leq n\}\cup\{x_{il}x_{jk} : 1\leq i<j<k<l\leq n\}\rangle$ .

(Proof) (i). Let $\prec’$ be a purely lexicographic term order induced by the following variable
ordering:

$x_{ij}\succ x_{kl}\Leftrightarrow i<k$ or ($i=k$ and $j<l$), and $x_{ij}\succ x_{0}$ for any $1\leq i<j\leq n$ .

Since $I_{A_{n-1}^{+}}$, is generated by

$\{x_{ij}x_{kl}-x_{il}x_{0} : 1\leq i<j<k\leq n\}\cup\{x_{ik}x_{jl}-x_{il}x_{jk} : 1\leq i<j<k<l\leq n\}$ (7)
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and initial terms of binomials in (7) are same as those in (4), the reduced Gr\"obner basis for
$I_{A_{n-1}^{+}}$, with respect to $\prec$ is (7). Thus the initial ideal of $I_{A_{n-1}^{+}}$, is $\langle$ { $x_{ij}x_{jk}$ : $1\leq i<j<k\leq$

$n\}\cup\{x_{ik}x_{jl} : 1\leq i<j<k<l\leq n\}\rangle$ .
The proof of (ii) is similar to that of (i). I
Thus we get two regular unimodular triangulations $\Delta_{1},$ $\Delta_{2}$ of $A_{n-1}^{l+}$ by applying Defini-

tion 2.10. The normalized volume of conv $(A_{n-1}^{\prime+})$ can be obtained by calculating the Hilbert
polynomial of $k[\mathrm{x}, x_{0}]/I_{A_{n-1}^{+}},$ .

As a matter of fact, $F\subset A_{n-1}^{\prime+}$ is the face of $\Delta_{1}$ (resp. $\Delta_{2}$ ) if and only if $\{(i,j):\mathrm{a}_{ij}\in F\}$ is
standard tree (resp. anti-standard tree). Thus we obtain our main theorem using the result by
Gelfand, Graev and Postnikov that the number of linearly independent solutions of the system
(1), (2) in a neighborhood of a generic point is equal to the normalized volume of conv $(\overline{A}_{n-1}^{+})$ .

Theorem 5.4 The number of linearly independent solutions of the system (1), (2) in a neigh-
borhood of a generic point is equal to the the Catalan number

$C_{n-1}= \frac{1}{n}$ .

For the case of Theorem 4.10, we cannot extend the term order $\prec$ in Theorem 4.10 to the
term order $\prec’$ on $k[\mathrm{x}, x_{0}]$ such that $in_{\prec}(I_{A_{n-1}^{+}})=in_{\prec}’(I_{A_{n-1}^{+}},)$ .

Example 5.5 Let $n=4and\prec be$ a purely lexicographic term order induced by

$x_{14}\succ x_{13}\succ x_{12}\succ x_{24}\succ x_{23}\succ x_{34}$ .

Then

$in_{\prec}(I_{A_{n-1}^{+}})=\langle x_{13}, x_{14}, x_{24}\rangle$ .

$Let\prec^{J}$ be a purely lexicographic term order induced by

$x_{14}\succ x_{13}\succ x_{12}\succ x_{24}\succ x_{23}\succ x_{34}\succ x_{0}$ .

Then

$in_{\prec^{l}}(I_{A_{n-1}^{l+}})=\langle x_{13^{X}34}, x_{13}x_{0}, x_{14^{X}23}, x_{14^{X}0}, x_{24}x_{0}\rangle$ .

Question 5.6 How can the universal Gr\"obner basis $\mathcal{U}_{A_{n-1}^{+}}$, be characterized in terms of graphs $l.$?

6 Open Problems by Gelfand, Graev and Postnikov
In [5], Gelfand, Graev and Postnikov gave the following open problems:

1. Find all regular local triangulations of $\overline{A}_{n-1}^{+}$ .

2. For $I,$ $J\subset\{1, \ldots, n\}$ such that $I\cap J=\emptyset$ , let

$A_{IJ}:=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\{\mathrm{a}_{ij} : 1\leq i<j\leq n, i\in I, j\in J\}\cup\{0\})$.

How can the triangulations of $A_{IJ}$ be described?

3. Find analogues of all results in [5] for other root systems.
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Ohsugi and Hibi $[14, 15]$ studied the third problem. In this section, we study the first problem.

Remark 6.1 The special case for the problem 2 is the case $I=\{1, \ldots, k\},$ $J=\{k+1, \ldots, n\}$

for some $k$ . In this case, $A_{IJ}$ is related to the hypergeometric system called hypergeometric
system on the grassmannian. This system is connected with triangulations of the product of two
simplices $\triangle^{k}\cross\Delta^{n-k}$ . For more details, we refer to $[\theta, 7,\mathit{8}]$ .

For the first problem, we calculated all regular local triangulations, regular triangulations,
all regular unimodular triangulations, all regular unimodular local triangulations for small $n$

using $\mathrm{T}\mathrm{i}\mathrm{G}\mathrm{E}\mathrm{R}\mathrm{S}[9,10]$ (Table 1).

$n$ $\#$ reg $\neq \mathrm{r}\mathrm{e}\mathrm{g}+\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l}$ $\neq \mathrm{r}\mathrm{e}\mathrm{g}+\mathrm{u}\mathrm{n}\mathrm{i}$ $\#\mathrm{r}\mathrm{e}\mathrm{g}+\mathrm{u}\mathrm{n}\mathrm{i}+\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l}$

$3$ $2$ $1$ $2$ $1$

$4$ $18$ $2$ $15$ $2$

$5$ $3515$ $18$ $1301$ $18$

Table 1: The number of regular triangulations $(\mathrm{r}\mathrm{e}\mathrm{g})$ , regular local triangulations $(\mathrm{r}\mathrm{e}\mathrm{g}+\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l})$,
regular unimodular triangulations $(\mathrm{r}\mathrm{e}\mathrm{g}+\mathrm{u}\mathrm{n}\mathrm{i})$ and regular unimodular local triangulations
$(\mathrm{r}\mathrm{e}\mathrm{g}+\mathrm{u}\mathrm{n}\mathrm{i}+\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l})$.

Remark 6.2

1. The problem to find all regular triangulations of $\tilde{A}_{n-1}^{+}$ is equivalent to the problem to find
all initial ideals of $I_{A_{n-1}^{+}},$ .

2. The problem to find all regular local triangulations of $\overline{A}_{n-1}^{+}$ is equivalent to the problem to
find all initial ideals of $I_{A_{n-1}^{+}}$, none of whose generators contains $x_{0}$ .

3. The problem to find all regular unimodular triangulations of $\overline{A}_{n-1}^{+}$ is equivalent to the
problem to find all square-free initial ideals of $I_{A_{n-1}^{+}},$ .

4. The problem to find all regular unimodular local triangulations of $\overline{A}_{n-1}^{+}$ is equivalent to the
problem to find all square-free initial ideals of $I_{A_{n-1}^{+}}$, none of whose generators contains
$x_{0}$ .

Question 6.3 Is any regular local triangulation of $\overline{A}_{n-1}^{+}$ regular?

For the first problem, we are interested in the bound of the number of regular local triangu-
lations of $\overline{A}_{n-1}^{+}$ . The number of regular triangulations are interesting problem in computational
geometry.

Question 6.4 Can the number of regular triangulations, regular local triangulations, regular
unimodular triangulations and regular unimodular local triangulations be bounded with respect
to $n$ ?

As the relation of the complexity of the algorithm of minimum cost flow problem using
Gr\"obner bases [11], we are also interested in the number of elements in reduced Gr\"obner bases
of $I_{A_{n-1}^{+}}$ and $I_{A_{n-1}^{+}},$ . The lower bound for $I_{A_{n-1}^{+}}$ is achieved in Theorem 4.10.

Question 6.5 Are the number of elements in reduced Gr\"obner bases of $I_{A_{n-1}^{+}}$ and $I_{A_{n-1}^{+}}$, of
polynomial order with respect to $n^{l}.$?
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7 Conclusions

In this paper, we showed that the number of linearly independent solutions of the hypergeometric
systems on the group of unipotent matrices can be calculated using Gr\"obner bases for toric
ideals of acyclic tournament graphs. We also study an open problem by Gelfand, Graev and
Postnikov [5]. To homogenize the toric ideal $I_{A_{n-1}^{+}}$ , we add a column associated with the origin
and consider the space $\mathbb{R}^{n+1}$ by adding a row whose components are all 1. But the unimodularity
of $I_{A_{n-1}^{+}}$ is broken by these operations. Characterizations of the universal Gr\"obner basis $\mathcal{U}_{A_{n-1}^{+}},$ ,

and the number of triangulations of $\tilde{A}_{n-1}^{+}$ are future works.
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