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Abstract

Gelfand, Graev and Postnikov have shown that the number of independent solutions of
hypergeometric systems on the group of unipotent matrices is equal to the Catalan number.
These hypergeometric systems are related with the vertex-edge incidence matrices of acyclic
tournament graphs. In this paper, we show that their results can be obtained by analyzing
the Grobner bases for toric ideals of acyclic tournament graphs. Moreover, we study an open
problem given by Gelfand, Graev and Postnikov.

1 Introduction

In recent years, Grobner bases for toric ideals of graphs have been studied and applied to many
combinatorial problems such as triangulations of point configurations, optimization problems in
graph theory, enumerations of contingency tables, and so on [3, 4, 11, 13, 14, 15]. On the other
hand, Grobner bases techniques can be applied to partial differential equations via left ideals
in the Weyl algebra [12, 16]. Especially, in [16] Grobner bases techniques have been applied to
GKZ-hypergeometric systems (or A-hypergeometric equations).

Gelfand, Graev and Postnikov [5] studied GKZ-hypergeometric systems called hypergeomet-
ric systems on the group of unipotent matrices. The hypergeometric systems on the group of
unipotent matrices are hypergeometric systems associated with the set of all positive roots A:—1
of the root system A,_;. They showed that the hypergeometric system on the group of unipo-
tent matrices gives a holonomic D-module and the number of linearly independent solutions of
the system in a neighborhood of a generic point is equal to the normalized volume of the convex
hull of the point set A} _; and the origin. They also showed that the normalized volume is equal
to the Catalan number C, by giving the triangulations of the convex hull. Since these trian-
gulations are unimodular (i.e. the normalized volume of each maximal simplex equals 1), the
normalized volume of the convex hull can be calculated by enumerating all maximal simplices.

On the other hand, A::_l can be viewed as the vertex-edge incidence matrix of acyclic
tournament graph with n vertices. The toric ideals of acyclic tournament graphs have been
studied in [11]. Sturmfels [17, Chapter 8] showed that for each Grobner basis for toric ideal of
a matrix A, we can define the regular triangulation of A. Sturmfels [17, Corollary 8.9.] also
showed that for homogeneous toric ideals, a regular triangulation becomes unimodular if and
only if the initial ideal of the toric ideal is square-free.

In this paper, we apply the result in [11] to the hypergeometric systems on the group of
unipotent matrices. The toric ideals of acyclic tournament graphs are not homogeneous for
standard positive grading, though those of undirected graphs [3, 4, 13] are all homogeneous.



We can homogenize the toric ideals of acyclic tournament graphs by (i (i) changing the positive
grading or (ii) introducing an extra variable [2, Chapter 8]. We homogenize the toric ideals in
[11] by (ii), and apply Sturmfels’ result to triangulations of the convex hull of the -point set A,
and the origin. For some Grébner bases, they remain square-free when they are homogemzed
so that we can construct unimodular triangulations. These triangulations are same as those
constructed by Gelfand, Graev and Postnikov. Thus we give an alternative proof for the result
by Gelfand, Graev and Postnikov from the view point of Grobner bases of non-homogeneous
toric ideals. Next we consider the triangulations of A1 ; U {0} (0 is the origin in R™) which all
of maximal simplices contain the origin. Such trlangulatlons are called local triangulations [5].
To find all regular local triangulations is an open problem. We enumerate all regular local
triangulations for small n using TiGERS [9].

2 Preliminaries

In this section, we give basic definitions of Grébner bases, toric ideals and regular triangulations.
We refer to [2] for introductions of Grébner bases, and [17] for introductions of toric ideals and
regular triangulations.

2.1 Grobner Bases

Let k be a field and k[zi,...,Zs] be a polynomial ring. For a non-negative integer vector
a = (a,...,0n) € Z2, (Z>o means the set of all non-negative integers), we denote % :=
z]txg? - zgr. B -

Definition 2.1 Let I C k[z1,... ,z,] be an ideal and < be a term order. A finite subset
G = {91,--.,9s} C I is a Grébner basis for I with respect to < if the initial ideal n<(I) =
(in<(f): f € I) is generated by in<(g1),... ,in<(gs). In addition, Grébner basis G is reduced
if G satisfies the following: :

1. For any i, the coefficient of in<(g:) equals 1.
2. For any i, any term of g; is not divistble by in (g]) (1 #7).
Proposition 2.2 For an ideal and a term order, the reduced Gréobner basis is defined uniquely.

Definition 2.3 Let I C k[z1,...,2s] be an ideal. Then the union of all reduced Griobner bases
for I with respect to all term orders is a Grobner basis for I with respect to any term order.
This basis is called the universal Grobner basis for I.

Although there are infinite term orders, the elements of a universal Grébner basis are finite.

2.2 Toric Ideals

Fix a subset A = {ay,... ,aq} C Z". Each vector a; is identified with a monomial t% in the
Laurent polynomial ring k[t*!] := k[t1,... ,tq, tl_l, e ,tgl].

Definition 2.4 Consider the homomorphism
m: ko, .., xn) — k[tEY], 3 t2

The kernel of 7 is denoted 14 and called the toric ideal of A.



Every vector u € Z" can be written uniquely as u = ut — u~ where ut and u~ are non-
negative and have disjoint support.

Lemma 2.5

I4= (x“:r —x% :w; €Ker(A)NZ", i=1,...,s)

Furthermore, a toric ideal is generated by finite binomials.

Definition 2.6 A binomial x*" —x"" € I4 is called circuit if the support of u is minimal with
respect to inclusion in Ker(A) and the coordinates of u are relatively prime. We denote the set
of all circuits in 14 by C4. )

Definition 2.7 A binomial x* —x" € I is called primitive if there eTists no other binomial
x"T—xV ey such that both ut —vT and u™ — v~ are non-negative. The set of all primitive
binomials in I, is called the Graver basis of A and written as Gry.

Let U4 be the universal Grobner basis of 14.
Proposition 2.8 ([17, Proposition 4.11.]) For any matriz A,
Ca CUs C Gry.

2.3 Regular Triangulations

Assume that a subset A = {a1,... a4} C Z" is the set of d points in R™. Let co'I‘iv(A)vbe the
convex hull of A. ‘ :

Definition 2.9 Let ¢ = dimconv(A4). T = {11, ... ,Tp} is a triangulation of conv(4) if
1. T; CA, [Tl =g+ 1, dimconv(T;) = g.
2. _ conv(T;) = ‘conv(A).
5. conv(T}) Neonv(Ty) = conv(T,NT;) (i # 7).

Sturmfels [17, Chapter 8] showed that for each point set A4 and genefic term order %, we can
define a triangulation of A with respect to <.

Definition 2.10 Let < be a generic term order and \/in<(I14) a radical ideal of the initial ideal
in(I4). Then we can define the triangulation A (I4) as follows:

A (I4) ;=< conv(F): F C A, H z; ¢ Jing(la) p -
i:a;€F
We call A(I4) the regular triangulation of A with respect <.

Definition 2.11 Let ¢ = dimconv(A4). Then we define the normalized volume of conv(4) as
q! times the Euclidean volume of conv(A).

Hilbert polynomial H4(r) of k[zy, ... ,zn]/14 is the k-dimension of the r-th grade component
of k[z1,... ,zp)/1a for r > 0.
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Theorem 2.12 ([17, Theorem 4.16.]) Let ¢ = dimconv(A). Then q! times the leading coef-
ficient of the Hilbert polynomial H(r) of k[z1,... ,zn]/I4 is equal to the normalized volume of
conv(4).

Definition 2.13 The triangulation T = {Ti,...,Tp} of conv(A) is unimodular if for any
T; € T, the normalized volume of T; equals 1. The matriz A is also called unimodular if

all triangulations of conv(A) are unimodular.
The unimodularity of a matrix induces good properties as follows.

Proposition 2.14 ([17, Corollary 8.9.]) Suppose that 14 be a homogeneous toric ideal. Then
the initial ideal in(14) is square-free (i.e. \/in<(l4) = in<(L4)) if and only if the corresponding
regular triangulation A (I4) of conv(A) is unimodular.

Proposition 2.15 ([17, Proposition 8.11.]) If A is a unimodular matriz, then C4 = Uy =
Gra.
3 Result of Gelfand, Graev and Postnikov

Gelfand, Graev and Postnikov [5] studied hypergeometric systems on the group of unipotent
matrices. They showed that these systems give holonomic D-modules, and calculated the number
of independent solutions. In this section, we summarize their results.

3.1 Hypergeometric Systems on the Group of Unipotent Matrices

Let e; be the i-th standard basis in R". We denote
At i={aj:=e,—ej:1<i<j<n}CR"

and E;f_l = A , U{0} C R™ where 0 is the origin. 4, _; is the set of all positive roots of the
root system Ap_1 :={e; —e;: 1< 4,5 <n, i #j} CR". Let conv(A;_,) be the convex hull of
all points in A" | and conv(A;_,) the convex hull of all points in A _;.

Definition 3.1 The hypergeometric system on the group of unipotent matrices is the following
system of differential equation with coordinates z;j, 1 <1< j < mn:

j—1 n
of of :
— Z2ii—— + z-k———_—.a»f, ]=1,2,...,n (1)
; ! 025 k:Xj-:l-l oz
2
of of 0<i<j<k<n (2)

Bzik - azijaz]'k’
where a = (a1, .. ,an) € C* such that 377, a; = 0.

Theorem 3.2 ([5, Theorem 2.3.])

(i) The hypergeometric system (1),(2) gives a holonomic D-module. The number of linearly
independent solutions of this system in a neighborhood of a generic point is equal to the
normalized volume of conv(A' ).
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(ii) The normalized volume of conv(;f:_l) 1s equal to the Catalan number

1/2(n-1
n\ n—1
Definition 3.3 Let T be a tree on the set {1,2,... ,n}.

* T is admissible if there are no 1 <i < j < k < n such that both (i,j) and (j,k) are edges
of T.

o T is standard if T is admissible and there are no 1 < i < j < k < ! < n such that both
(i,k) and (4,1) are edges of T.

e T is anti-standard if T is admissible and there are no 1 < i < j < k <1l < n such that
both (i,1) and (j, k) are edges of T'.

Theorem 3.4 ([5, Theorem 6.3. and Theorem 6.6.]) Let

Tst = { conv U a;j U{0} | : ST is standard tree on {1,...,n}
(ij)eST

Tar = < conv U a;; U{0} | : AT is anti-standard tree on {1,... ,n}
(1,)€AT ‘

Both Tst and Tar give local unimodular triangulations of Z;t_l.

Theorem 3.5 ([5, Theorem 6.4. and Corollary 6.7.]) The number of standard trees (resp.

anti-standard trees) on the set {1,2,... ,n} is equal to the Catalan number
1/2(n—-1
n\ n—1

Theorem 3.2 follows from Theorem 3.4 and Theorem 3.5.

4 Grobner Bases for Acyclic Tournament Graphs

In this section, we summarize our results in [11].

Let D, be an acyclic tournament graph with n vertices which have labels 1,2,... , n such that
each edge (i,7) (¢ < j) is directed from i to j. Let m = (}) be the number of edges in D,,. We
associate each edge (i, j) with a variable z;; in the polynomial ring k[x] := k[z;;: 1 <4 < j < n].
Since we can consider A;_; as the vertex-edge incidence matrix of D,,, we can also associate
each edge (4, j) with a point a;; € A;r_l. In this section, we analyze the toric ideal T 4t

n—1
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4.1 Toric Ideals of A |

A walk of D, is the sequence of vertices (v, v2, ... ,vp) such that (vi,v;41) or (viy1, ;) is an arc of
D, foreach1 <i < n. A cycleis a walk (v1,v2,... ,0p,v1). A circuitis a cycle (vy,va,... ,vp,v1)
such that v; # v; for any i # j.

Definition 4.1 Let C be a circuit of D,,. If we fiz a direction of C, we can partition the edges
of C into two sets CT and C~ such that C* is the set of forward edges and C~ is the set of
backward edges. Then the vector ¢ = (cij)i1<i<j<n € R™ defined by

1 if (4,5) € C*
Cij = -1 ’Lf (’L,]) eC
0 if(5,4) ¢C
1s called the incidence vector of C.
Lemma 4.2 ([1]) A binomial xtt —xv € Iyt is a circuit if and only if u is the incidence
vector of a circuit of Dy,.
By Proposition 2.15, C Ar T U A= Gr AT since the incidence matrix A ; is unimodu-
lar.

Corollary 4.3 The universal Grobner basis U 4+ ) 1s the set of binomials which correspond to
all of the circuits of D,.

Corollary 4.4 The number of elements in U+ . is of exponential order with respect to n.

Since 12723 — 713 € I 4+ p I+ . is not homogeneous for the standard grading deg(z;;) =
1 (%, 5)-
Corollary 4.5 I+ . is not unimodular for the grading deg(zi;) = 1 (¥i,7).

But we can change the positive grading such that I+ ) is homogeneous.

Theorem 4.6 If we set a positive grading as
deg(zij) =75 —14, 1<i<j<m, (3)
then IA+_1 is a homogeneous ideal.

(Proof) It suffices to show that any elements in the universal Grobner basis U Ar_, are homo-
geneous with respect to the positive grading (3).
Let C = i1,42,... 15,41 be a circuit in D,. Let C7 := {k: ix < igq1} and C™ := {k: ix >
ik+1} (we set i541 = i1). The binomial fc corresponding to C is
fe= H Ligigyr — H Lipyatn -
keCct keC—
Then, since CtNC~ =0

b
deg H Lirirrr | — deg H Lig 411k = Z (ik+1 - ik) - Z (ik - ik+1)
keCt+ keC- keC+ keC—
S

= Y (ikt1 — i)

k=1
= 0

Thus fc¢ is homogeneous. 1
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4.2 Some Reduced Grobner Bases of [+

n—1
In this section, we show that the elements in reduced Grobner bases with respect to some specific

term orders can be given in terms of graphs. As a corollary, we can show that there exist term
orders for which reduced Grobner bases remain in polynomial order.

Remark 4.7 In this section, we line under the initial term of each polynomial.

Theorem 4.8 There ezists a term order on k[x] for which the reduced Grébner basis for I A+

n—1

18

{:cija:jk—xik: 1§i<j<kSn}U{wik(Eﬂ—xuank: 1§'i<j<k‘<l§’n,}. (4)

Let Gijk *= TijTijk — Tik and Gijkl *= TikTj1 — T k- Then the set {gi]’k: 1<i<ji<k< n}
corresponds to all of the circuits of length three in D,,, and {gijm: 1 <i<j<k<l<n}
corresponds to some of the circuits of length four (Figure 1).

i fon , _
iA k jX k
Figure 1: The circuit corresponding to g;;z and the circuit corresponding to Gijkl-

(Proof) Let < be a purely lexicographic term order induced by the following variable ordering:
Tij = TR =i < kor (i==Fkandj<l).

We show that (4) is the reduced Grobner basis for T At with respect to <.

For any circuit of length three defined by three vertices 7,7,k (i < j < k), the associated
binomial equals z;;x;; — ;x, which is Gijk-

The circuits defined by four vertices i < j < k < [ are Cy := 4,j,k,l,i, Cy := i,5,1,k, 1,
Cs :=4,k,j,1,1 and their opposites. The binomial which corresponds to C; or its opposite is
TijT;kTkl — Til, whose initial term is divisible by in(g;jx). Similarly, the initial term of binomial
which corresponds to C or its opposite is divisible by in(g;j;). The binomial which corresponds
to C3 or its opposite is g;;xi.

Cs

Figure 2: The circuits Cy, Cs, Cs.

Let C be a circuit of length more than five. Let ¢; be the vertex whose label is minimum in
C, and C :=1y,1,... ,i,%. Without loss of generality, we set iy < i,. Let fc be the binomial
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corresponding to C, then in(fc) is product of all variables whose associated edges have same
direction with (i1,i2) on C. We show that in(fc) is divisible by initial term of some g;;) or
9ijkl, which implies that (4) is Grobner basis of I AF, with respect to prec.

If iy < i3, then (i,42) and (i2,73) have same direction on C. Thus the variables z; ;, and
i, appear in in<(fc), and in<(fc) is divisible by in(gi,i,i;) (Figure 3 left).

If i3 > i3, then since i3 < iy < is, there exists k (3 < k < s) such that 41 < i < iz < igy1.
Then the variables z;,;, and zi,i, ,, appear inin(fc), and in(fc) is divisible by in<(gi,iizix,)
(Figure 3 right).

Tier

Figure 3: z;,i, and z;,i, (left) or z; ;, and z;,4, ., (right) appear in in<(fc).

Any term of gj;x is not divisible by the initial term of any other binomials g;;x or gi;xi, and

so as gijki- This implies that (4) is reduced. 1
Theorem 4.9 There erists a term order on k[x] for which the reduced Grobner basis for I+ .
15

{xija:jk —rp:1<i<j<k< n}U{:L‘ﬂ.'L'jk — Tz 1 <1 <)< k<l<n}. (5)

Let gijr = TijTjk — Tik and Gijkl *= TiTjk — TikTjl- Then the set {gz’jk3 1<i<j<k<n}
corresponds to all of the circuits of length three in Dy, and {gijr: 1 <i < j <k <l < n}
corresponds to the circuits of length four same as in Figure 1, but the directions are opposite.
(Proof) Let < be a purely lexicographic term order induced by the following variable ordering:

Tij =T j—i<l—kor(j—i=1l—kandi<k).

We show that (5) is the reduced Grobner basis for I AF_, with respect to <.

For any circuit of length three defined by three vertices ¢,7,k (¢ < j < k), the associated
binomial equals ;T x — Tk, which is g;;p.

The circuits defined by four vertices i < 7 < k < [ are C := 1,j,k,1,3, C2 := 4,3,1,k,1,
C3 := i,k,j,1,i and their opposites. The binomial which corresponds to C; or its opposite is
TijT;kTkl — Til, whose initial term is divisible by in (9ijx)- The binomial which corresponds to
C- or its opposite is z;;z;i — kT If its initial term is x4z, it is divisible by in<(gi;). If
initial term is z;;xx, it is divisible by in<(g;x). The binomial which corresponds to Cj3 or its
opposite is g;jxi-

Let C be a circuit of length more than five. Let (i1,2) (i1 < i2) be a edge which the difference

of labels is minimum in C, and C := 41,12,... ,is,%1. Let fc be the binomial corresponding to
C, then in_(fc) is product of all variables whose associated edges have same direction with
(¢1,72) on C.

If iy < i3, then the variables z;,;, and z;,;, appear in in<(fc), and ins(fc) is divisible by
in<(iyipis)- Similarly, if 45 < é1, then in(fc) is divisible by in(gi,ii,)-
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Let i3 <42 and 41 < ip,. Then i3 < i1 < i3 < iy, by the definition of i; and i5. If there exists
some p such that i, <ipi1 < ipy2, then ins(fc) is divisible by in(gi,i,,1i,,,)- We show that
when there is not such p, there exists some ¢ (3 < g < n — 1) such that g < i1 < g < igqq
(Figure 4 left)).

iy iy label i, i, label

Figure 4: iq < i1 <ip < igt1 (Pq) (left).If i, < i) < ipqy < dg, it must be ir42 < 71 (right).

Let i, < iy < ipq1 < 92 (Figure 4 right). Then 4,42 < ir41, and 4,49 < i; by the definition
of i; and 4. Thus there must be some ¢ (3 < g < n — 1) such that g < 11 < 4z < g41 since
13 < 11 < 19 < i,.

Then in<(fc) is divisible by (i iyizi,41)-

Any term of g;;; is not divisible by the initial term of any other binomials 9ijk OT gijki, and
so as gijxi- This implies that (5) is reduced. |

Theorem 4.10 There exists a term order on k[x] for which the reduced Grébner basis for I AF,
18

{zij — Biir1Zitrire i1, 1< <j—1<n} (6)

Let gij := Tij — Tii41Tiq1,i42 " - - Tj—1,5- Then the set {gij: 1<% < j—1< n} corresponds
to all of the fundamental circuits of D,, for the spanning tree T':= {(¢,z + 1): 1 < i < n}.
(Proof) Let < be a purely lexicographic term order induced by the following variable ordering:

Tij =T <= i< kor (i=kandj>l.

We show that (6) is the reduced Grébner basis for I ,+ . with respect to <.

Let C be a circuit which is not a fundamental circuit for 7. Let ¢; be the vertex whose label
is minimum in C, and C := 41,43, ... ,is,%;. Without loss of generality, we set io < i5. Then the
variable z; ;, appears in the initial term of associated binomial fc. Thus in<(f¢) is divisible by
n (gi1is ) '

The initial term of g;; corresponds to an edge which is not contained in T', and other term
corresponds to several edges which are contained in T'. Thus any term of g;; is not divisible by
the initial term of other binomial in (6), which implies that (6) is reduced. 1

Remark 4.11 Since Grébner basis of IAi_l is a basis of IA,T_l’ the number of elements in
Grobner basis of IAi_l 15 more than the number of elements in the basis for IAj_ . IA:Y_l
corresponds to the cycle space of Dy,. Thus the number of elements in reduced Grobner basis for
IAj_l equals the dimension of the cycle space, which is ('2’) — (n —1), and the reduced Grébner

basis in Theorem 4.10 is the example achieving this bound.
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5 Regular Triangulations of A’

In this section, we study the regular triangulations of Z;:_l. To analyze the triangulation from
the view point of toric ideals, we consider the (n + 1) x (m + 1) matrix

t
+ 1 1 n+1
#ia=(af, o) o

where 1 is a row vector whose components are all 1, and 0 is a column zero vector. Then the
toric ideal of A} ; is homogeneous.

Remark 5.1

1. The triangulation A of conv(A'}_,) can be associated with the triangulation of conv(A}_)
by projecting A to the hyperplane 11 = 0 in R*1,

2. If x" —-x" € IA:_I and deg(x") — deg(x") = k, then x" — xYzk € IA':_l' Conversely, If
x" —_x".'clg € IA'f‘l’; then x* — x¥ € IA:_I.
In the rest of this section, we consider the toric ideal of A’:{_l. We associate the point
a;; € Af_, with the point aj; = (aij) € A'}_, and the variable z;; in the polynomial ring
k[x,zo] := k[z12,-.. ,Z1n, T23,-.. , Tn—1,n, Zo], and the point 0 € A::_l with afj := (‘1)) € A':{_l
and the variable zg in k[x, zg].
- For the case of n > 4, Proposition 2.15 does not hold since A’ ;Ll is not unimodular.

Claim 5.2 If n =3, CA,;L = LIA,;. If n > 4, then CA,+_1 15 a proper subset Oqu'+_1'

(Proof) If n = 3, Proposition 2.15 holds since A’3 is unimodular.
Let n > 4. Then $%3£E34 — T12714T23 §f CA"" but .’L‘%3:L‘34 — T12%14%23 € UA,+ . 1
n—1 n—1

Thus analyzing reduced Grobner bases for 1 At is much difficult.

Theorem 4.8 (or Theorem 4.9) shows that I ,,+ . is generated by {z;;jzjx — Tizxo: 1 < i <
J<k<n}U{zpgzj—zqzrjr:1<i<j<k<l<n}. Thus in these case, we can extend the
term order < in Theorem 4.8 (resp. Theorem 4.9) to the term order <’ on k[x,zg] such that
in<(IA:_1) = 'l:n<l (IA,:-_I).

Corollary 5.3

(1) There ezists a term order on k[x,0] for which the initial ideal of Ty+ s ({rijrjp: 1<i<
j<k§n}U{:L'ik:1:jl:1§i<j<k<l§n}).

(ii) There exists a term order on k[x, 0] for which the initial ideal of Tyt 18 ({rijrjp: 1 <i<
F<k<n}U{zgzjr:1<i<j<k<l<n}).

(Proof) (i). Let <’ be a purely lexicographic term order induced by the following variable
ordering:

Ti; - <=i<kor(i=kandj<l), andaz;j>xoforanyl <i<j<n.

Since I At is generated by

{a:,-jmkl~a:,-lxg: 1Si<j<k§n}U{.’L'ik.’Ejl—:l:iliL'jk: 1§i<j<k<l§n} (7)
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and initial terms of binomials in (7) are same as those in (4), the reduced Grébner basis for
IA'j{_l with respect to < is (7). Thus the initial ideal of IA,:—-] is ({zjzj: 1 <i<j<k<
n}U{xikmﬂ:1§i<j<k<l§n}). :
The proof of (ii) is similar to that of (i). , 1
Thus we get two regular unimodular triangulations Ay, A, of AT by applying Defini-
tion 2.10. The normalized volume of conv(A',_;) can be obtained by calculating the Hilbert
polynomial of k[x, xo]/IA,:_l '

As a matter of fact, F C A}, is the face of A; (resp. Ap) if and only if {(3,7): a;; € F} is
standard tree (resp. anti-standard tree). Thus we obtain our main theorem using the result by
Gelfand, Graev and Postnikov that the number of linearly independent solutions of the system
(1), (2) in a neighborhood of a generic point is equal to the normalized volume of conv(Z:_l).

Theorem 5.4 The number of linearly independent solutions of the 5ysteni (1),(2) in a neigh-
borhood of a generic point is equal to the the Catalan number

1/2(n-1
n\ n—1
For the case of Theorem 4.10, we cannot extend the term order < in Theorem 4.10 to the
term order <’ on k[x, zo] such that in (I + 1) =in_y (IA,+_1).

Example 5.5 Let n = 4 and < be a purely lezicographic term order induced by
T14 > T13 > T12 > T4 > :1323 > T34.
Then
m<(IAI_1) = (T13, T14, T4)-
Let <' be a purely lexicographic term order induced by‘
T14 > T13 > T12 > T24 > T23 > T34 > Tg.
Then
in<:(IA,:_l) = (T13T34, T13%0, T14T23, T14Tg, To4Z).

Question 5.6 How can the universal Grébner basis U | be characterized in terms of graphs?

6 Open Problems by Gelfand, Graev and Postnikov
In [5], Gelfand, Graev and Postnikov gave the following open problems:
1. Find all regular local triangulations of ﬁ:{_r
2. For I,J C{1,...,n} such that INJ =0, let
CApri=conv({agil<i<j<n, i€l jeJyu{o)).
How can the triangulations of 477 be described?

3. Find analogues of all results in [5] for other root systems.
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Ohsugi and Hibi [14, 15] studied the third problem. In this section, we study the first problem.

Remark 6.1 The special case for the problem 2 is the case I = {1,... ,k}, J={k+1,... ,n}
for some k. In this case, Ary is related to the hypergeometric system called hypergeometric
system on the grassmannian. This system is connected with triangulations of the product of two
simplices A¥ x A"~*. For more details, we refer to [6, 7, 8].

For the first problem, we calculated all regular local triangulations, regular triangulations,
all regular unimodular triangulations, all regular unimodular local triangulations for small n

using TiGERS [9, 10] (Table 1).

n || # reg | # reg+local | # reg+uni | # reg+uni+local
3 2 1 2 1
4 18 2 15 2
5| 3515 18 1301 18

Table 1: The number of regular triangulations (reg), regular local triangulations (reg+local),
regular unimodular triangulations (reg+uni) and regular unimodular local triangulations
(reg+uni+local).

Remark 6.2

1. The problem to find all regular triangulations of l:_l 1s equivalent to the problem to find
all initial ideals of I ,,+ -

2. The problem to find all regular local triangulations of ‘Z:q is equivalent to the problem to
find all initial ideals of 1 ,,+ | none of whose generators contains xgp.

3. The problem to find all regular unimodular triangulations of Z:{_l is equivalent to the
problem to find all square-free initial ideals of I,,+ -

4. The problem to find all regular unimodular local triangulations of E:_l s equivalent to the
problem to find all square-free initial ideals of I ,,+ | none of whose generators contains
Zg-

Question 6.3 Is any regular local triangulation of Z;t_l reqular?

For the first problem, we are interested in the bound of the number of regular local triangu-
lations of A:—r The number of regular triangulations are interesting problem in computational
geometry.

Question 6.4 Can the number of regular triangulations, regular local triangulations, regular
unimodular triangulations and regular unimodular local triangulations be bounded with respect

ton?

As the relation of the complexity of the algorithm of minimum cost flow problem using
Grobner bases [11], we are also interested in the number of elements in reduced Grobner bases
of I,+ . and I+ E The lower bound for I,+ . is achieved in Theorem 4.10.

Question 6.5 Are the number of elements in reduced Grobner bases of I,+ . and I+ of
n— n-1

polynomial order with respect to n?
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7 Conclusions

In this paper, we showed that the number of linearly independent solutions of the hypergeometric
systems on the group of unipotent matrices can be calculated using Grobner bases for toric
ideals of acyclic tournament graphs. We also study an open problem by Gelfand, Graev and
Postnikov [5]. To homogenize the toric ideal I At 2 We add a column associated with the origin

and consider the space R"*! by adding a row whose components are all 1. But the unimodularity
of I,+ . is broken by these operations. Characterizations of the universal Grobner basis U ,,+
n-— X n-—1

and the number of triangulations of Z:_l are future works.
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