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1 Introduction.

Homotopy continuation methods have been developed as efficient numerical algorithms for solving all
isolated zeros of polynomial systems. Among others, a new type of homotopy method has emerged
in the last few years. Let $P(x)=(p_{1}(X), \ldots,p_{n}(x))=0$ be a system of $n$ polynomial equations in
$n$ unknowns. Each polynomial consists of more than one monomials. We denote each monomial as
$x^{a}=x_{1}^{a_{1}a_{2}.a}x_{2}..xn^{n}$ and identify it with a lattice point $a=(a_{1}, a_{2}, \ldots, a_{n})\in N^{n}\equiv\{0,1,2, \ldots\}^{n}$ . Then,
denoting each term of the $i\mathrm{t}\mathrm{h}$ equation as $(c_{i,a}x^{a})$ with a complex coefficient $c_{i,a}\in C$ and $a\in N^{n}$ , we
write a system of polynomials $P(x)=(p_{1}(X), \ldots,p_{n}(X))$ as

$Pi(X)= \sum_{a\in A_{i}}ci,ax^{a},$
$i=1,$ $\ldots,$

$n$ . (1)

Here, $A_{i}(i=1, \ldots, n)$ is a set of lattice points corresponding to terms of the ith equation, and is called
the support of the polynomial $pi(x)$ . Homotopy continuation methods for solving $P(x)=0$ construct
trivial systems. $Q(X)=(q_{1}(X), \ldots, q_{n}(X))$ and homotopy systems $H(x, t)$ at the beginning. If these
systems $Q(x)$ and $H(x, t)$ are chosen correctly, the following three properties hold:

Property $0$ : The solutions of $Q(x)=0$ are known.

Property 1: The solution set of $H(x, t)=0$ for $0\leq t\leq 1$ consists of a finite number of smooth
(homotopy) paths, each parameterized by $t$ in $[0,1)$ .

Property 2: $H(x, t)$ satisfies $H(x, 1)=P(x)$ and $H(x, \mathrm{o})=Q(X)$ .

When the three properties hold, solution paths of $H(x, t)=0$ can be followed from initial solutions of
$Q(x)=0$ at $t=0$ to all solutions of the original problem $P(x)=0$ at $t=1$ , using standard numerical
techniques. It has been shown theoretically and also experimentally $[5, 6]$ th,at the so called polyhedral
homotopy [5] generates much fewer homotopy paths than classical linear homotopy methods. Since
the polyhedral homotopy method was proposed, the study related to efficient computation of mixed
cells has been progressing. The process of locating all mixed cells is necessary to define start systems
$Q(x)=0$ and homotopies $H(x, t)=0$ which satisfy Properties 0,1 and 2, but it occupies the majority
of computation in the polyhedral homotopy method. Our contribution lies in developing an algorithm
for mixed cell computation with a clever use of linear programming techniques and implementing the
algorithm on a parallel computing system. As our numerical results show, we are now able to deal with
larger dimensional polynomial systems with less computational time.

This paper is organized as follows. Section 2 introduces our problem along with new terminology
related to mixed cell computation. Section 3 presents a new approach for enumerating all solutions
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of our problem. The approach induces a family of linear-inequality systems, which we reformulate via
linear programs in Section 4. Section 5 shows our sequential algorithm and its parallel version, and
then, examines both algorithms on standard benchmark problems comparing them to other mixed cell
implementations. This paper concludes with a summary and directions for future work in Section 6.

2 An enumeration problem in polyhedral homotopies.

According to the paper [5], we distinguish three cases of the polynomial system (1): The input system
(1) is unmixed when all the sets $A_{i}(i=1, \ldots, n)$ are equal; fully mixed when they are all distinct; and
semimixed when they are equal in $m$ distinct blocks. In this section, we will concentrate on semimixed
systems; mixed and unmixed systems are special cases.

For $j=1,$ $\ldots,$ $m$ , let $s_{j}$ be the number of polynomials in $P(x)$ having the support $A_{i}$ . Note that $m$ is
a positive integer not greater than $n$ , and $s_{j}(j=1, \ldots, m)$ are positive integers such that $\sum_{j=1^{S}j}^{m}=n$

and $s_{j}\geq 1$ . To simplify the notation, let $M$ denote the set of indices $\{1, 2, \ldots, m\},$ $\beta=(\beta_{j} : j\in M)$

a $m$ dimensional vector, and $\langle a, \alpha\rangle$ the inner product of two vectors $a$ and $\alpha$ in the n-dimensional
Euclidean space $R^{n}$ . Also, let $\# C$ denote the number of elements.

Problem 2.1. (Semimixed polynomial system)
Let $\omega_{j}(a)$ be a real number chosen generically for $\forall a\in A_{j}$ and $\forall j\in M$ . Find a solution $(\alpha, \beta)\in R^{n+m}$

which satisfies
$\beta_{j}-\langle a, \alpha\rangle\leq\omega_{j}(a)$ , $\forall a\in A_{j},$ $\forall j\in M$ , (2)

with exactly $(s_{j}+1)$ equalities for each $j\in M$ .

Since each $\omega_{j}(a)$ is chosen generically for $Va\in A_{j}$ and $\forall j\in M$ , we may assume the following
condition on Problem 2.1.

Condition 2.2. (Nondegeneracy condition) Let $\emptyset\neq K\subseteq M,$ $F_{j}\subseteq A_{j}(j\in K)$ and $\ell=\sum_{j\in K}\neq F_{j}>$

$n+\neq K$ . Then the system of $\ell$ linear equations with $(n+\neq K)$ variables $\alpha$ and $\beta_{j}(j\in K)$ suc.h that
$\beta_{j}-\langle a, \alpha\rangle=\omega_{j}(a)$ $(a \in F_{j}, j\in K)$ , has no solution.

Suppose that for some cell $(C_{1}, \ldots, C_{m})$ such that $C_{j}\subseteq A_{j}$ and $\neq C_{j}=s_{j}+1(j=1, \ldots, m)$ , a
solution $(\overline{\alpha},\tilde{\beta})\in R^{n+m}$ of Problem 2.1 satisfies

$\overline{\beta_{j}}-\langle a,\overline{\alpha}\rangle=\omega_{j}(a)$ for $Va\in C_{j},$ $\forall j\in M$ ,
$\overline{\beta_{j}}-\langle a,\overline{\alpha}\rangle<\omega_{j}(a)$ for $\forall a\in A_{j}\backslash C_{j},$ $\forall j\in M$ .

Then, the cell $C=(C_{1}, \ldots, C_{m})$ is called a fine mixed cell of $A=(A_{1}, A_{2}, \ldots, A_{m})$ , induced by the
lifting $\omega=(\omega_{1}, \ldots, \omega_{n})$ . Here, we denote an $(s_{j}+1)$-element subset $C_{j}\subseteq A_{j}$ by $C_{j}=\{a_{0}^{jj}, a_{1}, \ldots, a_{s_{j}}j\}$ .

Condition 2.2 further ensures that the set of
$\sum_{j\in M}(S_{j}+1)$

points

$\{(a_{p}^{j}e^{j})\in N^{n+m}$ : $p=0,1,2,$ $\ldots,$ $sj,$ $j\in M\}$

is linearly independent, where $e^{j}$ denotes the $j\mathrm{t}\mathrm{h}$ unit vector in $R^{m}$ . It follows in particular that the
set of $(s_{j}+1)$ points $\{a_{p}^{j} : p=0,1,2, \ldots, S_{j}\}$ induces an $s_{j}$ -dimensional simplex in $R^{n}$ , and that the
$n\cross n$ matrix $A$ defined by

$A=$ , $A_{j}=\in R^{s_{j}\cross n}$ . (3)
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is nonsingular.

A collection of all fine mixed cells, which follow from all solutions of Problem 2.1, is called a fine mixed
subdivision of $A$ . Assuming that the number of all solutions for Problem 2.1 is $r,$ $C^{(j)}=(C_{1},., Cm)(j)..(j)$

$(j=1, \ldots , r)$ are all mixed cells, and $S=\{c^{(1)}, \ldots, \mathit{0}^{(r})\}$ is a fine mixed subdivision of $A$ . Then,
$r$ nonsingular matrices $A^{(1)},$

$\ldots,$

$A^{(r)}$ are induced from fine mixed cells $C^{(j)}(j=1, \ldots, r)$ . In the
polyhedral homotopy continuation method, it is a key issue how efficiently we can obtain a fine mixed
subdivision $S$ of $A$ , that is, all solutions of Problem 2.1. For more details about relationship between
a fine mixed subdivision and the polyhedral homotopy method, see the articles [3, 4, 5, 6, 7, 11, etc].

We present a special case of Problem 2.1 with $m=n$ and $(s_{1}, \ldots, s_{m})=(1, \ldots, 1)$ . In this case, the
set $M$ is defined as $M=\{1,2, \ldots , n\}$ .

Problem 2.1’ (Fully mixed polynomial system)
Let $\omega_{j}(a)$ be a real number chosen generically for $\forall a\in A_{j}$ and $\forall j\in M$ . Find a solution $(\alpha, \beta)\in R^{2n}$

which satisfies $\beta_{j}-\langle a, \alpha\rangle\leq\omega_{j}(a)$ , $\forall a\in A_{j},$ $\forall j\in M$ , with exactly 2 equalities for each $j\in M$ .

3 Systems embedded in an enumeration tree.

One easy solution method for Problem 2.1 is as follows; At first, prepare the set

$\overline{S}=\{C=(c_{1}, \ldots, c_{m})$ : $C_{j}\subseteq A_{j}$ , $\#^{c_{j}=}S_{j}+1(j\in M)\}\}$

and solve the equality system

$\beta_{j}-\langle a, \alpha\rangle=\omega_{j}(a),$ $\forall a\in C_{j},$ $Vj\in M$ , (4)

for $VC=(C_{1}, \ldots, C_{m})\in\overline{S}$. And then, check the feasibility of the solution $(\overline{\alpha},\overline{\beta})\in R^{n+m}$ of (4) for
the remaining linear inequalities such as $\beta_{j}-\langle a, \alpha\rangle\leq\omega_{j}(a)$ , $Va\in A_{j}\backslash C_{j},$ $\forall j\in M$ . This method
becomes impractical when the given polynomial system (1) has relatively many monomials, $i.e.,$ $A_{j}$

includes a large number of elements $(j\in M)$ . Then, $\overline{S}$ consists of many elements $C=(C_{1}, \ldots, C_{m})$ ,
and tremendously many linear systems of (4) are prepared. In this section, we introduce a practical
enumeration technique to avoid such exhaustive feasibility tests for all possible linear systems.

3.1 A family of systems of linear inequalities.

For each nonempty $K\subseteq M$ and each $F=$ $(F_{j} : j\in K)$ with $F_{j}\subseteq A_{j}$ , we consider a system which
consists of equalities and inequalities such as

$\mathrm{E}(K, F):\{$
$\beta_{j}-\langle a, \alpha\rangle=\omega_{j}(a)(a\in F_{j}, j\in K)$ ,
$\beta_{j}-\langle a, \alpha\rangle\leq\omega_{j}(a)(a\in Aj\backslash F_{j}, j\in K)$ .

For every nonempty $K\subseteq M$ , let

$F^{=}(K)\mathcal{F}^{\leq}(K)$ $==$

$\{F=(Fj..\cdot j\in\{F=(Fj\cdot j\in K).\cdot F_{j,\leq}\subseteq K)\in\tau(K)A_{j}.\cdot’\# F_{j}\leq sj+1\# F_{j}=Sj+1(j\in K(j\in K)^{\}})\}’, \}$ (5)
$F^{=\ \mathrm{f}}(K)$ $=$ { $F=(F_{j}$ : $i\in K)\in F^{=}(K)$ : $\mathrm{E}(K,$ $F)$ is feasible},

and assume that $\mathcal{F}^{\leq}(\emptyset)=\mathcal{F}^{=}(\emptyset)=\mathcal{F}^{=\ \mathrm{f}}(\emptyset)=\{\emptyset\}$ for convention. From the definition of (5), we see
that $F^{=\ \mathrm{f}}(K)\subseteq \mathcal{F}^{=}(K)\subseteq \mathcal{F}^{\leq}(K)$ for every $K\subseteq M$ . Then, computing all solutions of $\mathrm{E}(M, F)$ for
all $F\in \mathcal{F}^{=\ \mathrm{f}}(M)$ reduces to finding all solutions of Problem 2.1, $i.e.$ , finding all vertices $(\alpha, \beta)$ of the
polyhedral set $V$ with exactly $(s_{j}+1)$ equalities in (2) for each $j\in M$ . Condition 2.2 ensures that the
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solution set of each $\mathrm{E}(M, F)(F\in \mathcal{F}^{=\ \mathrm{f}}(M))$ consists of a single vertex of $V$ . We will embed a tree
structure in a subfamily of $F^{=}(K)$ for $\forall K\subseteq M$ .

Note that partial constraints of Problems 2.1 such that

$\beta_{j}-\langle a, \alpha\rangle\leq\omega_{j}(a)(a\in A_{j}, j\in M\backslash K)$ , (6)

are not included in $E(K, F)$ . Those constraints make the feasible region of $(\alpha, \beta_{j} : j\in K)$ defined by
$E(K, F)$ narrow, but never change the feasibility of $E(K, F)$ for $\forall F\in \mathcal{F}^{=\ \mathrm{f}}(K)$ . That is, the set of
linear inequalities (6) is irrelevant to the feasibility of $\mathrm{E}(K,$ $F\mathrm{J}\cdot$ This fact is obvious, since if $\mathrm{E}(K, F)$

has a feasible solution $(\tilde{\alpha},\overline{\beta}_{j}\sim. j\in K)$ , then we can define $\beta_{j}=$ minf $\langle a,\tilde{\alpha}\rangle+\omega_{j}(a)$ : $a\in A_{i}$ } for
$\forall j\in M\backslash K$ and the extended solution $(\overline{\alpha},\tilde{\beta}_{j} : j\in M)$ satisfies constraints of (6).

Note that the set $\mathcal{F}^{=\ \mathrm{f}}(M)$ is coincident with a mixed subdivision $S$ of $A$ , defined in the previous

section. Thus, we want to enumerate all $F\in \mathcal{F}^{=\ \mathrm{f}}(M)$ avoiding the brutal exhausting search such as
feasibility tests of $\mathrm{E}(M, F)$ for $\forall F\in \mathcal{F}^{=}(M)$ . The lemma below plays an essential role to reduce the
number of feasibility tests.

Lemma 3.1. Let $\overline{K}\subseteq K\subseteq M,\overline{F}\in F^{\leq}(\overline{K}),$ $F\in \mathcal{F}^{\leq}(K)_{J}$ and $\overline{F}_{j}\subseteq F_{j}(j\in\overline{K})$ . If $E(\overline{K},\overline{F})$ is
infeasible, then so is $E(K, F)$ .

$Proof.\cdot$ All constraints of $\mathrm{E}(\overline{K},\overline{F})$ are included in $\mathrm{E}(K, F)$ . Therefore, if $\mathrm{E}(\overline{K},\overline{F})$ has no feasible
solution, then $\mathrm{E}(K, F)$ does. 1

This lemma implies that if we find that $\mathrm{E}(\overline{K},\overline{F})$ with $\overline{F}\in \mathcal{F}^{=}(\overline{K})$ is infeasible, we can omit
feasibility checks for $\mathrm{E}(M, F)$ with $F\in F^{=}(M)$ satisfying $F_{j}=\overline{F}_{j}(j\in\overline{K})$ . Hence, the test described
in Lemma 3.1 will save computation for solving many linear systems $\mathrm{E}(M, F)$ with $F\in \mathcal{F}^{=}(M)$ ,
especially when $\neq\overline{K}$ is much less than $\neq M(=m)$ .

3.2 Embedding a tree structure.

Let $K_{0},$ $K_{1,2,\ldots,\ell}KK$ be distinct subsets of $M$ such that $\emptyset=K_{0}\subset K_{1}\subset K_{2}\subset\ldots,$ $\subset K\ell=M$.
Typically we take

$\ell=m,$ $K_{0}=\emptyset,$ $K_{p}=\{1,2, \ldots,p\}(p=1,2, \ldots, m)$ . (7)

In order to enumerate all $F\in \mathcal{F}^{=\ \mathrm{f}}(M)$ , we build a tree structure into the family of subsets
$F\in \mathcal{F}^{=}(K_{p})$ $(p=0,1,2, \ldots, \ell)$ . We first place the empty set $\mathcal{F}^{=}(K_{0})$ at the root node. For each
$p=1,2,$ $\ldots,$

$\ell$ , we then place the sets $F\in \mathcal{F}^{=}(K_{p})$ in the $p\mathrm{t}\mathrm{h}$ level of the tree that we are building. A
node $F’\in \mathcal{F}^{=}(K_{p’})$ in the $p’\mathrm{t}\mathrm{h}$ level with $p’>p$ is a descendant of a node $F\in F^{=}(K_{p})$ in the $p\mathrm{t}\mathrm{h}$ level
if and only if $F’$. $=F_{j}$ for $Vj\in K_{p}$ . In the special case that $p’=p+1$ , the descendant $F’\in F^{=}(K_{p’})$

is called child
$\mathrm{f}_{0}^{J}\mathrm{r}$ a node $F\in \mathcal{F}^{=}(K_{p})$ . Specifically, all $F\in F^{=}(K_{1})$ are child nodes of the root node

$F^{=}(K_{0})$ , and the nodes $F\in \mathcal{F}^{=}(M)$ in the $P\mathrm{t}\mathrm{h}$ level are leaf nodes having no child nodes.

Now we are ready to describe a basic framework of our method for enumerating all the nodes in
$\mathcal{F}^{=\ \mathrm{f}}(M)$ . From the root node $\emptyset\in \mathcal{F}^{=}(K_{0})$ , we will apply the depth-first search to the tree structure
that we have built above. In usual cases, $E(\emptyset, K\mathrm{o})$ associated with the root node is feasible, and we go
down to one of its child nodes $F\in \mathcal{F}^{=}(K_{1})$ . At each node $F\in \mathcal{F}^{=}(K_{p})$ , we check whether $\mathrm{E}(K_{p}, F)$ is

feasible, $i.e.,$
$F\in \mathcal{F}^{=\ \mathrm{f}}$ , by using the simplex method for a linear program related to $\mathrm{E}(K_{\mathrm{p}}, F)$ . More

technical details of this part will be described later. If $\mathrm{E}(K_{p}, F)$ is infeasible, then all of its descendants
are found to be infeasible from Lemma 3.1; hence its descendants never contain any node in $\mathcal{F}^{=\ \mathrm{f}}(M)$ .
In this case, we can terminate the node $F\in F^{=}(K_{p})$ in the $p\mathrm{t}\mathrm{h}$ level, and we will backtrack the tree.

On the other hand, if the problem $\mathrm{E}(K_{p}, F)$ is feasible, $i.e.,$ $F\in F^{=\ \mathrm{f}}(K_{p})$ , and $p<\ell$ , we will
go down the tree to one of its child node. If $\mathrm{E}(K_{p}, F)$ is feasible and $p=\ell$ , then we obtain one
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desired node in $\mathcal{F}^{=\ \mathrm{f}}(M)$ . Proceeding this enumeration procedure, we eventually generate all nodes in
$\bigcup_{p=1}^{\ell}\mathcal{F}^{=\ }( \mathrm{f}K_{p})$ . It should be noted that these nodes induce a subtree of the entire tree that we have
built above.

It should be emphasized that we can easily adapt this framework to parallel computation. Define
$I\{_{0},$ $K_{1},$

$\ldots,$
$K\ell$ as in (7). Taking some $p\geq 1$ , consider the $p\mathrm{t}\mathrm{h}$ family of linear-inequality systems

$\mathrm{E}(K_{p}, F)(\forall F\in \mathcal{F}^{=\ \mathrm{f}}(K_{p}))$ . Then the number of systems in the $p\mathrm{t}\mathrm{h}$ family amounts to $\#\mathcal{F}^{-=\ \mathrm{f}}(K)p$ .
We allocate all linear-inequality systems $\mathrm{E}(K_{p}, F)(\forall F\in \mathcal{F}^{=\ \mathrm{f}}(K)p)$ among multiple processors. On
each processor, apply the depth first search described above to a subtree whose root node corresponds
to the $u\mathrm{S}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{e}\mathrm{d}$ node $\overline{F}\in F^{=\ \mathrm{f}}(K_{p})$ , and finally, compute solutions $(\alpha, \beta)\in R^{n+m}$ of $\mathrm{E}(M, F)$ for
all descendants $F\in \mathcal{F}^{=\ \mathrm{f}}(M)$ of the root node $\overline{F}$ . Summing up all solutions from each processor, we
obtain all solutions of Problem 2.1. We need to take the number of systems in the $p\mathrm{t}\mathrm{h}$ family (that
is, $\#\mathcal{F}^{=\ \mathrm{f}}(K\mathrm{I}p)$ into account by choosing the number $p$ carefully, in order to balance the number of
systems $\neq\tau^{=\ \mathrm{f}}(K_{p})$ with the number of available processors.

4 Reformulation via linear programs

Corresponding to each system $\mathrm{E}(K, F)$ with $K\subseteq M$ and $F=(F_{j} : j\in K)\in \mathcal{F}^{\leq}(K)$ , we consider a
linear program:

$\mathrm{P}(K, F)$ : maximize
$\sum_{j\in K}b_{j}\beta j-\langle d, \alpha\rangle$

subject to $\beta_{j}-\langle a, \alpha\rangle=\omega_{j}(a)$ $(a\in F_{j}, j\in K)$ ,
$\beta_{j}-\langle a, \alpha\rangle\leq\omega_{j}(a)$ $(a\in A_{j}\backslash F_{j}, j\in K)$ .

Note that the constraint linear inequalities of $\mathrm{P}(K, F)$ coincide with those appeared in $\mathrm{E}(K, F)$ . Hence,
the system of linear inequalities $\mathrm{E}(K, F)$ is feasible if and only if the problem $\mathrm{P}(K, F)$ is feasible, and
each solution of Problem 2.1 is corresponding to a solution of $\mathrm{P}(M, F)$ with some $F\in \mathcal{F}^{=\ \mathrm{f}}(M)$ and
vice versa. In order to apply the duality theory between $\mathrm{P}(K, F)$ and its dual program effectively,
we need to make the dual program feasible by choosing $d$ and $b_{j}(j\in K)$ of the objective function
appropriately, though we can take any linear function $\mathfrak{B}$ the objective function in $\mathrm{P}(K, F)$ . Also, in
Section 4.3, we will show how to update these $d$ and $b_{j}(j\in K_{p})$ when we proceed from $\mathrm{P}(K_{p}, F)$ with
$F\in F^{=\ \mathrm{f}}(K_{p})$ in the $p\mathrm{t}\mathrm{h}$ level to a child node $\mathrm{P}(K_{p+1}, F;)$ with $F’\in \mathcal{F}^{\leq}(K_{p+1})$ in the $(p+1)\mathrm{s}\mathrm{t}$ level.

In the following subsections, we will show feasibility and infeasibility tests, which require a little
additional computation, not only for primal linear programs $\mathrm{P}(K, F)$ but for their dual programs. To
apply the primal simplex method to the primal linear program $\mathrm{P}(K, F)$ , we need to convert each of the
less-than inequalities in $\mathrm{P}(K, F)$ to equality form by adding a nonnegative slack variable. The resulting
problem is called a standard form linear program. The transformation of $\mathrm{P}(K, F)$ into the standard
form increases the number of variables considerably. On the other hand, the dual program of $\mathrm{P}(K, F)$

is already in the standard form without additional variables as $\mathrm{D}(K, F)$ of Section 4.2 shows, and thus,
easier to deal with than $\mathrm{P}(K, F)$ .

4.1 $\mathrm{F}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ tests using primal problems.

We will consider the problem $\mathrm{P}(K, F)$ with $F=(F_{j} : j\in K)\in F^{\leq}(K),$ $K\subseteq M$ , any $b_{j}\in R(j\in K)$

and any $d\in R^{n}$ . We assume that the problem $\mathrm{P}(K, F)$ is feasible, and that a $\mathrm{b}\mathrm{a}\mathrm{s}$ic feasible solution
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$(\overline{\alpha},\overline{\beta}_{j} : j\in K)$ satisfying the properties below is available.

$\overline{\beta}_{j}-\langle a\overline{\beta}_{j}-\langle a,’\overline{\alpha}\rangle\overline{\alpha}\rangle=\omega_{j}(a)<\omega_{j}(a)$

$(a\in N_{j}, j\in K)$ ,
$(a\in B_{j}, j\in K)$ ,

$F_{j}\subseteq B_{j}\subseteq A_{j},$ $N_{j}\subset A_{j},$ $B_{j}\cap N_{j}=\emptyset,$ $\neq B_{j}+\neq N_{j}=\neq A_{j}$ $(j\in K)$ , (8)

$\sum_{j\in K}\# B_{j}=n+\# K$
.

Note that $\mathrm{P}(K, F)$ has $( \sum_{j\in K}\neq A_{j})$ linear $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ constraints, and $(n+\neq K)$ variables;
$\alpha\in R^{n}$ and $\beta_{j}(j\in K)$ . The set $B_{j}$ indicates active constraints among the $j\mathrm{t}\mathrm{h}$-level constraints
$\beta_{j}-\langle a, \alpha\rangle\leq\omega_{j}(a),$ $a\in A_{j}$ . Then, we see that $\sum_{j\in K}\neq B_{j}$ is equal to $(n+\neq K)$ ; the number of
variables. Here, we introduce a feasibility test for $P(K, F)$ using the set $B_{j}(j\in K)$ .

Lemma 4.1. (Primal feasibility test)
Let $\overline{K}\subseteq K\subseteq M$ . For the linear program $P(K, F)$ with $F\in F^{\leq}(K)$ , define $B_{j}(\forall j\in K)$ at some feasible
basic solution $(\overline{\alpha},\overline{\beta}_{j} : j\in K)$ as in (8). If $F’=(F_{j}’ : j\in\overline{K})\in F^{\leq}(\overline{K})$ satisfies $F_{j}’\subseteq B_{j}(Vj\in\overline{K})$ , then
the problem $P(\overline{K}, F’)$ is feasible.

Proof.$\cdot$ The partial vector $(\overline{\alpha},\overline{\beta}_{j} : j\in\overline{K})$ of $(\overline{\alpha},\overline{\beta}_{j} : j\in K)$ satisfies $\beta_{j}-\langle a, \alpha\rangle=\omega_{j}(a)$ $(a\in$

$F_{j}’,$ $j\in\overline{K})$ . Therefore, $(\overline{\alpha},\overline{\beta}_{j} : j\in\overline{K})$ is a feasible solution of $\mathrm{P}(\overline{K}, F’)$ , and this lemma follows. 1

Starting from the basic feasible solution $(\overline{\alpha},\overline{\beta}_{j} : j\in K)$ , our enumeration method applies the simplex
method to the problem $\mathrm{P}(K, F)$ with $F\in \mathcal{F}^{\leq}(K)$ . At each iteration, we can apply the primal feasibility
test of Lemma 4.1, which might detect feasibility of some other problems $\mathrm{P}(K, F’)$ with $F’\in F^{\leq}(K)$ .
Now, we will provide an optimality test related to the feasibility test of Lemma 4.1. By utilizing the
optimality test effectively on the enumeration tree, we can reduce the number of linear programs to be
solved.

Lemma 4.2. (Primal optimality test)
Let $K\subseteq M.$ Assuming that the linear program $P(K, F)$ with $F=(F_{j} : j\in K)\in \mathcal{F}^{\leq}(K)$ has an
optimal solution $(\alpha^{*}, \beta_{j}^{*} : j\in K)$ , define $B_{j}(\forall j\in K)$ at the optimal solution as in (8). If $F’=(F_{j}’$ :
$j\in K)\in F^{\leq}(K)$ satisfies $F_{j}\underline{\subseteq}F_{j}’\subseteq B_{j}(\forall j\in K)$ , then $(\alpha^{*}, \beta_{j}^{*} : j\in K)$ is also optimal solution for
the problem $P(K, F’)$ .

$Proof.\cdot$ Lemma 4.1 ensures that $(\alpha^{*}, \beta_{j}^{*} : j\in K)$ is a feasible solution for $\mathrm{P}(K, F’)$ . Since this
inclusion $F_{j}\subseteq F_{j}’$ for $Vj\in K$ means that the feasible region of $\mathrm{P}(K, F’)$ is smaller than that of
$\mathrm{P}(K, F)$ , the solution $(\alpha^{*}, \beta_{j}^{*} : j\in K)$ is optimal not only for $\mathrm{P}(K, F)$ but for $\mathrm{P}(K, F’)$ . 1

Next, we will provide a device to check the primal infeasibility for a node $\mathrm{P}(K,\overline{F})$ with $\overline{F}\in \mathcal{F}^{\leq}(K)$ ,
using solution information already obtained. For some feasible problem $\mathrm{P}(K, F)$ with $F=(F_{j}$ : $j\in$

$K)\in \mathcal{F}^{\leq}(K)$ , take $G=(G_{j} : j\in K)\in \mathcal{F}^{\leq}(K)$ whose components satisfy $G_{j}\supseteq F_{j}(Vj\in K)$ . Using
randomly generated numbers $x_{j}(a)>0(\forall a\in G_{j}, \forall j\in K)$ , define coefficient,,$\mathrm{s}$ of the objective function
in $\mathrm{P}(K, F)$ as

$b_{j}= \sum_{\overline{a}\in G_{j}}X_{j()}a(j\in K)$
and

$d= \sum_{j\in K}\sum_{\overline{a}\in G_{j}}\overline{a}xj(a)$
. (9)

Then, the objective function can be denoted as

$\sum_{j\in K}b_{j}\beta j-\langle d, \alpha\rangle=\sum_{j\in.K\overline{a}}\sum Xj(a)(\beta j-\in G_{j}\langle\overline{a}, \alpha\rangle)$

. (10)

Since the objective value is bounded from above as follows; $\sum_{j\in K}b_{j}\beta_{j}-\langle d, \alpha\rangle\leq\sum_{j\in K}\sum_{\overline{a}\in}c_{j}xj(a)\omega_{j(\overline{a})}$ ,
the primal simplex method results in an optimal solution $(\alpha^{*}, \beta_{j}^{*} : j\in K)$ of the problem $\mathrm{P}(K, F)$ .
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Lemma 4.3. (Primal infeasibility test)
Let $\overline{F}=$ $(\overline{F}_{j} : j\in K)\in F^{\leq}(K)$ , where $\overline{F}_{j}\supseteq G_{j}(j\in K)$ . If the optimal solution $(\alpha^{*}\beta_{j}^{*})$ : $j\in K$ ) of

$P(K, F)$ satisfies
$\sum_{j\in K}b_{j}\beta_{j}^{*}-\langle d, \alpha^{*}\rangle<\sum_{j\in K}\sum_{j\overline{a}\in G}x_{j()}a\omega_{j}(\overline{a})$

, (11)

then the problem $P(K,\overline{F})$ is infeasible.

Proof.$\cdot$ Taking notice that the problem $\mathrm{P}(K, F)$ maximizes the objective function of (10), the strict
inequality of (11) means infeasibility of $\mathrm{P}(K, G)$ , and also infeasibility of $\mathrm{P}(K,\overline{F})$ . 1

If the optimal value of $\mathrm{P}(K, F)$ satisfies $(\underline{1}1)$ for some set $G=(G_{j} : j\in K)\in \mathcal{F}^{\leq}(K)$ , we detect
the infeasibility of $\mathrm{P}(K,\overline{F})$ for $V\tilde{F}$ such that $F_{j}\supseteq G_{j}(j\in K)$ , without solving any linear program.

4.2 $\mathrm{F}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ tests using dual problems.

Corresponding to each $\mathrm{P}(K, F)$ with some $F\in \mathcal{F}^{\leq}(K)$ and $K\subseteq M$ , we consider its dual linear program
$\mathrm{D}(K, F)$ .

$\mathrm{D}(K, F)$ : minimize $\sum$ $\sum\omega_{j}(a)_{X}j(a)$

$j\in Ka\in A_{j}$

subject to $\sum$ $\sum$ a $x_{j}(a)=d$ ,
$j\in Ka\in A_{j}$

$\sum x_{j}(a)=b_{j}$ $(j\in K)$ ,
$a\in A_{j}$

$x_{j}(a)\geq 0$ $(a\in A_{j}\backslash F_{j}, j\in K)$ ,
$-\infty<x_{j}(a)<+\infty$ $(a\in F_{j}, j\in K)$ .

It should be noted that the inequality constraints $\beta_{j}-\langle a, \alpha\rangle\leq\omega_{j}(a)(a\in A_{j}\backslash F_{j}, j\in K)$ and the
equality constraints $\beta_{j}-\langle a, \alpha\rangle=\omega_{j}(a)(a\in F_{j}, j\in K)$ in the primal subproblem $\mathrm{P}(K, F)$ are
corresponding to the nonnegative variables $x_{j}(a)\geq 0(a\in A_{j}\backslash F_{j}, j\in K)$ and the free variables
$-\infty<x_{j}(a)<+\infty(a\in F_{j}, j\in K)$ in the dual subproblem $\mathrm{D}(I\{, F)$ , respectively. $\mathrm{D}(K, F)$ includes
no inequality constraints except for nonnegative constraints such that $x_{j}(a)\geq 0(a\in A_{j}\backslash F_{j}, j\in K)$ .
So no additional slack variables are required for $\mathrm{D}(K, F)$ by the primal simplex method. $\mathrm{D}(K, F)$ has
$\sum_{j\in K}\neq A_{j}$ variables and $(n+\# K)$ linear constraints; numerical results show that these numbers are
much less in dual problems $\mathrm{D}(K, F)$ than in primal $\mathrm{P}(K, F)$ of the standard form. Therefore, it is
preferable to deal with $\mathrm{D}(K, F)$ instead of $\mathrm{P}(K, F)$ .

For any $F\in \mathcal{F}^{\leq}(K)$ and $K\subseteq M$ , we now describe a logical test to check whether $\mathrm{P}(K, F)$ is feasible
or not, by applying the primal simplex method to $\mathrm{D}(K, F)$ . We assume for the time being that $b_{j}\in R$

$(j\in K)$ and $d\in R^{n}$ are chosen so that the problem $\mathrm{D}(F, K)$ is feasible, and that a basic feasible
solution $\overline{x}=$ $(\overline{x}_{j}(a) : a\in A_{j}, j\in K)$ of $\mathrm{D}(F, K)$ is available. We will discuss how to construct such a
basic solution later. For every $j\in K$ , let

$B_{j}$ $=$ { $\overline{a}\in A_{j}$ : $\overline{x}_{j}(\overline{a})$ is a $\mathrm{b}\mathrm{a}s$ ic variable at $\overline{x}$ },
$N_{j}$ $=$ { $a\in A_{j}$ : $\overline{x}_{j}(a)$ is a nonbasic variable at $\overline{x}$ }.

$\}$ (12)

Then we can rewrite the problem $\mathrm{D}(F, K)$ as

subject to $x_{i}( \overline{a})=\overline{x}_{i}(^{\frac{a}{a}}j\in K\in N_{j})+j\in K\sum a\in\sum_{Nj}\overline{g}ij(\overline{a}, a)x_{j}(a)$ $(\overline{a}\in B_{i}, i\in K)$ ,

minimize $\sum\sum\overline{\omega}_{j}(a)x_{j}(a)+\overline{(}0$

$(a\in Aj\backslash F_{j}, j\in K),$

$\}$ (13)

$x_{j}(a)\geq 0$

$-\infty<x_{j}(a)<+\infty$ $(a\in F_{j}, j\in K)$ ,
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where the coefficients
$(a\in N_{j}, j\in K)$ ,

$\overline{\omega}_{j(}\zeta_{0}^{-}=i\in\sum_{K}^{a)R}\sum_{i\overline{a}\in B}\omega_{i}(\overline{a})\in\overline{x}_{i}(\overline{a})$

$\in R(\overline{a}\in’ B_{i}, i\in K, a\in N_{j}, j\in K),$

$\backslash \}^{1}$ (14)

$\overline{g}_{ij}(\overline{a}, a)\in R$

can be obtained from the simplex tableau or the dictionary with the basic feasible solution $\overline{x}=(\overline{x}_{j}(a)$ :
$a\in A_{j},$ $j\in K)$ . It follows from Condition 2.2 that $\overline{\omega}_{j}(a)\neq 0$ for $Va\in N_{j}$ and $Vj\in K$ . We can reach
the dual infeasibility test for dual programs $\mathrm{D}(K, F)$ as well as the primal infeasibility test. Also, the
dual optimality test is same as the primal test of Lemma 4.2. Now, we will present an infeasibility test
applicable to any $\text{\^{a}}\in N_{j}$ with $Vj\in K$ , which examines whether some linear problem $\mathrm{P}(K, F)$ becomes
infeasible by changing the nonbasic variable $x_{j}$ (\^a) into basic one.

Lemma 4.4. (Dual infeasibility test)
Let $\text{\^{a}}\in N_{j}$ with some $j\in K$ .

$(a)$ Assume that $\overline{\omega}_{j}$ $(\text{\^{a}})<0$ . Let $F’=(F_{j}’ij\in K)$ be $F_{i}’=\{\overline{a}\in B_{i} : \overline{g}_{ij}(\overline{a}, \text{\^{a}}) <0\}(i\in K)$. If
$F=$ $(F_{j} : j\in K)\in F^{\leq}(K)$ satisfies $F_{i}’\subseteq F_{i}$ for $\forall i\in K$ , then the problem $P(K, F)$ is infeasible.

$(b)$ Assume that $\overline{\omega}_{j}$ $(\text{\^{a}})>0$ . Let $F’=(F_{j}’ : j\in K)$ be $F_{i}’=\{\overline{a}\in B_{i} : \overline{g}_{ij}(\overline{a}, \text{\^{a}}) >0\}(i\in K, i\neq j)$

and $F_{j}’=\{a\in B_{j} : \overline{g}jj(\overline{a}, \text{\^{a}}) >0\}\cup\{\hat{a}\}$ . If $F=(F_{j} : j\in K)\in \mathcal{F}^{\leq}(K)$ satisfies $F_{i}’\underline{\subseteq}F_{i}$ for
$\forall i\in K$ , then the problem $P(K, F)$ is infeasible.

Proof.$\cdot$ In (a), in making $x_{j}$ (\^a) basic variable from nonbasic variable, we can increase the variable
$x_{j}$ (\^a) $\mathrm{t}\mathrm{o}+\infty$ while keeping the feasibility of $(x_{j}(a) : a\in A_{j}, j\in K)$ . This means that the problem
$\mathrm{D}(K, F’)$ is unbounded and also the corresponding primal problem $\mathrm{P}(K, F)$ is infeasible. The infea-
sibility of the case (b) occurs only when the $j\mathrm{t}\mathrm{h}$ element $F_{j}$ of $F$ includes \^a, that is, when $x_{j}$ (\^a) is a
free variable which can take negative value. If the condition of (b) is satisfied for $\mathrm{D}(K, F),$ $x_{j}$ (\^a) can
be decreased to $-\infty$ and $\mathrm{D}(K, F)$ is found unbounded. 1

4.3 Updating basic feasible solutions.

Throughout this section, we assume that $K_{0},$ $K_{1},$
$\ldots,$

$K\ell$ are taken as in (7), and discuss how to update
the basis information when we proceed from the $p\mathrm{t}\mathrm{h}$ level to the $(p+1)\mathrm{s}\mathrm{t}$ level. Let $\overline{F}=\{\overline{F}_{1}, \ldots,\overline{F}_{p}\}\in$

$F^{=\ \mathrm{f}}(K_{p})$ and $(\overline{\alpha},\overline{\beta}_{1},\overline{\beta}_{2}, \ldots,\overline{\beta}_{p})$ be an optimal solution of $\mathrm{P}(K_{p},\overline{F})$ satisfying the relations (8). Next,
for the $(p+1)\mathrm{s}\mathrm{t}$ set of inequalities $\beta_{p+1}-\langle a\alpha\rangle\rangle\leq\omega_{\mathrm{p}+1}(a)(Va\in A_{p+1})$, define

$\overline{\beta}_{p+1}$ $=$ $\min\{\langle a,\overline{\alpha}\rangle+\omega_{p+1}(a) : a\in A_{p+1}\}$

$=$ $\langle\overline{a},\overline{\alpha}\rangle+\omega_{p+1}(\overline{a})$ for some $\overline{a}\in A_{p+1}$ ,
$B_{p+1}$ $=$ $\{\overline{a}\}$ , $N_{p+1}=\{a\in A_{p+1}:a\neq\overline{a}\}$ .

Using $\overline{F}=\{\overline{F}_{1}, \ldots,\overline{F}_{p}\}\in F^{=\ \mathrm{f}}(K_{p})$ , define $F$ as
$F=(\overline{F}_{1}, \ldots,\overline{F}_{p}, \{\emptyset\})\in \mathcal{F}^{\leq}(K_{p1}+)$, or (15a)

$F=(\overline{F}_{1}, \ldots,\overline{F}_{p}, \{\overline{a}\})\in \mathcal{F}^{\leq}(K_{p1}+)$ , (15b)

and let $d$ and $b_{j}(j=1, \ldots,p+1)$ in $\mathrm{P}(K_{p+1}, F)$ (or its dual $\mathrm{D}(K_{p+1},$ $F)$ ) be

$\overline{x}_{j}(a)$ $=$ $\{$

a positive number generated randomly (if $a\in B_{j},$ $j=1,2,$ $\ldots$ , $p+1$ ),
$0$ (if $a\in N_{j},$ $j=1,2,$ $\ldots,p+1$ ),

$d$ $=$ $\sum_{j=1a}^{p+1}\sum_{\in Bj}$ a $\overline{x}_{j}(a)$ , $b_{j}= \sum_{B_{j}a\in}\overline{x}j(a)(j=1,2, \ldots,p+1)$ .
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Then $(\overline{\alpha},\overline{\beta}_{1},\overline{\beta}_{2}, . . . , \overline{\beta}_{p},\overline{\beta}_{p+1})$ turns out to be an optimal solution for $\mathrm{P}(K_{p+1}, F)$ , and ( $\overline{x}_{j}(a)$ : $a\in$

$A_{j},$ $j=1,2,$ $\ldots,p+1)$ for the dual $\mathrm{D}(K_{p+1}, F)$ . Note that the above construction of these vectors $d$

and $b_{j}(j=1,2, \ldots,p+1)$ has no influence on the feasibility of $\mathrm{P}(K_{p1}+, F)$ and the unboundedness of
$\mathrm{D}(K_{p+1},$ $F\mathrm{I}\cdot$

The new basic variables of $\mathrm{P}(K_{p+1}, F)$ include only one additional variable, besides the old ones
of $\mathrm{P}(K_{p},\overline{F})$ ; in the primal problem $\mathrm{P}(K_{p1}+, F)$ , the additional basic variable corresponds to $\beta_{p+1}$ and
in its dual $\mathrm{D}(K_{p+1}, F)$ , corresponds to $x_{j}(\overline{a})$ . Therefore, we can easily generate an optimal dictionary
of $\mathrm{P}(K_{p+1}, F)$ (or $\mathrm{D}(K_{p+1},$ $F)$ ), based on the previous optimal dictionary of $\mathrm{P}(K_{p},\overline{F})$ (or $\mathrm{D}(K_{p},\overline{F})$).
For example, consider a dictionary of $\mathrm{D}(K_{p+1}, F)$ , that is, the form (13). For its additional reduced
cost vector $(\overline{\omega}_{p+1}(a) : a\in N_{p+1})$ , we see that $\overline{\omega}_{p+1}(a)=\langle a,\overline{\alpha}\rangle+\omega_{p+1}(a)-\overline{\beta}_{p}+1$ and $\overline{\omega}_{p+1}(a)>0$ for
$Va\in N_{p+1}$ .

After obtaining the optimal dictionary of $\mathrm{P}(K_{p1}+, F)$ (or $\mathrm{D}(K_{p+1},$ $F)$ ) for $F$ of (15a), choose any
$\text{\^{a}}\in A_{p+1}$ and check whether the problem $\mathrm{P}(K_{p+1},\hat{F})$ with $\hat{F}=(\overline{F}_{1}, \ldots,\overline{F}_{p}, \{\text{\^{a}}\})$ $\in \mathcal{F}^{\leq}(K_{p+1})$ is feasible
or not, by applying infeasibility tests of Lemma 4.3 or Lemma 4.4 to the dictionary of $\mathrm{P}(K_{p1}+, F)$ (or
$\mathrm{D}(K_{p+1}, F))$ . Note that if $\text{\^{a}}\in A_{p+1}$ is equal to $\overline{a}$ , then the optimal dictionaries of $\mathrm{P}(K_{p1}+,\hat{F})$ and
$\mathrm{D}(K_{p+1},\hat{F})$ are already obtained. In the following discussion, we assume that $\text{\^{a}}\neq\overline{a}$ .

Primal Case: We reset the objective function $\sum_{jj}^{p+1}=1b\beta_{j}-\langle d, \alpha\rangle$ of $\mathrm{P}(K_{p1}+, F)$ by in (9), taking
$K=K_{p+1},$ $G_{j}=\overline{F}_{j}(j=1, \ldots,p),$ $x_{j}(a)=\overline{x}_{j}(a)(Va\in G_{j}, j=1, \ldots,p)$ and $G_{p+1}=\{\text{\^{a}}\},$ and
setting $x_{p+1}(\hat{a})>0$ randomly. Rom the feasible solution $(\overline{\alpha},\overline{\beta}_{1}, \ldots,\overline{\beta}_{p}+1)$ , we start the pivoting

procedure and
$\mathrm{i}.\mathrm{n}$

the end, compare the optimal value of $\mathrm{P}(K_{p1}+, F)$ with $\sum_{j=1\overline{a}}^{p+1}\sum_{\in c_{j}}X_{j()}\overline{a}\omega_{j}(\overline{a})$,

as the primal infeasibility test of Lemma 4.3 shows.

Dual Case: Since $\text{\^{a}}\in N_{p+1}$ and $\overline{\omega}_{p+1}$ (\^a) $>0$ holds, we apply the dual infeasibility test (b) of
Lemma 4.4 to the optimal dictionary (13) of $\mathrm{D}(K_{p+1}, F)$ . For $(F_{1}’, \ldots, F_{p1}’)+$ defined by Lemma 4.4
(b), if $\hat{F}=(\overline{F}_{1}, \ldots,\overline{F}_{p}, \{\text{\^{a}}\})$ satisfies $F_{i}’\subseteq\overline{F}_{i},$ $(i=1, \ldots,p)$ , then we find that $\mathrm{D}(I\zeta_{p+1},\hat{F})$ is
unbounded, i.e., $\mathrm{P}(K_{p+1},\hat{F})$ is infeasible. Otherwise, apply the pivoting procedure for $\mathrm{D}(K_{p+1},\hat{F})$

while checking the feasibility of $\mathrm{P}(K_{p1}+,\hat{F})$ by Lemma 4.4 (a).

If $\mathrm{P}(K_{p1}+,\hat{F})$ is feasible, we add another element $a\in A_{p+1}$ to the $(p+1)\mathrm{s}\mathrm{t}$ element of $\hat{F}$ , apply
infeasibility checks corresponding to the new set $\hat{F}$ , and continue this procedure until $\mathrm{P}(K_{p1}+,\hat{F})$

becomes infeasible or $\hat{F}\in \mathcal{F}^{=\ \mathrm{f}}(K_{p+}1)$ .

5 Implementation

In this section, to simplify our discussion, we focus on a fully mixed polynomial system (1), and also,
the dual reformulation for linear systems induced from Problem 2.1’. We provide two algorithms for
Problem 2.1’; one is a sequential algorithm and the other is a parallel algorithm on a client-server $\mathrm{b}\mathrm{a}s$ ed
parallel computing system.

5.1 Serial and Parallel Enumeration Algorithms

Every fully mixed system has $m=n,$ $M=\{1,2, \ldots, n\}$ and $(s_{1}, \ldots, s_{n})=(1, \ldots, 1)$ . We give some
order among the elements of $A_{j}(j\in M)$ and denote them $ua_{j}(1),$ $a_{j}(2),$ $\ldots$ , $a_{j}(m_{j})$ , where $m_{j}=\# A_{j}$ ,
$(j\in M)$ . We consider all possible distinct pairs { $a_{j}(p),$ $a_{j()\}}q$ of $A_{j}$ with $1\leq p<q\leq m_{j}$ and arrange
them in the lexicographical order, i.e.,

$L(A_{j})\equiv\{\{a_{j}(1),$ $a_{j()\}}2,$ $\{a_{j}(1), a_{j()\}}3, \ldots, \{a_{j}(m_{j}-1), a_{j}(mj\mathrm{I}\}\}$ ,
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where $a_{j}(1),$ $a_{j}(2),$
$\ldots,$

$a_{j}(m_{j})\in A_{j}$ . For every $F_{j}=\{a_{j}(p),$ $a_{j()\}}q$ in the list $L(A_{j})$ , we define

succ$(F_{j;}L(A_{j}))=\{$
$\emptyset$ (if $F_{j}$ is the last element in the list $L(A_{j})$ ),
the element succeeding to $F_{j}$ in the list $L(A_{j})$ (otherwise),

and let succ $(\emptyset;L(A_{j}))=$ the first element in the list $L(A_{j})$ . Also, for description of algorithms, we
define $K_{p}$ and $F_{p}$ as follows; $K_{p}=\{1,2, \ldots,p\}$ for $\forall p\in M$ , and $F_{p}=\mathrm{f}F_{1},$ $F_{2},$

$\ldots,$
$Fp$ } $\in F^{\leq}(K_{p})$ .

Algorithm 5.1. (Serial Enumeration Algorithm)

Step $0$ : Let $\overline{A_{1}}=A_{1}$ and $p=1$ .

Step 1: Solve $\mathrm{D}(K_{p}, F_{p})$ with $F_{p}=\{a\underline{\}}$ for $\forall a\in\overline{A_{p}}.-$For some $\overline{a}\in\overline{A_{p}}$ , if $\mathrm{D}(K_{p}, F_{p})$ with $F_{p}=\{\overline{a}\}$

is unbounded, delete such $\overline{a}$ from $A_{p}$ , i.e., $\overline{A_{p}}=A_{p}\backslash \{\overline{a}\}$ . Let $F_{p}=\emptyset$ and go to Step 2.

Step 2: If $p=0$ then terminate. Otherwise, let

$F_{j}=\{$
$F_{j}$ if $1\leq j\leq p-1$ ,
succ $(F_{p}, L(\overline{A_{p}}))$ if $j=p$.

Step 3: If $F_{p}=\emptyset$ , then let $p=p-1$ and go to Step 2. Otherwise, go to Step 4.

Step 4: Solve $\mathrm{D}(K_{p}, F_{p})$ to compute a basic optimal solution $x=(x_{j}(a) : a\in A_{j}, j\in K_{p})$ or detect
its unboundedness. If $\mathrm{D}(K_{p}, F_{p})$ is unbounded, go to Step 2. Otherwise go to Step 5.

Step 5: If $p=n$ , then output the optimal solution of $\mathrm{P}(K_{p}, F_{p})$ and go to Step 2. Else, go to Step 6.

Step 6: Letting $F_{p+1}=\emptyset$ , obtain the optimal dictionary of $\mathrm{D}(K_{p+1}, F_{\mathrm{P}}+1)$ as we have described in the
previous section. Let $p=p+1$ and $\overline{A_{p}}=A_{p}$ . Select some or all of the nonbasic variables $x_{p}(\overline{a})$

with $\overline{a}\in\overline{A_{p}}$ , and check whether pivoting each selected nonbasic variable $x_{p}(\underline{\overline{a})}$ into new $\mathrm{b}\mathrm{a}s$ ic
variables leads to the unbounded objective value; if such the case happens, let $A_{p}=\overline{A_{p}}\backslash \{\overline{a}\}$ . Go
to Step 1.

Steps 1 and 6 try to detect some elements $\overline{a}\in A_{p}$ such that linear programs $D(K_{p}, F_{p})$ including
$\overline{a}\in A_{p}$ in $F_{p}$ are unbounded. By eliminating $\overline{a}\in A_{p}$ from $\overline{A_{p}}$ , the number of elements in the list $L(\overline{A_{p}})$

decreases considerably and thus, the number of linear programs to be solved at Step 4 decreases. At
Step 6, to find elements $\overline{a}\in A_{p}$ which lead the problem $P(K_{p}, F_{p})$ to infeasibility, we utilize Lemma 4.4
with no additional calculation. At Step 1 we make, moreover, unboundedness-checks for the remaining
$\overline{a}\in A_{p}$ in $\overline{A_{p}}$ . Although we need to solve $\#\overline{A_{p}}$ additional linear programs at Step 1, this operation
leads to a significant reduction in the number of linear programs to be solved, consequently.

In the rest of this section, we will show a modified algorithm of Algorithm 5.1 for parallel computing.
Now suppose that we have a client-server based computer system consisting of $N$ processors. The
paralleled Algorithm 5.2 requires the enumeration tree for the first $p^{*}$ levels, where $p^{*}$ satisfies $N<$

$\neq \mathcal{F}^{=}(K_{p}*)=\frac{1}{2}\Pi_{i^{*}1}^{p}m_{i(}=mi-1)$ . In this scheme, $\#\mathcal{F}^{=}(K_{\mathrm{P}}*)$ nodes of the $p^{*}\mathrm{t}\mathrm{h}$ level are each assigned to
individual processors, and from each node regarded as a root node, an enumeration subtree is constructed
using the same strategy depicted in Algorithm 5.1. Each processor can process this part independently
without any communication among server machines.

Algorithm 5.2. (Parallel Enumeration Algoritlrm)

Step $0$ : Choose an initial depth $p^{*}$ such that $N<\# F^{=}(K_{p}*)$ .
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Table 1: Computational CPU Time

Step 1: Assign $F\in \mathcal{F}^{=}(K_{p}*)$ to some server machine with an idle processor, and delete $F$ from
$F^{=}(K_{p}*)$ . The assignment continues until no idle processor exists or $F^{=}(K_{\mathrm{P}^{*}})$ becomes empty.

Step 2: On every server machine given some $\overline{F}=\{\overline{F_{1}},\overline{F_{2}}, \ldots,\overline{F_{p^{*}}}\}\in \mathcal{F}^{=}(K_{p}*)$ by the client machine,
solve subproblems $\mathrm{D}(I\mathrm{f}_{p}, F_{p})$ for $p>p^{*}$ by setting

$F_{j}=\{$

$\overline{F_{j}}$ if $1\leq j\leq p^{*}$ ,
$F_{j}$ if $p^{*}+1\leq j\leq p-1$ ,
succ $(F_{p}, L(\overline{A_{p}}))$ if $j=p$,

according to Algorithm 5.1. If the termination criteria of Algorithm 5.1 is satisfied on some server
machine, return solutions of $\mathrm{D}(K_{n}, F_{n})$ with $F_{n}\in \mathcal{F}^{=\ \mathrm{f}}(K_{n})$ such that $F_{j}=\overline{F_{j}}(j=1, \ldots,p^{*})$ ,
to the client machine. If $\mathcal{F}^{=}(K_{p}*)$ is empty, go to Step 3. Otherwise, go to Step 1.

Step 3: After Algorithm 5.1 terminates on all active processor, collect all solutions from each server
machine and output them. They are solutions of Problem 2.1’.

5.2 Numerical Results

We chose two kinds of $n$-dimensional benchmark systems for numerical experiments; cyclic n-roots
problem [2] and $n$-dimensional economics problem [8]. Corresponding to these benchmark polynomial
systems, we construct Problem 2.1’ with elements $\omega_{j}(a)(Va\in A_{j}, Vj\in M)$ randomly generated in the
interval $(0,50)$ .

In order to compare our algorithm with some existing methods for mixed cell computation, we
solved our test problems using standard serial codes based on Algorithm 5.1. The program was coded
in $\mathrm{C}++\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{a}\mathrm{g}\mathrm{e}$ and was ran on a DEC Alpha Workstation (CPU 21164 $600\mathrm{M}\mathrm{H}\mathrm{z}$ with 1GB memory).
Table 1 shows the computational CPU time for cyclic $n$-roots problems (abbreviated by cyclic-n) and
$n$-dimensional economics problems (abbreviated by eco-n), comparing our method with the existing
software packages such as MVLP [3] and Li&Li [7]. Note that our method extremely outperforms
MVLP in terms of CPU time and also, required memory storage. There is, however, no significant
difference between our serial Algorithm 5.1 and Li&Li algorithm in the used memory and CPU time.
In $n$-dimensional economic problems, our method enumerated solutions of Problem 2.1’ faster than
Li&Li, while ours was defeated with respect to cyclic $n$-roots problems. Our algorithm requires more
memory storage than Li&Li’s, since ours stores the data for explicit representations of the basis inverses,
which obtained by solving linear programs at Steps 1 and 4 of Algorithm 5.1. By utilizing the stored
inverse matrices for solving linear programs $D(K_{p}, F_{p})$ , we reduced the computation related to inverse
operation of matrices.
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Table 2: Computational Real Time on Parallel Computing System

We implemented our new parallel codes of Algorithm 5.2 on a Ninf system (Network based Informa-
tion Library for high performance computing system), which is an inhastructure for world-wide global
computing in scientific computation. The basic Ninf system supports client-server based computing,
and the computational resources are available $i\mathfrak{B}$ remote libraries at a remote computation host. The
remote libraries can be called through the global network from a programmer’s client program. For
further details on Ninf system, the reader should refer to the articles $[9, 10]$ . We ran the parallel codes
on a PC cluster, which consists of 64-nodes connected via a 100 Base-T network, which has a peak
unidirectional bandwidth of 100 MB per second. Each node on the PC cluster is a Intel Pentium III
$824\mathrm{M}\mathrm{H}\mathrm{z}$ dual-CPU with $640\mathrm{M}\mathrm{B}$ memory. We use eight different Ninf configurations with $N$ processors,
by varying the number of $N$ between 1 and 128.

Corresponding to two kinds of benchmark polynomial systems, Table 2 shows computational time
on $N$ parallel processors. In these tables, the empty entries show that the parallel algorithm requires
more than 5 hours or less than 1 minute to obtain all solutions of Problem 2.1’. To the best of our
knowledge, the record of the largest $n$ for cyclic $n$-roots problems is 13. $\mathrm{T}.\mathrm{Y}$ . Li and X. Li [7] achieved
the record of cyclic13 with $28\mathrm{h}3\mathrm{m}5\mathrm{s}$ computational time on $400\mathrm{M}\mathrm{H}\mathrm{z}$ Intel Pentium II CPU with 256
MB of memory.

6 Concluding Remarks

In this paper, we have discussed how to allocate mixed cells efficiently. Those cells play a crucial role in
constructing homotopies $H(x, t)=0$ within the polyhedral homotopy method. In conclusion, (i) our
algorithm saves computation to solve subproblems with a sensitivity technique of linear programs, and
(ii) we implemented our algorithm on parallel computing system. For the sake of such achievements,
we can handle larger polynomial systems, which no existing methods can deal with.

As further research, we consider the following issues; (a) devise the sensitivity technique which enjoys
both advantages of primal and dual approaches described in Section 4, (b) combine our algorithm with
some path following procedure for homotopy curves, and (c) provide a whole algorithm of the polyhedral
homotopy method for parallel computing. In this study, we have implemented the step which constructs
start systems $Q(x)=0$ and homotopies $H(x, t)=0$ on parallel computing system. Now, we are trying
to device a method for following each homotopy path in parallel. One aim of future research is to
provide a software package for finding all isolated solutions of a polynomial system in a totally parallel
manner, and deal with larger dimensional polynomial systems with less computational time.
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