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$0$ . INTRODUCTION.
We present parametric variational principles of Ekeland’s and Borwein-

Preiss’ type, stating that under suitable assumptions, the minimum point of
the perturbed function is a measurable (resp. continuous, Carath\’eodory)
function of the parameters. As applications, new proofs are obtained of: Ky
Fan’s inequality, Sion’s minimax theorem, Michael’s selection theorem and a
theorem for existence of Carath\’eodory selections.

1. MEASURABLE SELECTIONS AND BORWEIN-PREISS
VARIATIONAL PRINCIPLE

Ekeland’s variational principle and its smooth analogues are useful tools
in the study of non-linear problems in various areas of mathematics (see for
instance [E1], [E2], [B-P], [D-G-ZI], [D-G-Z2] $)$ .

Firstly we present a random version of the smooth variational principle of
Borwein-Preiss [B-P]. Namely, we prove that a suitable perturbed function
of a given one admits, as in [B-P], a minimum point, which in our setting is
a measurable function of a random variable.

We give two applications of our random smooth variational principle. The
first one is about weak Hadamard differentiability of some convex integral
functionals in the Lebesgue-Bochner space $L^{1}(T, \mu;E)$ .

Borwein and Fitzpatrick [B-F] have shown that in $L^{1}(T, \mu)$ , where $\mu$ is
sigma finite, there exists an equivalent weak Hadamard differentiable norm,
hence using Preiss-Phelps-Namioka’s theorem [P-P-N], they establish that
$L^{1}(T, \mu)$ is a weak Hadamard Asplund space. Examination of their proofs
will convince the reader that the results of Borwein-Fitzpatrick remain valid
in the space $L^{1}(T, \mu;E)$ , provided $E$ is a reflexive Banach space and $\mu$ is finite,
since the Dunford-Pettis criterium for weak compactness in $L^{1}$ is crucial in
their proofs.

Here we prove that if $E$ is a separable Banach space with a uniformly
Fr\’echet differentiable norm, then any convex continuous integral functional
on $L^{1}(T, \mu;E)$ from a certain class (in particular the usual $L^{1}$ norm), is weak
Hadamard differentiable on a subset whose complement is $\sigma$-very porous.
The proof of this result is direct and, unlike in [B-F], does not relay on the
deep theorem in [P-P-N].

As a second application, a random version of Caristi’s ‘fixed point theorem
for multifunctions is obtained.
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Let $(E, ||.||)$ be a Banach space with dual $E^{*}$ and let $S=\{x\in E$ :
$||x||=1\}$ .

The norm $||.||$ of $E$ is said to be uniformly Fr\’echet differentiable, if for
every $x\in S$ there exists an element $\nabla||x||\in E^{*}$ such that the following
condition holds: for every $\epsilon>0$ there exists $\delta>0$ such that :

$\frac{||x+th||-||x||}{t}-\langle\nabla||x||, h\rangle<\epsilon$ for every $x\in S,$ $h\in S,$ $t\in(0, \delta)$ .

The norm $||.||$ of $E$ is said to be weak Hadamard differentiable at $x\in E$

if there exists an element $\nabla||x||\in E^{*}$ such that for every weakly compact
subset $W$ of $E$ the following holds: for every $\epsilon>0$ there exists $\delta>0$ such
that

$\frac{||x+th||-||x||}{t}-\langle\nabla||x||, h\rangle<\epsilon$ for every $h\in W$ and $t\in(0, \delta)$ .

About measurability we retain notation and terminology of Himmelberg
[H].

The following theorem is a random version of the Borwein-Preiss smooth
variational principle.

Theorem 1 ([D-G]) Suppose that $(E, ||.||)$ is a separable Banach space and
$(T, A, \mu)$ is a measurable space with a complete $\sigma$ -finite measure $\mu$ . Let $F$ :
$Tarrow 2^{E}$ be a measurable multifunction with non-empty closed values and
$f$ : $T\mathrm{x}Earrow \mathrm{R}$ be a function with the following properties:
(1) $\inf_{x\in F(t)}f(t, x)>-\infty$ , for every $t\in T$ ;
(2) $f(., x)$ is measurable, for every $x\in E$;
(3) $f(t, .)$ is continuous for every $t\in T$ .

Let $x_{0}$ : $Tarrow E$ be a measurable single-valued selection of $F$ such that

$f(t, x_{0}(t))< \inf_{x\in F(t)}f(t, x)+\epsilon_{0}(t)$ for every $t\in T$ ,

where $\epsilon_{0}$ : $Tarrow(\mathrm{O}, +\infty)$ is a given measurable function. Let $p\geq 1$ be given
and let $\epsilon$ : $Tarrow(\mathrm{O}, +\infty)$ and $\lambda$ : $Tarrow(\mathrm{O}, +\infty)$ be measurable functions with
$\epsilon(t)>\epsilon_{0}(t),$ $t\in T$ .

Then there exist measurable selections of $F$ , say $x_{n},$ $v$ : $T$ -a $E$ and
measurable functions $\mu_{n}$ : $Tarrow(\mathrm{O}, 1)$ such that, for every $t\in T$ , we have:
$\Sigma_{n=0}^{\infty}\mu_{n}(t)=1$ , and
(4) $x_{n}(t)arrow v(t)$ as $narrow\infty$ ;
(5) $f(t, v(t))+\triangle(t, v(t))\leq f(t, x)+\triangle(t, x)$ , for every $x\in F(t)$ , where
(6) $\triangle(t, x)=\frac{\epsilon:(t)}{\lambda(t)^{p}}\Sigma_{n=0}^{\infty}\mu_{n}(t)||x-x_{n}(t)||^{p}$;
(7) $||x_{n}(t)-v(t)||<\lambda(t)$ for every $n=0,1,2,$ $\ldots$ .
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Proof. Set $q(t)= \frac{1}{2}[\frac{\epsilon(t)-\epsilon_{0}(t)}{\epsilon(t)+\epsilon_{0}(t)}]^{1/2}$ For $n=0,1,$ $\ldots$ and $t\in T,$ $x\in E$ ,
define inductively:

(8) $G_{n}(t)= \{x\in F(t) : f_{n}(t, x)\leq\inf_{z\in F(t)}f_{n}(t, z)+\epsilon_{n}(t)\}$ ,

where

(9) $f_{n+1}(t, x)=f_{n}(t, x)+ \frac{\epsilon(t)}{\lambda(t)^{p}}\mu_{n}(t)||x-x_{n}(t)||^{p},$$f_{0}(t, x)=f(t, x)$

$\epsilon_{n}(t)=\epsilon_{0}(t)q(t)^{2n}$ , $\mu_{n}(t)=(1-q(t))q(t)^{n}$ ,

and $x_{n}$ : $Tarrow E$ is a measurable function satisfying

(10) $x_{n}(t)\in G_{n}(t)$

for every $t\in T$ .
We shall prove by induction that the definitions of $x_{n}$ and $f_{n}$ are correct.

For $n=0$ this is true by assumption. Suppose that $x_{n-1}$ and $f_{n-1}$ are defined.
Now, by (9), $f_{n}$ is well defined. By [ $\mathrm{H}$ , Theorem 6.5] the multifunction
$t\vdasharrow f_{n}(t, F(t))$ is weakly measurable (in fact it is measurabe, by [$\mathrm{H}$ , Theorem
3.5 $(\mathrm{i}\mathrm{i}\mathrm{i})])$ and by [ $\mathrm{H}$ , Theorem 6.6] the function $t- \neq\inf_{z\in F(t)}f_{n}(t, z)$ is
measurable. By [$\mathrm{H}$ , Theorem 6.4] and [$\mathrm{H}$ , Theorem 3.5 $(\mathrm{i}\mathrm{i}\mathrm{i})$] the multifunction
$t\vdash+G_{n}(t)$ is measurable and Kuratowski and Ryll-Nardzewski’s theorem [K-
$\mathrm{R}\mathrm{N}]$ (see also $[\mathrm{H}$ , Theorem 5.1]) produces a measurable function $x_{n}$ satisfying
(10), completing the induction.

We shall prove that $\{x_{n}(t)\}$ is a fundamental sequence for every $t\in T$.
By (9) and (10) we have:

$\frac{\epsilon(t)}{\lambda(t)^{p}}\mu_{n}(t)||x_{n+1}(t)-x_{n}(t)||^{p}$

$=f_{n+1}(t, x_{n+1}(t))-f_{n}(t, x_{n+1}(t))$

$=f_{n+1}(t, x_{n+1}(t))-f_{n+1}(t, x_{n}(t))+f_{n}(t, x_{n}(t))-f_{n}(t, x_{n+1}(t))$

$\leq\epsilon_{n+1}(t)+\epsilon_{n}(t)$

$=\epsilon_{0}(t)q(t)^{2n}(q(t)^{2}+1)$ .

Hence for $m>n$ we obtain:

(11) $||x_{m}(t)-x_{n}(t)|| \leq\lambda(t)(\frac{\epsilon_{0}(t)}{\epsilon(t)}.\frac{1+q(t)^{2}}{1-q(t)^{2}})^{\frac{1}{p}}q(t)^{\frac{n}{p}}<\lambda(t)q(t)^{\frac{n}{\mathrm{p}}}$ .

Therefore $\{x_{n}(t)\}_{n=0}^{\infty}$ is a fundamental sequence and so converges to $v(t)$ and
clearly $v$ is measurable. From (11), letting $marrow+\infty$ , we obtain $||v(t)$ -

$x_{n}(t)||<\lambda(t)$ , which is (7).
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To establish (5), let $\gamma>0$ be given. As $(f+\triangle)(t, .)$ is continuous, there
exists $\delta(t)>0$ such that

(12) $f(t, v(\theta))+\triangle(t, v(t))<f(t, x)+\triangle(t, x)+\gamma/3$,

whenever $||x-v(t)||<\delta(t)$ . For fixed $t\in T$ , choose $n$ sufficiently large so
that the following inequalities hold: $\epsilon_{n}(t)<\gamma/3,$ $||v(t)-x_{k}(t)||<\delta(t)$ for
every $k\geq n$ , and $\frac{\epsilon(t)}{\lambda(t)^{p}}\Sigma_{k=n}^{\infty}\mu_{k}(t)||x_{n}(t)-x_{k}(t)||^{p}<\gamma/3$.

For every $x\in F(t)$ , using (12), (8), (9) and (10), we can write

$f(t, v(t))+\triangle(t, v(t))$

$<f(t, x_{n}(t))+\triangle(t, x_{n}(t))+\gamma/3$

$=f_{n}(t, x_{n}(t))+ \frac{\epsilon(t)}{\lambda(b)^{p}}\Sigma_{k=n}^{\infty}\mu_{k}(t)||x_{n}(t)-x_{k}(t)||^{p}+\gamma/3$

$<f_{n}(t, x)+\epsilon_{n}(t)+\gamma/3+\gamma/3$

$<f(t, x)+\triangle(t, x)+\gamma$

and (5) is proved. $\blacksquare$

Remark. It is clear that if the conditions of Theorem 1 are satisfied
for $\mathrm{a}.\mathrm{e}$ . $t\in T$ , then its conclusions are satisfied for $\mathrm{a}.\mathrm{e}$ . $t\in T$ too. From
Theorem 1 it follows a random version of Ekeland’s variational principle.

Now we recall the following definition.
A subset $P$ of $E$ is said to be very porous, if there exists $\alpha>0$ for which

the following holds: for every $x\in E$ and every $r\in(0, \alpha)$ there is $y\in E$ such
that

$B(y, \alpha r)\subset B(x, r)\cap(E\backslash P)$ .
$P$ is called $\sigma$ -very porous, if it is a countable union of very porous sets.

In the sequel $L^{1}(T, \mu;E)$ will denote the usual Lebesgue-Bochner space,
i.e. the set of all (equivalence classes of) $\mu$-Bochner integrable functions
$f$ : $Tarrow E$ with the norm $||f||_{L^{1}}= \int_{T}||f(t)||d\mu(t)$ .

Theorem 2 Let $(E, ||.||)$ be a separable superreflexive Banach space and
let $(T, A, \mu)$ be a measurable space, with a complete $\sigma$ -finite measure $\mu$ ,
$\int_{T}d\mu(t)=1$ . Suppose that $f$ : $T\cross Earrow \mathrm{R}$ is a function satisfying con-
ditions (1), (2), (3) of Theorem 1, and

$a)f(t, .)$ is convex for every $t\in T_{f}$
.

$b)$ there exists a function $L\in L^{\infty}(T, \mu;\mathrm{R})$ such that for all $t\in T$

(13) $|f(t, x_{1})-f(t, x_{2})|\leq L(t)||x_{1}-x_{2}||$ for every $x_{1},$ $x_{2}\in E$ ;

$c)$ $f(., 0)\in L^{1}(T, \mu;\mathrm{R})$ .

Define the function $g$ : $L^{1}(T, \mu;E)arrow \mathrm{R}$ by $g(x)= \int_{T}f(t, x(t))d\mu(t)$ .

Then $g$ is weak Hadamard differentiable on a subset $X_{0}$ of $L^{1}(T, \mu;E)$ , whose
complement is $\sigma$ -very porous.
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Proof. Since every suprreflexive Banach space has an equivalent uni-
formly Fr\’echet differentiable norm (see [D-G-Z2, Corollary 4.6, page 152]),
we may suppose without loss of generality that the norm $||.||$ is uniformly
Fr\’echet differentiable.

In view of b) and c), the definition of $g$ makes sense. The absolute
continuity of the Lebesgue integral (see [K-F, Theorem V.5.5]) allows us
to define, for every $x,$ $h\in L^{1}(T, \mu;E)$ ,

$\gamma_{n}(x, h)=\sup$ { $\gamma>0$ : $\int_{\Gamma}(f(t, x(t)+h(t))+f(t, x(t)-h(t))$

(14) $-2f(t, x(t))d \mu(t)\leq\frac{1}{n}$

for every $\Gamma\subset T$ with $\mu(\Gamma)\leq\gamma||h||_{L^{1}}\}$ .

Put

(15) $H_{n,m}(x)= \{h\in L^{1}(T, \mu;E):\gamma_{n}(x, h)\geq\frac{1}{m}\}$

and

(16) $\Gamma_{\gamma}(h)=\{t\in T:||h(t)||\geq\frac{1}{\gamma}\}$ .

Obviously

(17) $\mu(\Gamma_{\gamma}(h))\leq\gamma\int_{T}||h(t)||d\mu(t)=\gamma||h||_{L^{1}}$ for every $h\in L^{1}(T, \mu;E)$ .

Since the norm $||.||$ is uniformly Fr\’echet differentiable, it is easy to see
that there exists $s_{n,m}\in(0,1/m)$ such that

(18) $\frac{||x+s_{n,m}h||^{2}-||x||^{2}}{s_{n,m}}-\langle\nabla||x||^{2}, h\rangle<\frac{1}{n}$ whenever $||x||<1,$ $||h||\leq m$ .

Define the set:

$X_{n,m}$ $=$ { $x\in L^{1}(T, \mu;E)$ : there exists $s\in(0,1/m)$ such that

$\frac{g(x+sh)+g(x-sh)-2g(x)}{s}<14/n$ , for every $h\in H_{n,m}(x)\}$ .

Claim. $L^{1}(T, \mu)E)\backslash X_{n,m}$ is very porous for every integer $n,$ $m$ .
Assume the contrary. Then for some integer $n,$ $m$ , for $\alpha\in(0, s_{n,m}/2n)$ ,

there exist $x_{0}\in L^{1}(T, \mu, E)$ and $r\in(0, \alpha)$ such that ’

(19) $B(v;\alpha r)\cap(L^{1}(T, \mu;E)\backslash X_{n,m})\neq\emptyset$ for every $v\in B(x_{0}; r)$ .
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By Himmelberg [H] it follows that the multivalued mapping $F:t\vdash+B[x_{0}(t);r]$

is measurable.
Without loss of generality we may assume that $||L||_{\infty}<1$ . In view of

(13) we have

$||f(t, x)-f(t, x_{0}(t)||\leq r$ for $\mathrm{a}.\mathrm{e}$ . $t\in T$ and for every $x\in F(t)t\in T$ .

By Theorem 1, with the above $F$ and $\epsilon_{0}=r=\epsilon/2,$ $\lambda=r/2,p=2$ , we
obtain measurable selections $v,$ $x_{n}$ : $Tarrow E$ of $F$ , and measurable functions
$\mu_{n}$ : $Tarrow(\mathrm{O}, 1)$ such that for the function $\triangle(t, x)$ given by (6) (with the
above constructed $x_{n}$ ), we have
(20)
$f(t, x)-f(t, v(t))\leq\triangle(t, x)-\triangle(t, v(t))$ for $\mathrm{a}.\mathrm{e}$ . $t\in T$ and for every $x\in F(t)$ ,

and

(21) $||v(t)-x_{0}(t)||<\lambda$ for $\mathrm{a}.\mathrm{e}$ . $t\in T$ .

So by (19) we can find $z\in B(v;\alpha r)\cap(L^{1}(T, \mu;E)\backslash X_{n,m})$ .
Hence, by definition of $X_{n,m}$ , for $s=s_{n,m}r/2$ , there exists $h\in H_{n,m}(z)$

such that , setting $\Gamma=\Gamma_{\gamma_{n}(z,h)}(h)$ , we have $\mu(\Gamma)\leq\gamma_{n}(z, h)||h||_{L^{1}}$ (from (17))
and

$g(z+sh)+g(z-sh)-2g(z)$
$14/n$ $\leq$

$s$

$\leq$ $\int_{T}\frac{f(t,v(t)+sh(t))+f(t,v(t)-sh(t))-2f(t,v(t))}{s}d\mu(t)+4/n$

(by (13) and by the choice of $\alpha$ and $s$ )

$<$ $\int_{T\backslash \Gamma}\frac{f(t,v(t)+sh(t))+f(t,v(t)-sh(t))-2f(t,v(t))}{s}d\mu(t)+5/n$

(by (14) and monotonicity of the differential quotient of a convex
function)

$\leq$ $\int_{T\backslash \Gamma}\frac{1}{s}(\triangle(t, v(t)+sh(t))+\triangle(t, v(t)-sh(t))-2\triangle(t, v(t)))d\mu(t)+5/n$

(by (20), since (16) and (15) implies that $h(t)\leq m$ for $t\not\in\Gamma$

and (21) implies that $v(t)+sh(t)\in F(t))$

$=$ $\frac{\epsilon}{\lambda}\int_{T\backslash \Gamma}\sum_{n=0}^{\infty}\mu_{n}[\frac{||\frac{v(t)-x_{n}(t)}{\lambda}+\frac{s}{\lambda}h(t)||^{2}-||\frac{v(t)-x_{n}(t)}{\lambda}||^{2}}{\frac{s}{\lambda}}$
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$+ \frac{||\frac{v(t)-x_{n}(t)}{\lambda}-\frac{s}{\lambda}h(t)||^{2}-||\frac{v(t)-x_{n}(t)}{\lambda}||^{2}}{\frac{s}{\lambda}}]d\mu(t)+5/n$

$<$ $13/n$ (by (18), since $\frac{s}{\lambda}\leq s_{n,m}$ ),

which is a contradiction.
Therefore the set $L^{1}(T, \mu;E)\backslash X_{n,m}$ is very porous.
We need the following.

Proposition 3 If $K$ is a weakly compact subset in $L^{1}(T, \mu;E)$ , then for
every integer $n$ and every $v\in E$ there exists an integer $m$ such that $K\subset$

$H_{n,m}(v)$ .

Proof. Assuming the contrary, there exist an integer $n$ and a $v\in E$

such that for every $m$ there exists $h_{m}\in K\backslash H_{n,m}(v)$ , i.e. there exist $\Gamma_{m}$ such
that $\mu(\Gamma_{m})=\frac{1}{m}||h_{m}||$ and

(22) $\int_{\Gamma_{m}}(f(t, v(t)+h_{m}(t))+f(t, v(t)-h_{m}(t))-2f(t, v(t))d\mu(t)\geq\frac{1}{n}$.

Since $K$ is weakly compact, it is bounded, so $\mu(\Gamma_{m})arrow 0$ . Now by
Dunford-Pettis’ theorem of weak compactness in $L^{1}(T, \mu;E)$ (see [D-U], page
105), $K$ is uniformly integrable, i.e. $\lim_{\mu(E)arrow 0}\int_{E}||h(t)||d\mu(t)=0$ uniformly
for $h\in K$ . So, by (22) and (13), when $m$ tends to infinity, we obtain a
contradiction. $\blacksquare$

The proof of the following proposition is the same as that of [Ph, Propo-
sition 1.23] (which concerns Fr\’echet differentiability).

Proposition 4 A convex continuous function $f$ : $Earrow \mathrm{R}$ is weak Hadamard
differentiable at $x\in E$ if and only iffor every $\epsilon>0$ and every weakly compact
subset $W\subset E$ there exists $t>0$ such that

$\frac{f(x+th)+f(x-th)-2f(x)}{t}<\epsilon$ for every $h\in W$.

Now we can complete the proof of Theorem 3. By Proposition 4 and
Proposition 5, it follows that $g$ is weak Hadamard differentiable on the set
$X_{0}= \bigcap_{n,m=1}^{\infty}X_{n,m}$ . By the Claim, it follows that the set $L^{1}(T, \mu;E)\backslash X_{0}$ is
$\sigma$-very porous and the theorem is proved. $\blacksquare$

Comparing the Fr\’echet and the weak Hadamard differentiability of the
usual norm $||.||_{L^{1}}$ of $L^{1}(T, \mu;E)$ , as an interesting corollary of Theorem 3, we
obtain that $||.||_{L^{1}}$ is weak Hadamard differentiable on a complement of $\sigma$-very
porous subset of $L^{1}(T, \mu;E)$ , while $||.||_{L^{1}}$ is nowhere Fr\’echet differentiable (see
[Ph] $)$ .

The following theorem is a random version of Caristi’s fixed point theorem
[A-E, Theorem 14, Ch.5 Sec.1].
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Theorem 5 (Multivalued Caristi’s random fixed point theorem). Suppose
that $(E, ||.||)$ is a separable Banach space and $(T, A, \mu)$ is a measurable space
with a complete $\sigma$ -finite measure $\mu$ . Let $X$ be a closed subset of $E_{f}F$ :
$T\cross Xarrow X$ be a multivalued mapping. Assume that there exists a function
$f$ : $T\cross Xarrow \mathrm{R}$ such that $f(., x)$ is measurable, $f(t, .)$ is continuous, and for
every $x\in X$ and every $t\in T$ there exists $y_{t,x}\in F(t, x)$ such that

(23) $f(t, y_{t,x})+||x-y_{t,x}||\leq f(t, x)$ .

Then there exists a measurable mapping $v$ : $Tarrow X$ such that $v(t)\in$

$F(t, v(t))$ , for every $t\in T$ .

Proof. Apply Theorem 1 with $\epsilon_{0}<\epsilon<1,$ $\lambda=1,p=1$ and obtain a
measurable mapping. $v:Tarrow X$ such that

(24) $f(t, v(t))<f(t, x)+\epsilon||v(t)-x||$ for every $t\in T$ and $x\in X,$ $x\neq v(t)$ .

By (23), with $x=v(t)$ , and by (24), with $x=y_{t,v(t)}$ , we $\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}:\sim$

$||v(t)-y_{t,v(t)}||\leq f(tv(\rangle t))-f(t, y_{t,v(t)})\leq\epsilon||v(t)-y_{t,v(t)}||$

for every $t\in T$ . Hence $v(t)=y_{t,v(t)}$ and the theorem is proved. $\blacksquare$

2. CONTINUOUS ANS CARATH\’EODORY SELECTIONS
AND EKELAND’S VARIATIONAL PRINCIPLE.

The following lemma is simple, but very useful, since it implies Ky Fan’s
inequality and Sion’s minimax theorem.

Lemma 1. Suppose that $X$ is a paracompact topological space, $E$ is a
Banach space, $Y\subset E$ is closed, convex and $nonempty_{f}F$ : $Xarrow 2^{Y}$ is
lower semicontinuous with convex images and the functions $f$ : $X\cross Yarrow \mathrm{R}$ ,
$g:Xarrow \mathrm{R}$ satisfy the conditions:

(i) the function $f(x, .)$ is quasiconvex for every $x\in X$ ;
(ii) the function $f(., y)$ is upper semicontinuous for every $y\in Y_{i}$

(iii) $g$ is lower semicontinuous and $g(x) \geq\inf_{y\in F(x)}f(x, y)$ $\forall x\in X$ .
Then

$(a)$ for every $\mathit{6}>0$ there exists a continuous selection $\varphi_{\epsilon}$ : $Xarrow Y$ of $F_{\epsilon}$

($i.e$ . $\varphi_{\epsilon}(x)\in F_{\epsilon}(x)$ for every $x\in X$), where $F_{\epsilon}(x)=F(x)+\epsilon B_{f}B$ is the
open unit ball, and

$f(x, \varphi_{\epsilon}(x))<g(x)+\epsilon$ $\forall x\in X$ . (1)

$(b)$ If $F(x)$ is open for every $x\in X$ , then there exists a continuous selec-
tion $\varphi_{\epsilon}$ of $F$ satisfying (1).

Proof. Define:

$S_{y}=\{x\in X : y\in F_{\epsilon}(x), f(x, y)<g(x)+\epsilon\}$ .
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By lower semicontinuity of $F$ , by (ii) and (iii), we obtain that this set is
open. Obviously $\bigcup_{y\in Y}S_{y}=X$ . Since $X$ is paracompact, there exists a locally
finite refinement $\{U_{j}\}_{j\in J}$ of the cover $\{S_{y}\}_{y\in Y}$ . Let $\{p_{j}\}_{j\in J}$ be a continuous
partition of unity, subordinate to this cover. For each $j\in J$ choose $y_{j}\in Y$

such that supp$(p_{j})\subset S_{y_{j}}$ . Define the function

$\varphi(x)=\sum_{j\in J}p_{j}(x)y_{j}$
.

By (i) we obtain (1). $\blacksquare$

Theorem 3 (Ky Fan). Let $X$ be convex, compact and nonempty subset
of a topological vector space $E,$ $f$ : $X\cross Xarrow \mathrm{R}$ be a function such that

a) $f($ ., $y)$ is lower semicontinuous for every $y\in X$ ;
b) $f(x, .)$ is concave for every $x\in X,\cdot$

Then there exists $x_{0}\in X$ such that

$\sup_{y\in X}f(x_{0}, y)\leq\sup_{y\in X}f(y, y)$ . (2)

Proof. The essential part of the proof is to establish (2) when $E$ is finite
dimensional, since it is easy to extend it using $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}\backslash (\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}‘$ intersection
property) to arbitrary topological vector spaces.

Apply Lemma 1 when $G(x)=Y$ to the function $-f$ and the constant
function

$g(z)= \sup_{x\in X}\inf_{y\in X}(-f)(x, y)$ .

So we obtain a continuous functinon $\varphi_{n}$ : $Xarrow X$ such that

$-f(x, \varphi_{n}(x))\leq g(x)+1/n$ $\forall x\in X$ . (3)

By Brouwer’s fixed point theorem there exists a fixed point $x_{n}=\varphi_{n}(x_{n})$ of
$\varphi_{n}$ . Passing to limit in (3) and using a), we obtain the result. $\blacksquare$

Next, we shall show that Sion’s minimax theorem follows from Lemma 1
and something more, in the setting of Sion’s theorem, we shall prove that for
every $\epsilon>0$ there exists an $\epsilon$-saddle point.

Theorem 3. Let $X$ be a nonempty convex subset of topological vector
space, $Y$ a nonempty compact convex subset of topological vector space, and
$f$ : $X\mathrm{x}Yarrow \mathrm{R}$ quasiconcave and upper semicontinuous in its first variable
and quasiconvex and lower semicontinuous in its second variable. Then for
every $\epsilon>0$ there exists an $\epsilon \mathrm{i}$ -saddle point, that is

$f(x, y_{\epsilon})-\epsilon\leq f(x_{\epsilon}, y_{\epsilon})\leq f(x_{\epsilon}, y)+\epsilon \mathrm{i}$ . $falx\in X,$ $y\in Y$ (4)

From (4) we obtain Sion’s minimax theorem:

$\min_{y\in Y}\sup_{x\in X}f(x, y)=\sup_{x\in X}\min_{y\in Y\in Y}f(x, y)$ .
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Proof. The essential part of the proof is to establish (4) in finite di-
mensional spaces, since its extention to arbitrary topological vector spaces is
straightforward (see, for instance, the proof of Theorem 1.4 in [Simon].)

Applying Lemma 1, we obtain: there exists continuous functions $\varphi$ : $Xarrow$

$Y,$ $\psi$ : $Yarrow X$ such that

$f(x, \varphi(x))\leq f(x, y)+\mathit{6}$ $\forall x\in X,$ $y\in Y$,

$-f(\psi(y), y)\leq-f(x, y)+\epsilon$ $\forall x\in X,$ $y\in Y$.

The composition $\varphi(\psi(.))$ : $\mathrm{Y}arrow \mathrm{Y}$ is continuous, and by Brouwer’s fixed point
theorem, there exists a fixed point $y_{\epsilon}=\varphi(\psi(y_{\epsilon}))$ . Denoting $x_{\epsilon}=\psi(y_{\epsilon}))$ , we
obtain (4). $\blacksquare$

Theorem 4 (Continuous parametrization of Ekeland’s variational
principle). Suppose that $X$ is a paracompact topological space, $Y$ is
a convex closed and nonempty subset of a Banach space and the function
$f$ : $X\mathrm{x}Yarrow \mathrm{R}$ satisfies the conditions:

(i) the function $f(x, .)$ is quasiconvex for every $x\in X_{f}$

(ii) the function $f(., y)$ is upper semicontinuous for every $y\in Y$ ,
(iii) the function $f($ ., . $)$ is lower semicontinuous.

Given $\epsilon>0,$ $\lambda>0$ , let $\varphi_{0}$ : $Xarrow Y$ be a continuous mapping, such that

$f(x, \varphi_{0}(x))\leq\inf f(x, Y)+\epsilon$ , $\forall x\in X$ .

Then there exist a continuous mapping $v:Xarrow Y$ , such that

$||v(x)-\varphi_{0}(x)||\leq\lambda$ , $\forall x\in X$ , (5)

$f(x, v(x)) \leq f(x, y)+\frac{\epsilon}{\lambda}||y-v(x)||$ $\forall x\in X,$ $\forall y\in Y$. (6)

Proof. Put $g_{n}(x)= \inf_{y\in F_{n}(x)}f(x, y)$ and define by induction sequences
of lower semicontinuous multifunctions $F_{n}$ : $X\cross Yarrow 2^{Y}$ by

$F_{n}(x)= \{y\in Y : f(x, y)+\frac{\epsilon}{\lambda}||\varphi_{n}(x)-y||<f(x, \varphi_{n}(x))\}$

and continuous selections (by Lemma 1 $(\mathrm{b})$ ) $\varphi_{n+1}$ : $Xarrow Y$ of $F_{n}$ satisfying

$f(x, \varphi_{n+1}(x))<g_{n}(x)+2^{-n}$ ,

starting at $\varphi_{0}$ . Assuming that $\varphi_{n}$ is continuous (by induction hypothesys),
we shall prove that the conditions of Lemma 1 are satisfied. Indeed, by (ii)
and (iii) it follows that $F_{n}$ is lower semicontinuous with open images and by
Proposition 3.1 of [H-P], the function $\inf_{y\in F_{n}(.)}f($ ., $y)$ is lower semicontinuous,
which is condition (iii) of Lemma 1. This completes the induction.
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It is clear that the diameter $\sup_{y,z\in F_{n}(x)}||y-z||$ of $F_{n}(x)$ is not grater
than $\frac{2\lambda}{\epsilon}(f(x, \varphi_{n}(x))-g_{n}(x))$ . Since $F_{n+1}(x)\subset F_{n}(x)$ for every $x\in X$ , we
have

$g_{n}(x)\leq g_{n+1}(x)$ $\forall x\in X$ .

On the other hand, the inequality $g_{n}(x)\leq f(x, \varphi_{n}(x))$ implies that

$g_{n+1}(x)\leq f(x, \varphi_{n+1}(x))\leq g_{n}(x)+2^{-n}\leq g_{n+1}(x)+2^{-n}$

hence
$0\leq f(x, \varphi_{n+1}(x))-g_{n+1}(x)\leq 2^{-n}$ .

Therefore the diameters of $F_{n}(x)$ converges uniformly to $0$ . Therefore

$\bigcap_{n\geq 0}\overline{F_{n}(x)}=\{v(x)\}$

$\forall x\in X$

and $v:Xarrow Y$ is a continuous mapping. This implies that

$v(x)\in\overline{F_{0}(x)}$ $\forall x\in X$ , (7)

which proves inequality (5). It is easy to see that

$y\in\overline{F_{n}(x)}\Rightarrow\overline{F_{n}(y)}\subset\overline{F_{n}(x)}$. (8)

From (7) and (8) it follows that $\overline{F_{n}(x)}=\{v(x)\}$ . Consequently, if $y\neq v(x)$ ,
then $y\not\in\overline{F_{n}(x)}$, which implies (6). $\blacksquare$

Corollary (Michael’s selection theorem [M]). Every lower semi-
continuous multifunction $F$ : $Xarrow 2^{E}$ with closed convex images from a
paracompact space $X$ into a Banach space $E$ has a continuous selection.

Proof. Apply Theorem 4 for $f(x, y)= \inf_{z\in F(x)}||y-z||$ with $\epsilon:<1$ and
$\lambda=1$ . $\blacksquare$

The proof of the next theorem is analogous to that one of Lemma 1, but
it uses Carath\’eodory partition of unity, instead of continuous partition of
unity.

Theorem 5. Suppose that $(T, A, \mu)$ is a measurable $space_{f}$ with a com-
plete $\sigma$ -finite measure $\mu_{f}X$ is a Polish space, $E$ is a separable Banach space,
$Y\subset E$ is $closed_{f}$ convex, nonempty. Let $F$ : $T\cross Xarrow 2^{Y}$ be a multifunc-
tion, such that $F(., .)$ is measurable, $F(t, .)$ is lower semicontinuous for every
$t\in T.$ Suppose that the functions $f$ : $T\mathrm{x}X\mathrm{x}Yarrow \mathrm{R},$ $g$ : $T\mathrm{x}Xarrow \mathrm{R}$

satisfy the conditions:
(i) the function $f(t, x, .)$ is quasiconvex for every $t\in T$ and $x\in X$ ;
(ii) the function $f(t, ., y)$ is upper semicontinuous for every $t\in T$ and

$y\in Y$ ;
(iii) $f($ ., ., $y)$ is measurable for every $y\in Y$ ,
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(iv) $g(., .)$ measurable, $g(t, .)$ is lower semicontinuous and $g(t, x)\geq$

$\inf_{y\in F(t,x)}f(t, x, y)$ .
Then

$(a)$ for every $\epsilon>0$ there exists a Carath\’eodory selection $\varphi_{\epsilon}$ : $T\cross Xarrow Y$

of $F_{\epsilon}$ ($i.e$ . $\varphi_{\epsilon}(t,$ $x)\in F_{\epsilon}(t,$ $x)$ for every $y\in T,$ $x\in X$), where $F_{\epsilon}(t, x)=$

$F(t, x)+\epsilon B_{f}B$ is the open unit $ball_{f}$ and

$f(t, x, \varphi_{\epsilon}(x))<g(t, x)+\mathit{6}$ $\forall t\in T,$ $x\in X$ . (9)

$(b)$ If $F(t, x)$ is open for every $x\in X_{f}$ then there exists a Carath\’eodory
selection $\varphi_{\epsilon}$ of $F$ satisfying (9).

The proof of the next theorem is similar to that one of Theorem 4.
Theorem 6 (Carath\’eodory parametrization of Ekeland’s vari-

ational principle). Suppose that $(T, A, \mu)$ is a measurable space, with
a complete $\sigma$-finite measure $\mu,$ $X$ is a Polish space, $E$ is a separable Ba-
nach space, $Y\subset E$ is closed, convex, nonempty. Suppose that the function
$f$ : $T\mathrm{x}X\cross Yarrow \mathrm{R}$ satisfies the conditions.$\cdot$

(i) the function $f(t, x, .)$ is quasiconvex for every $t\in T$ and $x\in X_{f}$.
(ii) the function $f(t, ., y)$ is upper semicontinuous for every $t\in T$ and

$y\in Y$ ;
(iii) $f($ ., ., $y)$ is measurable for every $y\in Y$ ,
(iv) $f(t, ., .)$ is lower semicontinuous for every $t\in T$ .

Given $\epsilon>0,$ $\lambda>0$ , let $y_{0}$ : $T\mathrm{x}Xarrow Y$ be a Carath\’eodory mapping, such
that

$f(t, x, y_{0}(t, x)) \leq\inf f(t, x, Y)+\epsilon$, $\forall t\in T,$ $\forall x\in X$ .

Then there exist a Carath\’eodory mapping $v:T\cross Xarrow Y_{f}$ such that

$||v(t, x)-y_{0}(t, x)||<\lambda$ , $\forall t\in T,$ $\forall x\in X$ ,

$f(t, x, v(t, x)) \leq f(t, x, y)+\frac{\epsilon}{\lambda}||y-v(t, x)||$ $\forall t\in T,$ $\forall x\in X,$ $\forall y\in Y$.

Corollary (Carathe’odory selections, [H-P, Theorem 7.23]). Sup-
pose that $(T, A, \mu)$ is a measurable space, with a complete $\sigma$ -finite measure
$\mu,$ $X$ is a Polish $space_{f}E$ is a separable Banach space, $Y\subset E$ is closed, con-
vex, nonempty. Let $F:T\cross Xarrow 2^{Y}$ be a multifunction, such that $F(., .)$ is
measurable, $F(t, .)$ is lower semicontinuous for every $t\in T$ . Then $F$ admits
a Carath\’eodory selection.

Proof. Apply Theorem 4, for $f(t, x, y)= \inf_{z\in F(t,x)}||y-z||$ with $\epsilon j<1$

and $\lambda=1$ . $\blacksquare$
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