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Markov Decision Processes with a Constrained Stopping Time:
Mathematical programming formulation

FIERFRER BARFHERER BEYHREER IO IELZ (Masayuki HORIGUCHI)

Abstract
In this paper, the optimization problem for a stopped Markov decision process with finite

states and actions is considered over stopping times 7 comstrained so that Er < o for
some fixed o > 0. The problem is solved through randomization of stopping times and
mathematical programming formulation by occupation measures. Another representation,
called F-representation, of randomized stopping times is given, by which the concept of
Markov or stationary randomized stopping times is introduced. We treat two types of oc-
cupation measures, running and stopped, but stopped occupation measure is shown to be
expressed by running one. We study the properties of the set of running occupation measures
achieved by different classes of pairs of policies and randomized stopping times. Analyzing
the equivalent mathematical programming problem formulated by running occupation mea-
sures corresponding with stationary policies and stationary randomized stopping times, we
prove the existence of an optimal constrained pair of stationary policy and stopping time
requiring randomization in at most one state .

Key words: Stopped Markov decision process, constrained stopping time, mathematical
programming formulation.

1 Introduction

A constrained optimal stopping problem is originated by Nachman [17] and Kennedy [15], in
which a Lagrangian approach was used to reduce the problem to an unconstrained stopping
problem of a conventional type and the constrained optimal stopping time is characterized. Also,
a constrained Markov decision process has been studied by many authors (cf. [1, 2, 3,7, 10]). For
the case of fixed entry time, Altman [2] has formed an equivalent infinite Linear Programming
for the total cost criteria and by analyzing the corresponding LP formulation has shown that
there exists an optimal constrained stationary policy. On the other hand, a combined model of
the Markov decision process and stopping problem, called a stopped decision process, has been
considered by Furukawa and Iwamoto [8] in that the existence of an optimal pair of policy and
stopping time associated with some optimality criterions is discussed. Hordijk [9] has considered
this model from a standpoint of potential theory. Also, the general utility-treatment for stopped
decision processes has been studied by Kadota et al[13, 14]. Horiguchi et al.[11] has considered
the optimization problem for the stopped decision process over stopping times 7 constrained so
that E7 < « for some fixed o > 0, which is analyzed by a Lagrange multiplier. In this paper,
we develop mathematical programming methods in the framework similar to [11].

The problem is solved through randomization of stopping times and mathematical program-
ming formulation by occupation measures. Another representation, called F-representation, of
randomized stopping times is given, by which the concept of Markov or stationary random-
ized stopping times is introduced. We treat two types of occupation measures, running and
stopped, but stopped occupation measure is shown to be expressed by running one. We study
the properties of the set of running occupation measures achieved by different classes of pairs of
policies and randomized stopping times. Analyzing the equivalent mathematical programming
problem formulated by running occupation measures corresponding with stationary policies and
stationary randomized stopping times, we prove the existence of an optimal constrained pair of
stationary policy and stopping time requiring randomization in at most one state.

In the reminder of this section, we shall establish the notation that will be used throughout
this paper and define the optimization problem. Also, an optimal constrained pair of policy and
randomized stopping time is defined.
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Let S and A be finite sets denoted by S = {1,2,...N} and A = {1.2,...,K}. The stopped
Markov decision model consists of five objects:

(S, A, {pij(a):4,j € S,a € A}, ¢,7)

where S and A denote the state and action spaces respectively and ¢ = ¢(¢,a) is a running cost
function on S X A and r = r () is a terminal reward function on S when selecting “stop” in state
i, and {p;;(a)} is the law of motion i.e., for each (z,a) € S x A,p;;(a) 2 0 and > jespijla) = 1.
When the system is in state i € S, if we select “stop” the process terminates with the terminal
reward r(z). If we select “continue” and take a € A, we move to a new state j € S selected
according to the probability distribution p;.(a) and the cost ¢(7,a) is incurred. This process
is repeated from the new state j € S. Let x¢,a; be the state and action at time ¢ and h; =
(z1,a1,... ,2¢) € (S x A)'™! x S the history up to time ¢(¢ > 1). A policy for a controlling the
system is a sequence ™ = (7, mg,...) such that, for each ¢ 2 1, 7 is a conditional probability

measure on A given history h; with m(A|(z1,a1,...,2:)) = 1 for each (z1,a1,... .2¢) € (S x
A)=1 x S. Let IT denotes the set of all policies. A policy * = (7, 73,...) is a Markov policy if =,
is a function of only x4, i.e., m(+|z1, a1, ... ,2z¢) = m(-|z;) for all (z1,ay,... ,2¢) € (SxA)"IxS.

A Markov policy 7 = (my,m2,...) is stationary if there exists a conditional probability on A,
w(+|2), given ¢ € S such that m¢(:|z;) = w(-|z;) for all z; € S and ¢ 2 1, and denoted by
w™ = (w,w,...), or simply by w. A stationary policy w is called deterministic if there exists
amap h : S = A with w(h(s)]s) = 1 for all ¢ € S and such a policy is identified by h.
The sets of all Markov, stationary and deterministic policies will be denoted by I, IIs and
IIp respectively. Note that [Ip C Ilg C Iy C II. The sample spaces is the product space
(= (5x A)*. Let X;, A; be random quantities such that X;(w) = z; and A¢(w) = a; for all
w = (z1,0a1,%2,0a2,...) € Q. For any given policy = € II and initial distribution 3 on S we can
specify the probability measure P on €2 in a usual way.

Let H, = (X1,A1,....X;). We denote by B(H;) the o-field induced by H;. Let % =
B(Hy),(t 2 1) and £ be the smallest o-field containing each #;,t > 1. Let N = {1,2,...} U
{00}. We call a map 7 : Q — N a stopping time w.r.t. the filtration & = {%,t € N} if
{r =1t} € F forallt € N. In order to solve our problem described in the sequel, we need to
introduce randomized stopping time (cf. [6, 15]). To this purpose, enlarging Qto Q2 := Q x [0, 1],
we can embed (Q, Zy) to (2, F x By), where By is Borel subsets of [0,1] . For a filtration
F* = {Fr,t € N} with FF = F; x B; we can assume without loss of generality that for each
teN

F C F. (1.1)

We call a map 7 : Q — N a randomized stopping time (hereafter called RST) w.r.t. Z* if
{7 =t} € & for each t € N. For simplicity, the overline of RST 7 will be omitted and written
by 7 with some abuse of notation. The class of RSTs w.r.t. #* will be denoted by S. For each
initial distribution 3 and each policy © € II, we denote the probability measure on Q by Fzﬁ,
whera Fg = 5 xA and A is Lebesgue measure on B;. For any @ > 0 and initial distribution 3

on S, let
Ala,B) :={(m,7) eI xS |Egr§a} (1.2)

where E; is the expectation w.r.t. ﬂ The pair belonging to A{a, 3) will be called a constrained
one. In this paper, we will consider the constrained optimization problem(COP):

T—1
COP : Maximize J(8,7,T) := E; ZC (Xn, An) + 7 (X7)

n=1

subject to (m,7) € A(e, 8)
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The constrained pair (7*,7) € A(e, ) is called optimal if
J(B,m,7) S J(B, 7", 1) forall (m,7)€ Ale,B).

In Section 2, F-representation of RST is considered and after defining a Markov RST, it is
shown that the class of pairs of Markov policies and Markov RSTs is sufficient for our problem.
In Section 3, the running and stopped occupation measures are introduced, by which COP is
reduced equivalently to mathematical programming. In Section 4, studying the properties of the
set of running occupation measure we can prove the existence of an optimal constrained pair of
stationary policy and stopping time requiring randomization in at most one state.

2 Preliminaries

In this section, F-representation of RSTs given by Irle[12](cf. [4]) will be extended to the case of
the decision process considered in this paper by which Markov or stationary RSTs are defined.

For any RST 7 € S and t € N, let g;(w) := A({r =t}.) ,w € Q, where {17 = t}, is the
w-section defined by {r =t}, = {z € [0,1]|(w,z) € {r = t}}. Note that g, is F;-measurable for
t > 1. From this g;: (t € N), we define the set f = (ft),c as follows:

gt va

fr= teN (2.1)

1- Y Lok
where if the denominator is 0 in (2.1) let fy = 1. Let F = {a = (a;);cx : 0 £ a; £ 1,80 =
1, and if @; = 1 => a; = 1 for ¢ > j}. Then we have the following lemmas.

Lemma 2.1.
(i) f:Q— F and for eacht € N f; is Fi-measurable.
(ii) For any initial distribution 8 and pair (m,7) €Il x S and t € N,
Pﬁ (T = t'Ht)

=
" Ph(r 2 t|Hy)

, P§-a.s. (2.2)

(iii) For any initial distribution 8 and pair (m,7) € 1 x S

7—1
Ej [Z (X1, Ag) + "“(Xr)]

t=1

= i <IEE ((1 - fi) - (1 = fi-1) (z—:c (X, Ax) + T'(Xt)))) (23)

t=1 k=1
Proof. From Fubini’s theorem (i) clearly follows.
For (ii), it suffices to prove
A{r = t}) = F({r = t}| %) Ph-as. (2.4)

For any subset D € %;, by Fubini’s theorem

/ 1{T=t}dP;=/ AT = t),)dP). (2.5)
Dx[0,1] D :

On the other hand, it holds that

[ Apmadi= [ Filr=01F0iF = [ Foltr =l #)ars
Dx[0,1] D

Dx[0,1]
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which implies (2.4), together with (2.5).
By the definition (2.1), we get

A{r 2 t+1})

1-f,=

A({r 2the)
so that
_ ({T =t}) _A{r2t})  A{r22})
=8 =S8, Mooy Ars 1y (26)
—f(1—ft—1)“°(1—fz)(l—fl)» tz21).
From (2.6),
T—1 t—1
Ej [Z e( Xz, At)r(XT)] Ej [E Lir=} (Zc(xk,m) + r(Xt))J
t=1 k=1
o /i1
=E5|) o ( o( Xk, Ag) + r(Xd)] , . by Fubini’s theorem
t=1 k=1
o] t—1
:ZEE [(1 —fi)- (L= fisi) fo (Z c( Xk, Ag) + T(X:))} .
t=1 k=1

which completes the proof of (iii).g
The set f = (fi),cx constructed from 7 € S is called F-representation of 7, denoted by

= (ftT)te.T\T“
Let f = (ft);cw be any function f : Q — F such that for each t € N f; is .#;-measurable.
From this f, we define 77 : Q x [0,1] - N by

™ (w,z) = {t o [Z ?) L Tl ) (2.7)

oo for z6[2k=19k(‘*’)» 1.

where
gG=0-fi)-(-fic)fr (t21) (2.8)

Then, we have:
Lemma 2.2.
(i) 7/ is @ RST w.rt. F* = {Z; t € N}.
(i) 7/ satisfies (ii) and (i) of Lemma 2.1.

Proof. For Z;-measurable functions g, (¢t 2 1), we define the set of functions on Q x [0,1] as
follows:

t—1
T) = Zﬁk(w), Flw,z) =1z, Gj(w,2) ng (t21)

Since {r/ =1} = {G: £ F}N{F < G}} and {G; < F} € &, and {F < G} € F;, we have
{rf =t} € #7,(t 2 1), which proves (i).

From (2.7), A ({Tf =n},) = g,(w) and by (2.8) f; = g,/(1 — X.'7" F,), so that we have
few) = A ({r! =t}.,)/A ({r/ 2 t}.). Hence (ii) follows similarly as the proof of (ii) and (iii) of
Lemma 2.1. g
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Note that Lemma 2.1 and 2.2 show there is one-to-one correspondence between & and the set
of F-representations f = (f;),c5y- Using this fact, we define several types of RSTs. Let TES.
For the corresponding F-representation f” = (f/),c5, by Lemma 2.1, f/ is F;-measurable
(t 2 1). So, f{ is a function of Hy = (X1, Aq,... . Xy).

Definition 2.1. If f7 is depending only on Xy, that is, f (Hy) = f{ (X}) for allt 2 1, the RST
7 1s called Markov. A markov RST is called stationary if there exists a function 5:85—1[0,1]
such that f7(X:) = 6(Xy) for allt 2 1, and denoted by 6. When 6(i) € {0,1} for alli € S,
the stationary RST 6°° is called deterministic.

We denote the sets of all Markov RSTs, all stationary RSTs and all deterministic RSTs by
S, Ss and Sp respectively.

In the following, we say that the set of Ilps x Sus is a sufficient class to our optimization
problem.

Lemma 2.3. For any pair (w,7) € Il x S, there exist a pair (v,0) € lIpr x Spr such that
P; (X:=4,A¢=a,7>t) =Py (X; =i, Ay =a,0 >1), fori€ S,acA. (2.9)
Proof. We define a Markov policy v = (vy,v9,...) by

]P’ﬁ(Xt__z Ay =a, T >t)
Pﬁ(Xt—'LqT>t)

vy (al?) for t 21 and 7€ S,a € A, (2.10)

where if the denominator is zero, we let v;(-|¢) be an arbitrary probability measure over A. We
also define the set f = (f;);c5 by

(X:=1t,7>t)

P .
1— fi(2) i= = - for t2>21 and 1€ S, (2.11)
' Py (Xi=1i72t) -

where if the denominator is zero, we set fi(¢) = 1. Then, clearly f = (fi);c5 : ¢ & F. Thus,
we can define ¢ € Sy from f through (2.11). Now we show that the pair (v, o) satisfies (2.9)
by induction. From (2.10) and (2.11).

Py (X1 =4,Ay =a,7 > 1) = vy (ali) Py (X = 4,7 > 1)
=y (ali) (1 — fi(D)) Py (Xy =47 2 1)
Since ]Fg(qur > 1) = 3(4). we get
Po(X1 =i,A1r =a,7 > 1) = B(i)v (ali) (1 - f1(5)) =P (X1 =i, A1 =a,0 > 1),

which shows that (2.9) holds for t = 1.
Assume (2.9) holds for ¢ (¢t 2 1) . Combining (2.10) and (2.11) with ¢ + 1, we get

Fg(XtH—Z Aip1 = a,7>1t4+1)
=Pp (Xt41 = 6,7 2 t+ 1)(1 = fry1(4)) vera (a]d)
Eﬁ [1{Xt+1“i}1{7>t}] (1 = fe41(2)) veq1 (ald)

t

(%
= Z Pﬁ (Xt“]aAt—a g > )pgz ) (1 = fiy1(2) ve1 (ald)
jES,a’'€A

from the hypothesis of induction,
=Py (X141 =J,Dey1 =0a,0 >t +1).

This completes the proof of Lemma.g
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3 Running and stopped occupation measures

We introduce, in this section, two types of occupation measures and consider the properties
of them. Also, we formulate the Mathematical Programming problem which is proved to be
equivalent to COP,

Definition 3.1. For any initial distribution 8 and a pair (n,T) with TE—Z[T] < 00, we define the
measure (B, m,7) on S x A, called running occupation measure, by

o (B, i) =) Pg(Xy=iA,=a,7>1) for i€5a€A (3.1)

t=1

Definition 3.2. For any initial distribution 8 and a pair (7, 7) with Eg[r] < 0o, we define the
measure y(B,m,7) on S x A, called the stopped occupation measure, by

y(B,m riia) =Y Pg(Xy=i,Ar=a,7=1) for i€SacA (3.2)

t=1
The state running and stopped occupation measures will be defined by
z(B,m, 1) = Z z(B,m,7ii,a) and y(B,m, i) = Z y(B,7,7ii,a) foralli e S.
a€A a€A
Then, in the following lemma, the state stopped occupation measure is proved to be represented
by the running one.

Lemma 3.1. For any 8 and pair (7,7) € I x S with Eg[r] < oo we have the following:
(i) z(B,m,7;1) < o0 and y (8,7, 7;1) < oo foralli € S.
(il) Eglr] = Yiesz(8,m,754) + 1.
(i) y(B.7,73) = B() + Tjesaca 2(8.7. 715, 0)pji(a) — 2(B,7,734).

Proof. Observing that EZ[r] = ;2 FZ(T 2 t), it holds that ), gz (B, m,7i1) = Y 72, P (r >
t) = E;[T] — 1 for all 7 € S, which from the E'@r[r] < oo proves the first part of (i) and (ii). Also,
y(B,m,7:%) < oo follows obviously.

For (iii), we have

o0

yBomrii) =Y Bp(Xi=ir=0)=3 FpXi=ir26)- 3 Fa(Xe=i7>1)

t=1 t=1 t=1

= 6(t) + Z (ZPZ()Q =7 Ai=a, 7> t)> pji(a) — z (8,7, 7;%)

JES,a€A \it=1

=B+ Y. (8,774 a)pi(a) - (8,7, T;i)
jES,a€A
as required. g

For any 6 : S — [0,1] and conditional distribution w(-|¢) on A given ¢ € S, we define by
P%(w) the N x N matrix where (¢, j)th element is Y_ ¢ 4 pij(a)w(ali) (1 - 8(5)) = pi;(w)(1-46(4))
or simply (P°(w));;- Let RV be the set of real N-dimensional row vectors. For any initial
distribution 8 and (7, 7) € Il x S, the row vector z(3,7,7) € RY is defined by

z(B,7,7) = (z(B,7,7;1),...,2(B,m,T; N)).
If the distribution § on S is degenerate as ¢ € .S, it is simply denoted by <.
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Lemma 3.2. Let (w,7) € Ig x Sg with E; (1) < oo for all i € S. Then the state running
occupation measure z(f3,w,T) is the unique solution to

z=0(1-268)+zP(w), e RV (3.3)

where B(1 — &) is in R™ whose i-th component is B(i)(1 — 6(3)) and § := f7 : § — [0,1] s
F-representation of 7.

Proof. By virtue of stationary of 7 and w, we have

Po(X: = 4,7 > ¢)
=Es [E5 [Lixo=iy Lir>ny | Hi]]
=B [(1- 60X1)) (1 = 6(X2)) -+ (1= 8(Xe-1)) (P* (w)) oo

=B [(1-6(X1)) -+ (1= 8(Xs-2))Ep | (1 = 6<Xt-1))(Pﬁ(w))xt_lilﬂt_z]]

=Ej :(1 = 8(X1)) -+ (1= 6(X:2)) (Pg(“’));-zz]

£ |1 - s(x0) (P‘S(w))t_l]

X114

=381~ 5(7) (PPw)

JES

t—1

gt

Thus,

z(B,m, i) = ZF;(Xt =1,7T>t)= Z (Zﬂ(k)(l - 4(k)) (Pa(w))::1>

=1 t=1 keSS

B (1= 6() + 3 (8, w,m35) (P(w))

jES 7

which shows z(8, 7, 7) is a solution of (3.3).
To prove the uniqueness, let z, z be the solutions of (3.3), that is, z, z satisfy that

=B(1 - &) +eP’(w), z=pB(1-26)+ 2P (w).

Then we have ¢ — z = (z — z) P’(w). By iterating this equation, we get

r-z=(e-2) (PPW) €21 (3.4)
By Lemma 3.2 (ii) and E[7] < oo, we have

BY (X, = jir > t) = (1 - 6(i)) (P5(w)):j;>o as £ — oo,

Noting (i) = z(i) = 0 for §(i) = 1, we get P’(w) — oo from (3.4), which implies z = z. g

Next, we present that the objective function J(3,7,7) of COP is written by running and
stopped occupation measures.
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Lemma 3.3. For (m,7) € Il x S with E4[r] < oo, we have

J(B,m,m)= Y cli,a)z(B,m i a)+ Y r(D)y(B,w,Ti6). (3.5)

1€S,a€A 1€S

Proof. By the generalized convergence theorem (Royden [18] p.232) we get

= Eg [Z (X, At)]-{‘r>t}}

=1

= ( > c(i,a)Fg(Xt:i,At:a§T>t)>
= Z C(’i,a) (ZF;(Xt:i,At:aq—r>t)>

1€ES,a€A t=1

= Z C(i,&)il?(,@, T, T, a)"

1€S,a€A

T—1

Eg [Z C(Xt, At)

t=1

Also, using a similar argument for stopped occupation measure we get

Ep [r(X,)] = Eg [Zr(XT)l{m}] =% (Zr(i)ﬂ(xt =i = t))

t=1

I
[~]
Il
—_—

M8
o
>
I
]
i
~

1€S,a€A i=1
= E r(4)y(B, m, ;1)
1€S,a€A

Hence, the lemma follows. g
Let RV*K be the set of real N x K matrices. For any subset U C IT x &, let
Xi<3aU) ={2(B8,7,7:%,a)ies0ea : (1, 7) €T, Eg[r] < a}t (3.6)
Note that X <, (U) C RN*K, We introduce the Mathematical Programming(MP(I)) as follows.

MP(I): Maximize Z c(i,a)z(i,a) + z r(¢)y(s)
1€S,u€A i€S

subject to z € X{é}a(ﬂ x S), y € RVand
y(@) =BG+ Y z(j,a)pjile) — (i), i€S

JES,a€A
Then, we have the following theorem whose proof follows easily from Lemma 3.3.

Theorem 3.1. COP is equivalent to MP(I), i.e., a pair (7*,7*) is optimal for COP if and
only 1f the corresponding {z(B,7*,7;1,a)} € X;3,(Il x §) is optimal for MP(I).
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4 Mathematical programming and optimal pair

In this section, we present another Mathematical programming formulation by which COP is
explicitly solved.

For any U C II x &, let X{ ta (U) be the set of X?S}G(U} which is defined by replacing
Eg[r] £ o with Eglr] = o in (3.6). B

Theorem 4.1.
{< MUBHE fg}a(nM x Spr) = {<} (s x Ss), and (4.1)

XYyl x 8) = X, (T x Sur) = X, (s x Ss). (4.2)

Proof. It is sufficient to prove (4.2). From lemma 2.4 the first equality of (4. 2) is shown. To
prove the second part for any running occupation measure {z(3, 7, T;i,a)} € X{ }a(H x 8), we

define w € Tlg and ¢° € Sg with § = f° by the following.

z (B, m,Ti1,0)

w(ali) = ";W—T)‘

for 2 € S and a € A, (4.3)

1 8() == z(B,m, 751)
TR P(Xe =0T 28)

fori € S {4.4).
We note that

Fo(Xi=i,72t) =Ps(Xe =it >t—1)= > Py(Xe1=j, A1 =0a,7 >t~ 1pji(a).
JES,a€A

So, we get
z(B, 7, m8) = (1 —9(2)) Z_E(Xt =1i,72t) from (4.4)

= (1-8()BGE) + (1—06() > =(B.m7ij a)pji(a)

J€ES.a€A
=(1-46(2 +Z (8,7, 757) (Zpﬁ(a w;(a) ) 1—4(:)) from (4.3)
JES a€A
= (1-6(1)B) + > z(B,m,7:) Pi(w).
j€s

Applying Lemma 3.2, we have
2(B,m.7:4) = z(B,w.0%i), i€S,

as required.y

In order to drive another mathematical programming formulation, we need the definition of
several basic sets. For simplicity, we put (2is) = {%ia}ies.aca € RV*K and § = {8(¢)}ies € RN,
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For any distribution 8 on S and «(> 1), let

((zia), 6) € RVK x RN : ‘

(1) sza: l_ ‘ Z x]ap]z(a (]-_ ()) (lES)
a€A JES.,a€A
Qgo=19 (@086 <1(ieS) L (4.5)
(i) Y zwSa-1
1€S,a€A
(iv) 2, 20 (1€ S,a€ A) )
Let o X
Q{g}a = {(l‘m_) e RVXK . ((ziq),0) € Q{g}a for some 5} . (4.6)

We denote by @{:}a the subset of Q{S}a obtained replacing (iii) in (4.5) by > ;cg a4 Tia = =1

and by Q. the set defined in (4.6) replacing Q{S}a by Q{=}w

Lemma 4.1. Both Qi<ya and Qq=y, are compact and convez.

Proof. Compactness is obvious. To prove the convexity, we show that, for z! = (zl).2? =
1

(z2) € Q(cyo and v € (0,1), = = (i) € Qgy, With 24 = vz}, + (1 —y)zk, i€ S.ac A

Since z!,z2% € Q{g}a, there exist §! = (61(1'))55_2 = (6%(4)) such that
eF=BH(1 -+ D 2hpula)(1- ") (i€ S.k=12), (4.7)
JES,a€A
where zF =3~ _, 2% . Now, define § = (§(4)) as follows.
yrp + (1 - v)e?
7(B6) + 2,0 hapil@)) + (1= ) (80) + X, , %,05:(a)

where if the denominator is zero, 0 < 6(1) < 1 is chosen arbitrary. From (4.7) and (4.8), it
follows that 0 < §(¢) < 1 and from (4.8) it follows that

,B(Z) Z xgap]z 6(”)» (lES)

JES,a€A

1-6(i) = . (ie€S). (48

which implies z € Q{ga, Also, if z* € Qi=jo (k=1,2),2 € Q¢=}o- Thus, Q(=}, is convexg

Theorem 4.2. Q<ta = X?S}Q(HS x Ss).

Proof. From Lemma 3.1 (ii) and Lemma 3.2, the right hand side is clearly contained in the left.
To prove the converse, let z € Q<y,- Then, there exists § = (§(¢)) such that (z,8) € Q<30
Define a stationary policy w, for any a € A and i € S, by -

Tia if ;>0
w(ald) = Z;

any probability distribution on A, if z; =0,

and consider the pair (w,7) € [Is x Ss. From the definition of @{g}a, we have z; = 4(:)(1 —
6(1)) + X ses a:iji(w), where z; = ) 4 z;,. Hence, from lemma 3.2, z; = z(8,w,7;i). Also,
by the definition of w, we get
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which implies {z} = {2(8,w,7;i,a)} € ng}a(ﬂs X 8s)4

From this theorem, we have the following corollary.

Corollary 4.1. X?qa(ﬂs x Ss) is compact and convez.

Now, define another Mathematical Programming formulation (MP(II)) for COP:

MP(II) : Maximize Z c(t,a)xiq + Zr(i)yi
i€S,a€A i€S

subject to (z,9) € Q{ga,yi = B(1) + E:c]'apﬁ(a) - me, t€S

7,0
From Theorem 4.1 and 4.2, the following corollary easily follows.
Corollary 4.2. COP and MP(II) are equivalent.

Let
ITs := {w € [ls : w requires randomization between two actions in at most one state},
and _ g
S5 = {7 € Ss|f7(:) € {0,1} except at most one state : € S}.
For any compact convex set D we denote by ext(D) the set of extreme points of D.

Lemma 4.2.

ext (X?:}Q(HS X Ss)> CA{z(B,w,7): (w,7) € O x Sg}. (4.9)
Proof. By the entire analogy to the proof of Theorem 3.8[3], we can show that

ext (X?:}a(l'[s X Ss)) C{z(B,w,7): (w,7) € II's x Ss}. (4.10)
Let (w,7) € IIy X Ss. For simplicity, let § = f7. Suppose that there exists 1,15 € S(i; # 43) with
0 <6(i1) < 1,0 <6(i2) < 1, P (Xy = iy for somet > 1) > 0 and PF(X; = 4, for somet > 1) > 0.

We consider 8 = (6'(1)), 62 = (6%(1)) satisfying the following (4.11) and (4.12):

6F(3) = 8(i) if i # 41,49 for k= 1,2,
0 < &M11) < 6(i1) < 82%(31) < 1, (4.11)
0< 52(7:2) < 5(12) < (51(’i2) < 1,

{Zx(ﬁ,w,r‘;l 1) = Zz(ﬂ,w, Tl )=a—1

and

€S 1 ies (4.12)
z(B,w, %) # 2(B,w, 7).

Note that the existence of such §* (k = 1,2) is easily shown. For simplicity, let 2% (i) =
x(ﬂ,w,T‘gl;i) and 2% () == z(8, w, 7'52;1'), 1 € S. Let b € (0,1) be such that

bz’ (i1) + (1 — b)z® (4)

L) = B T (Soans (62 (F) + (1= 825 () (P(w))en)

forall 1€ S(i#iz) (4.13)
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By the definition of 51 and 8% we observe that such a b exists. Using this b € (0, 1), we define
0 = (6(%)) as follows:
5 §1 /. _ 52(1:2)
1—8(ig) = — bz (?Z)X (1=b)e - q O (414)
B(i2) + (Cres bz + (1= b)ag ) (P(w))ki, )
and 6(1) = 6(3) if i # iy

Then, applying Lemma 3.2, by (4.13) and (4.14), we get
z(B,w, T ) = b2’ + (1 - ). (4.15)

By (4.15), Y ;cs (B, w, 75 i) = a — 1, so that from (4.14), we can assume that 6 = 6. Thus, by
(4.15), z(B, w, %) is not an extreme point. The above discussion shows that

ext({z(8,w,7) : (w,7) € (I x Ss)}) C {z(B,w,7) : (w,7) € I x Sg}.
which implies, together with (4.10), that (4.9) holds.
Theorem 4.3. For COP, there ezists an optimal pair in Il x Sg.

Proof. There exists an optimal pair (w*,7*) € IIg x Ss from Theorem 4.1, Corollary 4.1 and
Theorem 3.1. For o := ]Eﬁ*[T*] < a,(w*,7*) € X‘?:}Q,(HS X 8g). Hence, since the objective
function of MP(II) is linear, from Lemma 4.2 the theorem follows. g

Here, we give the following numerical example:
S =141,2,3,4},A = {1}, = 3,8 = (0.25,0.25, 0.25, 0.25),

03 04 0.1 0.2
04 0.1 02 03

Pi(MW) =102 03 04 01]
03 03 0.1 0.3

e(1,1) = 0.6,¢(2,1) = 0.1, ¢(3.1) = 0.5, ¢(4,1) = 0.4,7(1) = 4,r(2) = 3.7(3) = 2,r(4) = 2.
Letting z; = z;; (¢ € S), the Mathematical Programming formulation(MP(II)) for the corre-
sponding COP is given as follows:

Maximize — 1.6z — 0225 + 0.223 + 0.524 + 2.75
subject to = (0.25 + 0.3z; + 0.4z5 + 0.2z3 + 0.3z4)(1 — (1)),
Ty = (0.25 4+ 0.4z + 0.1z5 + 0.3z3 + 0.324) (1 — 6(2)),
= (0.25 + 0.1z; + 0.2z2 + 0.423 + 0.1z4) (1 — 4(3)),
= (0.25+ 0.2z1 + 0.3z2 + 0.1z3 + 0.3z4) (1 — 6(4))
a:1+:c2+a:3+x4 <2,
T1,22,23,24 2 0,1 2 6(1),6(2),6(3),6(4) 2 0.

L}

After a simple calculation, we find that the optimal solution of the above is 2] = 0,25 =
80/156,¢% = 113/156,2% = 55/78,6*(1) = 1,6*(2) = 129/574,6"(3) = 67(4) = 0 and the
optimal value is 611/195(= 3.13). Note that the value is 75/82(= 3.06) for 6(1) = 6(2) = 1 and
4(3) =46(4) =0.

Thus, by Corollary 4.2 and Theorem 4.3, the pair (w*,r*) € I x 8§ with w*(é) = 1 for all
icSand fr(1) =6 (1) =1, (2) = 6*(2) = 129/574, f7"(3) = 6*(3) =0, [ (4) = 6*(4) =0
is optimal for the corresponding COP and the optimal reward J (3, w*,7*) = 611/195.
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