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Abstract
For a triangulation and a point, we define a directed graph representing the
order of the maximal dimensional simplices in the triangulation viewed from the
point. We prove that triangulations having a cycle the reverse of which is not
a cycle in this graph viewed from some point are forming a (proper) subclass
of nonregular triangulations. We use linear programming duality to investigate
further properties of nonregular triangulations in connection with this graph.

1 Intfoduction .

Let A= {p,,...,p,} C R? be a point configuration with its convex hull conv(A) being
a d-polytope. A triangulation A of A is a geometric simplicial complex with its vertices
among A and the union of its faces equal to conv(A4). A triangulation is regular (or
coherent) if it can appear as the projection of the lower boundary of a (d + 1)-polytope
in R4t1, If not, the triangulation is nonregular. ‘

Starting from the study of generalized hypergeometric functions, Gel’fand Kapranov
& Zelevinskii showed that regular triangulations altogether of a point configuration are
forming a polytopal structure described by the secondary polytope [4] [5]. In connection
to Grébner bases, Sturmfels showed that initial ideals for the affine toric ideal deter-
mined by a point configuration correspond to the regular triangulations of the point
configuration (8] [9]. Regular triangulations are a generalization of the Delaunay trian-
gulation well known in computational geometry, and have also been used extenswely in
this field [2].

Though nonregular triangulations are know to be behaving differently from regular
triangulations, they are not well understood yet. Santos showed a nonregular triangula-
tion with no flips indicating that a flip graph can be disconnected, which never happens
when restricted to regular triangulations [7]. Ohsugi & Hibi showed the existence of a
point configuration with no unimodular regular triangulations, but with a unimodular
nonregular triangulation [6]. Also, de Loera, Hogten, Santos & Sturmfels showed that
cyclic polytopes can have exponential number of nonregular triangulations compared
to polynomial number of regular ones [1]. The aim of this paper is to put some insight
into nonregular triangulations. -

Hereafter in this paper, we fix a triangulation A. For the triangulation A and a
point v in R¢, we define the graph G, of A viewed from v as the graph with its vertices
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corresponding to the d-simplices of A and a directed edge 77 existing when v belongs
to the closed halfspace having the affine hull aff(¢ N7) as its boundary and including o.
When v € aff(0N7), both edges 57, 73 appear in G,. The graph G, is a directed graph
with the underlying undirected graph the adjacency graph of the d-simplices in A. Of
course, G, might differ for different choices of v. Though there are infinite choices of
viewpoints v, there are only finitely many possibilities of view graphs G,.

A sequence of vertices o1, 03,...,0,01 in G, forms a cycle when 3163, ...,5;,-10%,
;01 are edges of G, and o; # o; for i # j. We define a cycle 0y,03,...,0,01 to
be contradicting when the reverse order oy,0;,...,05,01 is not a cycle in G,. For
vertices 01,...,0; in Gy, edges 6103, ...,5;-10,,0201,...,0:0;-1 exist if and only if
RS a.ff(alﬂ---ﬂai).

Regularity of a triangulation can be stated as a linear programming problem, so the
two subjects obviously have connection. But, an interesting point in our argument is
that we use linear programming duality to analyze further in detail some properties of
nonregular triangulations.

For any triangulation, the condition of regularity can be written as a linear pro-
gramming problem. The variables w,...,w, correspond to the lifting (or weight) of
the vertices p;,...,p,.- The inequality constraints correspond to the interior (d — 1)-
simplices in A and describes the local convexity of the two d-simplices intersecting there.
Altogether, we get a system of inequalities Aw > 0 (0 is the zero vector), and the tri-
angulation is regular when this has a solution. Easily, this is equivalent to Aw > 1
(1 is the vector with all entries one) having a solution. By linear programming dual-
ity (or Farkas’ lemma), the triangulation is nonregular if and only if the dual problem
uA = 0, v > 0 has a nonzero solution.

Our main theorem constructs a nonzero solution of the dual problem comblna,tonally
and explicitly from a contradicting cycle.

Theorem. For a triangulation A, if a graph G, viewed from some point v contains a
contradicting cycle, in correspondence with this cycle, we can make a nonzero solution
of the dual problem stated above. Thus, A is nonregular. The support set (i.e. collection
of nonzero elements) of this solution is a subset of the edges forming the cycle. On
the other hand, the reverse of the claim above is not true. There exists a nonregular
triangulation with none of its view graphs G, containing a contradicting cycle. (See
Ezample 3.3)

The theorem says that triangulations containing a contradicting cycle in its graph G,
viewed from some point v are forming a (proper) subclass of nonregular triangulations.
This subclass of triangulations is interesting in that they have combinatorial explana-
tion. On the other hand, regularity or nonregularity, defined by linear inequalities,
are of continuous nature. This is the first attempt to give a (combinatorial) subclass
of nonregular triangulations. Even if we consider contradicting closed paths instead
of contradicting cycles, allowing to pass the same vertex more than once, the class of
the triangulations having such contradicting thing in its view graph does not change,
because any contradicting closed path includes a contradicting cycle.

Checking that Example 3.3 is a counterexample to the reverse of the implication in
the theorem (i.e. the view graph from any viewpoint does not contain a contradicting
cycle), can be done by extensive enumeration of view graphs. However, by describing
nonregularity as a linear programming problem, and using linear programming duality,
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we prove the counterexample in a more elegant way. »

A similar but different directed graph of a triangulation viewed from a point has been
studied by Edelsbrunner [3]. This was in the context of computer vision, and his graph
represents the in_front/behind relation among simplices of any dimension, even not
adjacent to each other. When our graph and the restriction of Edelsbrunner’s graph to
d-simplices are compared, neither includes the other in general. However, if we take the
transitive closure of our graph, it includes his graph as a subgraph (possibly with more
edges). Our graph might be more appropriate in describing combinatorial structures
of triangulations, because their underlying undirected graphs are the adjacency graph
of d-simplices. Edelsbrunner proves that if a triangulation is regular, his graph viewed
from any point is “acyclic”. The line shelling argument in a note there gives a proof
for the contrapositive of our theorem, but without explicit constructioin of a solution
of the dual problem.

2 Regularity, linear programming, and duality

2.1 Inequalities for regularity

A triangulation A of the point configuration p,, ..., p, is regular if their exists a lifting
(or weight) wy,...,w, € R such that the projection of the lower boundary with respect
to the £y, axis of the (d+1)-polytope conv((P1),..., (¥~)) becomes A. This condition
can be described by inequalities with wy,...,w, the variables.

A straightforward description of this “global” convexity is as follows:

e For each d-simplex conv(p; ,...,p;,) in A, and any point P; & {Piy>---sPi,}, the
. . -\ . ; ; . d+1.
lifted point (5;) is above the hyperplape aff ( (gig), . (:hj)) in R4+,

1 o 1 1 ce 1 1
ip. o || Pe o P B >0
to td wio e wid w]

However, the above condition is equivalent to the following “local” convexity, with much
less inequalities:

e For each interior (d—1)-simplex conv(p; ,...,p;,) in A, where the two d-simplices

conv(p;; Pj, - - Pi,) and conv(p; , ..., Py, Pi, +-1) are intersecting, the lifted point
(Z»’_d+1) is above the hyperplane aff( (5{3), ey (z’}{d)) in R+1.
id41 i i
1 eee 1 1
1 - 1
p; cee Py b, - Dy pid+1 > 0. (*)
20 td wi, - wi, Wiy,

The equivalence of these two convexity conditions is proved easily by reducing to the
one dimensional case.
We define the collection of the inequalities (*) for all interior (d — 1)-simplices in A
as
Aw > 0.

We denote this matriz representing the regularity of A by A.
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Lemma 2.1. For a triangulation A, and the matriz A representing its reqularity, we
have

A 1is regular
& there exists w € R™, Aw > 0,
& there exists w € R™, Aw > 1.

By linear programming duality (or Farkas’ lemma), we have

A is nonregular
& there does not exist w € R, Aw > 1,
& there ezists u > 0, uA =0, u # 0.

Thus, the (non)regularity of A can be judged by the existence of a nonzero point in
the polyhedron {u > 0 : uA = 0} of the set of solutions of the dual problem.

2.2 A nonzero solution of the dual problem from a contradicting
cycle

Here, we give an explicit construction of a nonzero solution of the dual problem uld =
0,u > 0, from a contradicting cycle in the graph G, viewed from some point v. For
v € RY, a d-simplex ¢ in A, and w € R"”, we let

z411(v,0,w) = (the £44+1 coordinate of the point ‘
" (the hyperplane containing the lifting of the d-simplex o by w)
N {('v,:cd+1) P Zgy1 € R})

Lemma 2.2. Let A be a triangulation, A the matriz representing its regularity, and
v € R?. For an edge &7 in the graph G, viewed from v, there exists a constant agnr > 0
such that

i:d+1(v,o,w) — 2441(v, T, W) = agnrAonr W (for any w € R™),

where Aynr.. 15 the row of A corresponding to the interior (d—1)-simplez o NT in A.
Furthermore, v € aff(c N 7) if and only if agnr = 0.

Proof. Straightforward. : ‘ ' O

Now we construct a nonzero solution of the dual problem from a contradicting cycle.
This gives the proof of our main theorem.

Proof. (main theorem) Suppose we have a contradicting cycle o1,02,...,0i,01 in
G,. By Lemma 2.2, we can find as,nog-- ) Qoinoy = 0, Or their collection as a vector
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a > 0, satisfying for any w € R”,

rqt1(v, 01, w) — fﬂd+1('v,02,w)

+ 2441(v, 03, w) — 2441(v, 01, )

= aclﬁagAa'lﬁag,*w

+ aaiﬂo1Auiﬂal,*w
= aAw (a is a vector with those elements not in the cycle 0)
= 0.

Thus, A = 0. Since we took a contradicting cycle, by Lemma 2.2, o # 0. Hence,
we obtain a nonzero solution of the dual problem uA = 0,u > 0. This together with
Lemma 2.1 proves the claim of the main theorem. ‘ O

2.3 Recognizing nonregularity or finding contradicting cycles

Judging whether the given triangulation A is (non)regular reduces to judging whether
the inequalities Aw > 1, with A the matrix of regularity, has a solution w. This is
a linear programming problem, and can be computed, for example by interior point
method, in.polynomial time.

One way to judge if a triangulation A has a contradicting cycle in some view graph
G is to enumerate all possible view graphs and enumerate the cycles there. The
generation of view graphs can be done, for example, by generating all graphs viewed
from the minimal cells in the hyperplane arrangement made by the affine hulls of the
interior (d — 1)-simplices in A.
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3 Examples

Example 3.1 (A nonregular triangulation with 6 vertices). For the point con-
figuration

P = (00), Py = (40), ps = (04),
p4:(1 1)7 Ds 2(2 1)a D¢ :(1 2),

we consider the triangulation A indicated in Figure 1(a) below. The graph G, viewed
from v = (3 %)’is in Figure 1(b). It has one contradicting cycle p,p4Ps, P1P2Ps, P2P5DPs>
D2D3De, P3sPsPg, P1P3Ps, P1P4P5s denoted by bold edges. The matrix representing the

P3
P1 P2
(a) triangulation (b) view graph from v (c) support of the dual so-
‘ lutions

Figure 1: Example 3.1.

regularity of A is

w; Wz W3 Wq4 W5 We
PPy | 3 1 -8 4
pips | -1 1 4 -4
pops |1 3 -8 4
A= P2Ps -1 1 4 -4 .
PPy | 1 -1 -4 4
P3Ps 1 3 4 -8
paps | 1 -3 1 1
D4Ds 1 1 1 -3
PsPs 1 1 -3 1

The polyhedron of the solutions of the dual problem is
{u>0:Au=0}=R>0,(010110000),

where interior 1-simplices are indexed lexicographically. The support of the nonzero
solutions is denote by bold edges in Figure 1(c). Remark that they are included in the
(underlying undirected) edges of the contradicting cycle.
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Example 3.2 (Another nonregular triangulation with 6 vertices). The vertex p,
in Examples 3.1 is perturbed. The point configuration is

\ p1=(00), Pzz(‘;‘ 0), P3=(04), ‘
py=(11), ps =(21), ps = (12).
The triangulation A is indicated in Figure 2 below. Each of the graph viewed from

v =(332), v =(§3%), or vg = (£ I) has a unique contradicting cycle. The matrix

P3

p
4, 5

P1 P2

Figure 2: Triangulation of Example 3.2.

representing the regularity of A is

wy Wy W3 Wy Ws We
PPy | 3 1 -8 4
pps | -1 1 % _';'
20Y 23 % 3 -7 %
A= D2Dg -1 :2]; 3 “%
p3py | 1 -1 —4 4
P3Ds 1 3 3 -3
pups | 1 -3 1 1
P4Ps 1 1 1 -3
PsPe 1 3 —5 1

The polyhedron of the solutions of the dual problem is

{u>0:Au =0}

=R5(180850000)
+Rs0(0821470000)
+R50(060761000)
+R50(020210100)
+R50(020220010)
+Rs0(010210001),

where interior 1-simplices are indexed lexicographically. The first three 1-rays corre-
spond to the solutions made by the contradicting cycles in view graphs G,, Gy,, Gus,
as in Subsection 2.2. The latter three 1-rays have no such correspondence.
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Example 3.3 (Counterexample to the reverse of the main theorem). With the
point configuration ‘

p; =(00), p, =(30), p; = (34), py = (04),
Ds = (1 1)7 D = (2 1)7 Dy = (2 3)1 Dg = (1 3),

the triangulation A indicated in Figure 3(a) below is a nonregular triangulation with
none of its view graphs G, containing a contradicting cycle. The matrix representing

P4 P3 P4 P3
[ | p7
P5 6 ps5
P1 P2 P1 P2
(a) triangula- (b) support of the dual solu-
tion tions

Figure 3: Example 3.3. |

the regularity of A is

Wy W2 W3 W4 | Wy W Wy Wg
pips | 3 11-8 4
pipe | -1 1 3 -3
Paps | 2 4 -9 3
P:p7 -2 2 4 —4
PsPr 13 -8 4
A Paps | -1 1 3 -3
P4Ps 2 4|3 -9
PaDs | 2 —2| -4 4
PsDg | 2 -4 1 1
PeP7 2 12 =5 1
P7Ds 2 1 -4 1
PsPg 2 1 2 -5
PsPy -2 2 =2 2

The polyhedron of the solutions of the dual problem is
{u>0:Au =0} =R>0(0201020100001),

where interior 1-simplices are indexed lexicographically. The support of the nonzero
solutions is denote by bold edges in Figure 3(b). If a contradicting cycle existed for
some view graph G, this (directed) cycle should contain all of the bold edges (in its



underlying undirected counterpart). However, there are no cycles containing all of these
bold edges. Hence, there exists no view graph G, containing a contradicting cycle for
this example. (Remark: If we take the edge psp, instead of pyp,, this new ﬂ1pped
triangulation becomes regular.) .
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