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Abstract
For a triangulation and a point, we define a directed graph representing the

order of the maximal dimensional simplices in the triangulation viewed from the
point. We prove that triangulations having a cycle the reverse of which is not
a cycle in this graph viewed from some point are forming a (proper) subclass
of nonregular triangulations. We use linear programming duality to investigate
further properties of nonregular triangulations in connection with this graph.

1 Introduction
Let $A=\{p_{1}, \ldots , p_{n}\}\subset \mathbb{R}^{d}$ be a point configuration with its convex hull conv $(A)$ being
a $d$-polytope. A triangulation $\Delta$ of $A$ is a geometric simplicial complex with its vertices
among $A$ and the union of its faces equal to conv$(A)$ . A triangulation is regular (or
coherent) if it can appear as the projection of the lower boundary of a $(d+1)$-polytope
in 1R$d+1$ . If not, the triangulation is nonregular. .}. .. $\iota_{\sim}$.

Starting from the study of generalized hypergeometric functions, Gel’fand, Kapranov
$\ \mathrm{z}_{\mathrm{e}}1\mathrm{e}\mathrm{v}\mathrm{i}\mathrm{n}\mathrm{S}\mathrm{k}\mathrm{i}1$ showed that regular triangulations altogether of a point configuration are
forming a polytopal structure described by the secondary polytope [4] [5]. In connection
to Gr\"obner bases, Sturmfels showed that initial ideals for the affine toric ideal deter-
mined by a point configuration correspond to the regular triangulations of the point
configuration [8] [9]. Regular triangulations are a generalization of the Delaunay trian-
gulation well known in computational geometry, and have also been used extensively in
this field [2].

Though nonregular triangulations are know to be behaving differently from regular
triangulations, they are not well understood yet. Santos showed a nonregular triangula-
tion with no flips indicating that a flip graph can be disconnected, which never happens
when restricted to regular triangulations [7]. Ohsugi&Hibi showed the existence of a
point configuration with no unimodular regular triangulations, but with a unimodular
nonregular triangulation [6]. Also, de Loera, Ho\S ten, Santos&Sturmfels showed that
cyclic polytopes can have exponential number ofnon-regular triangulations compared
to polynomial number of regular ones [1]. The aim of this pap..e.r is to put some insight
into nonregular triangulations.

Hereafter in this paper, we fix a triangulation $\Delta$ . For the triangulation $\Delta$ and a
point $v$ in $\mathbb{R}^{d}$ , we define the graph $G_{v}$ of $\Delta$ viewed from $v$ as the graph with its vertices
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corresponding to the $d$-simplices of $\Delta$ and a directed edge $\overline{\sigma}\not\simeq$ existing when $v$ belongs
to the closed halfspace having the affine hull $\mathrm{a}\mathrm{f}\mathrm{f}(\sigma\cap\tau)$ as its boundary and including $\sigma$ .
When $v\in \mathrm{a}\mathrm{f}\mathrm{f}(\sigma\cap \mathcal{T})$ , both edges $\overline{\sigma}\not\simeq,\overline{\tau}\neq$ appear in $G_{v}$ . The graph $G_{v}$ is a directed graph
with the underlying undirected graph the adjacency graph of the $d$-simplices in $\Delta$ . Of
course, $G_{v}$ might differ for different choices of $v$ . Though there are infinite choices of
viewpoints $v$ , there are only finitely many possibilities of view graphs $G_{v}$ .

A sequence of vertices $\sigma_{1},$ $\sigma_{2},$
$\ldots,$

$\sigma_{i},$ $\sigma_{1}$ in $G_{v}$ forms a cycle when $\overline{\sigma}_{1\eta,\ldots,\frac{\backslash }{\sigma_{i-1}\sigma_{i}^{\gamma}}}\sigma$,
$\frac{}{\sigma_{i}\sigma 1}$ are edges of $G_{v}$ and $\sigma_{i}\neq\sigma_{j}$ for $i\neq j$ . We define a cycle $\sigma_{1},$ $\sigma_{2,\ldots,i}\sigma,$ $\sigma_{1}$ to
be contradicting when the reverse order $\sigma_{1},$ $\sigma_{i},$

$\ldots,$
$\sigma_{2},$ $\sigma_{1}$ is not a cycle in $G_{v}$ . For

vertices $\sigma_{1},$
$\ldots,$

$\sigma_{i}$ in $G_{v}$ , edges $\frac{}{\sigma_{1}\sigma \mathrm{g}},$

$\ldots$ , $\frac{\backslash }{\sigma_{i-1}\sigma_{i}’},\frac{\mathrm{t}}{\sigma_{2}\sigma \mathrm{i}},$
$\ldots,\frac{}{\sigma_{i}\sigma_{i-\mathrm{i}}}$ exist if and only if

$v\in \mathrm{a}\mathrm{f}\mathrm{f}(\sigma_{1}\cap\cdots\cap\sigma_{i})$ .
Regularity of a triangulation can be stated as a linear programming problem, so the

two subjects obviously have connection. But, an interesting point in our argument is
that we use linear programming duality to analyze further in detail some properties of
nonregular triangulations.

For any triangulation, the condition of regularity can be written as a linear pro-
gramming prob.lem. The variables $w_{1},$ $\ldots,$ $w_{n}$ correspond to the lifting (or weight) of
the vertices $p_{1},$ $\ldots,p_{n}$ . The inequality constraints correspond to the interior $(d-1)-$
simplices in $\triangle$ and describes the local convexity of the two $d$-simplices intersecting there.
Altogether, we get a system of inequalities $Aw>0$ ( $0$ is the zero vector), and the tri-
angulation is regular when this has a solution. Easily, this is equivalent to $Aw\geq 1$

(1 is the vector with all entries one) having a solution. By linear programming dual-
ity (or Farkas’ lemma), the $\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$

.
is nonregular if and only if the dual problem

$u.A=0,$ $u\geq 0$ has a nonzero solution.
Our main theorem constructs a nonzero solution of the dual problem combinatorially

and $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}’ \mathrm{l}\mathrm{y}$ from a $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\dot{\mathrm{d}}$ icting cycle.

Theorem. For a triangulation $\triangle$ , if a graph $G_{v}$ viewed from some point $v$ contains a
contradicting cycle, in correspondence with this cycle, we can make a nonzero solution
of the dual problem stated above. Thus, $\Delta$ is nonregular. The support set ( $i.e$ . collection
of nonzero elements) of this solution is a subset of the edges forming the cycle. $On$

the other hand, the reverse of the claim above is not true. There exists a nonregular
triangulation with none of its view graphs $G_{v}$ containing a contradicting cycle. (See
Example 3.3)

The theorem says that triangulations containing a contradicting cycle in its graph $G_{v}$

viewed from some point $v$ are forming a (proper) subclass of nonregular triangulations.
This subclass of triangulations is interesting in that they have combinatorial explana-
tion. On the other hand, regularity or nonregularity, defined by linear inequalities,
are of continuous nature. This is the first attempt to give a (combinatorial) subclass
of nonregular triangulations. Even if we consider contradicting closed paths instead
of contradicting cycles, allowing to pass the same vertex more than once, the class of
the triangulations having such contradicting thing in its view graph does not change,
because any contradicting closed path includes a contradicting cycle.

Checking that Example 3.3 is a counterexample to the reverse of the implication in
the theorem (i.e. the view graph from any viewpoint does not contain a contradicting
cycle), can be done by extensive enumeration of view graphs. However, by describing
nonregularity as a linear programming problem, and using linear programming duality,
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we prove the counterexample in a more elegant way.
A similar but different directed graph of a triangulation viewed from a point has been

studied by Edelsbrunner [3]. This was in the context of computer vision, and his graph
represents the $\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{t}/\mathrm{b}\mathrm{e}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{d}$ relation among simplices of any dimension, even not
adjacent to each other. When our graph and the restriction of Edelsbrunner’s graph to
$d$-simplices are compared, neither includes the other in general. However, if we take the
transitive closure of our graph, it includes his graph as a subgraph (possibly with more
edges). Our graph might be more appropriate in describing combinatorial structures
of triangulations, because their underlying undirected graphs are the adjacency graph
of $d$-simplices. Edelsbrunner proves that if a triangulation is regular, his graph viewed
from any point is “acyclic”. The line shelling argument in a note there gives a proof
for the contrapositive of our theorem, but without explicit constructioin of a solution
of the dual problem.

2 Regularity, linear programming, and duality

2.1 Inequalities for regularity
A triangulation $\Delta$ of the point configuration $p_{1},$ $\ldots,p_{n}$ is regular if their exists a lifting
(or weight) $w_{1},$ $\ldots,$

$w_{n}\in \mathbb{R}$ such that the projection of the lower boundary with respect
to the $x_{d+1}$ axis of the $(d+1)$ -polytope conv$(, \ldots, )$ becomes $\Delta$ . This condition
can be described by inequalities with $w_{1},$ $\ldots$ , $w_{n}$ the variables.

A straightforward description of this “global” convexity is as follows:
$\bullet$ For each $d$-simplex $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{V}(p_{i}0’\ldots,p_{i_{d}})$ in $\Delta$ , and any point $p_{j}\not\in\{p_{i0}, \ldots,p_{i_{d}}\}$ , the

lifted point $(_{w_{\mathrm{j}}}^{p_{j}})$ is above the hyperplane $\mathrm{a}\mathrm{f}\mathrm{f}(, \ldots, )$ in $\mathbb{R}^{d+1}$ :

$|w_{i_{0}}p_{i_{0}}1$ . .. $w_{i_{d}}p_{i_{d}}1$ $w_{j}p_{j}1|>0$ .

However, the above condition is equivalent to the following “local” convexity, with much
less inequalities:

$\bullet$ For each interior $(d-1)$-simplex conv$(p_{i_{1}}, . . ., p_{i_{d}})$ in $\triangle$ , where the two d-simplices
conv $(p_{i},p_{i}01’\ldots,p_{i_{d}})$ and conv $(p_{i_{1}}, \ldots , p_{i_{d}}, p_{i_{d+1}})$ are intersecting, the lifted point

1 1 1
$p_{i_{0}}$ $p_{i_{d}}$ $p_{i_{d+1}}$

$w_{i_{0}}$ $w_{i_{d}}$ $w_{i_{d+1}}$

$>0$ . $(*)$

The equivalence of these two convexity conditions is proved easily by reducing to the
one dimensional case.

We define the collection of the inequalities $(*)$ for all interior $(d-1)$-simplices in $\Delta$

as
$Aw>0$ .

We denote this matrix representing the regularity of $\Delta$ by $A$ .
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Lemma 2.1. For a triangulation $\Delta$ , and the matrix A representing its regularity, $we$

have

$\Delta$ is regular
$\Leftrightarrow$ there exists $w\in \mathbb{R}^{n},$ $Aw>0$ ,
$\Leftrightarrow$ there exists $w\in \mathbb{R}^{n},$ $Aw\geq 1$ .

By linear programming duality (or Farkas’ lemma), we have

$\Delta$ is nonregular
$\Leftrightarrow$ there does not enist $w\in \mathbb{R}^{n},$ $Aw\geq 1$ ,
$\Leftrightarrow$ there exists $u\geq 0,$ $uA=0,$ $u\neq 0$ .

Thus, the (non)regularity of $\Delta$ can be judged by the existence of a nonzero point in
the polyhedron $\{u\geq 0:uA=0\}$ of the set of solutions of the dual problem.

2.2 A nonzero solution of the dual problem from a contradicting
cycle

Here, we give an explicit construction of a nonzero solution of the dual problem $uA=$

$0,$ $u\geq 0$ , from a contradicting cycle in the graph $G_{v}$ viewed from some point $v$ . For
$v\in \mathbb{R}^{d}$ , a d–simplex $\sigma$ in $\Delta$ , and $w\in \mathbb{R}^{n}$ , we let

$x_{d+1(}- v,$ $\sigma,$
$w)=(\mathrm{t}\mathrm{h}\mathrm{e}Xd+1$ coordinate of the point

(the hyperplane containing the lifting of the $d$-simplex $\sigma$ by $w$ )

$\cap\{(v, Xd+1) : x_{d+1}\in \mathbb{R}\})$ .

Lemma 2.2. Let $\Delta$ be a triangulation, A the matrix representing its regularity, and
$v\in \mathbb{R}^{d}$ . For an edge $\overline{\sigma}\not\simeq in$ the graph $G_{v}$ viewed from $v$ , there exists a constant $\alpha_{\sigma\cap \mathcal{T}}\geq 0$

such that

$x_{d+1}(v, \sigma, w)-xd+1(v, \mathcal{T}, w)=\alpha_{\sigma\cap\tau}A_{\sigma\cap\tau},*w$ (for any $w\in \mathbb{R}^{n}$ ),

where $A_{\sigma\cap \mathcal{T},*}$ is the row of A corresponding to the interior $(d-1)$ -simplex $\sigma\cap\tau$ in $\Delta$ .
Furthermore, $v\in \mathrm{a}\mathrm{f}\mathrm{f}(\sigma\cap\tau)$ if and only if $\alpha_{\sigma\cap \mathcal{T}}=0$ .

Proof. Straightforward. $\square$

Now we construct a nonzero solution of the dual problem from a contradicting cycle.
This gives the proof of our main theorem.

Proof. (main theorem) Suppose we have a contradicting cycle $\sigma_{1},$ $\sigma_{2},$ $\ldots$ , $\sigma_{i},$ $\sigma_{1}$ in
$G_{v}$ . By Lemma 2.2, we can find $\alpha_{\sigma_{1}\cap\sigma_{2}},$ $\ldots$ , $\alpha_{\sigma\cap\sigma_{1}}:\geq 0$ , or their collection as a vector
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$\alpha\geq 0$ , satisfying for any $w\in \mathbb{R}^{n}$ ,

$x_{d+1}(v, \sigma_{1}, w)-X_{d+}1(v, \sigma 2, w)$

$+x_{d+1}(v, \sigma_{i}, w)-X_{d+}1(v, \sigma 1, w)$

$=\alpha_{\sigma_{1}\cap\sigma_{2}\sigma}A1^{\cap*}\sigma_{2},w$

$+\alpha_{\sigma:^{\mathrm{n}\sigma\sigma}}1A:\cap\sigma 1^{*},w$

$=\alpha Aw$ ( $\alpha$ is a vector with those elements not in the cycle $0$ )
$=0$ .

Thus, $\alpha A=0$ . Since we took a contradicting cycle, by Lemma 2.2, $\alpha\neq 0$ . Hence,
we obtain a nonzero solution of the dual problem $uA=$. $0,$ $u\geq 0$ . This together with
Lemma 2.1 proves the claim of the main theorem. $\square$

2.3 Recognizing nonregularity or finding contradicting cycles
Judging whether the given triangulation $\Delta$ is (non)regular reduces to judging whether
the inequalities $Aw\geq 1$ , with $A$ the matrix of regularity, has a solution $w$ . This is
a linear programming problem, and can be computed, for example by interior point
method, in polynomial time.

One way to judge if a triangulation $\Delta$ has a contradicting cycle in some view graph
$G_{v}$ is to enumerate all possible view graphs and enumerate the cycles there. The
generation of view graphs can be done, for example, by generating all graphs viewed
from the minimal cells in the hyperplane arrangement made by the affine hulls of the
interior $(d-1)$-simplices in $\Delta$ .
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3 Examples
Example 3.1 (A nonregular triangulation with 6 vertices). For the point con-
figuration

$p_{1}=(00)$ , $p_{2}=(40)$ , $p_{3}=(04)$ ,
$p_{4}=(11)$ , $p_{5}=(21)$ , $p_{6}=(12)$ ,

we consider the triangulation $\Delta$ indicated in Figure $1(\mathrm{a})$ below. The graph $G_{v}$ viewed
from $v=( \frac{4}{3}\frac{4}{3})$ is in Figure 1 (b). It has one contradicting cycle $p_{1}p_{4}p_{5},p1p_{2}p_{5},p2p_{5}p_{6}$ ,
$p_{2}p_{3}p_{6},p_{3}p_{4}p6’ p1p_{3}p_{4},p1p_{4}p_{5}$ denoted by bold edges. The matrix representing the

$(_{\backslash }\tau_{arrow}f\nearrow\nearrow\backslash _{\mathit{1}}$ $(>_{-}^{\backslash _{/}}/$

$\rho_{1}$ $P2$ $\rho\uparrow$ $\rho_{2}$ $\rho_{1}$ $\rho_{2}$

(a) triangulation (b) view graph from $v$ (c) support of the dual so-
lutions

Figure 1: Example 3.1.

regularity of $\Delta$ is

$A=$ .

The polyhedron of the solutions of the dual problem is

$\{u\geq 0 : Au=0\}=\mathbb{R}\geq 0(010110000)$ ,

where interior 1-simplices are indexed lexicographically. The support of the nonzero
solutions is denote by bold edges in Figure $1(\mathrm{c})$ . Remark that they are included in the
(underlying undirected) edges of the contradicting cycle.
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Example 3.2 (Another nonregular triangulation with 6 vertices). The vertex $p_{2}$

in Examples 3.1 is perturbed. The point configuration is

$p_{1}=(00)$ , $p_{2}=( \frac{7}{2}0)$ , $p_{3}=(04)$ ,
$p_{4}=(11)$ , $p_{5}=(21)$ , $p_{6}=(12)$ .

The triangulation $\Delta$ is indicated in Figure 2 below. Each of the graph viewed from
$v_{1}=( \frac{5}{4}\frac{3}{2}),$ $v_{2}=( \frac{4}{3}\frac{4}{3})$ , or $v_{3}=( \frac{7}{5}\frac{7}{5})$ has a unique contradicting cycle. The matrix

$p_{3}$

$p$

$\rho_{4}$

$p_{5}$

$\rho_{1}$ $\rho_{2}$

Figure 2: Triangulation of Example 3.2.

representing the regularity of $\Delta$ is

$A=$ .

The polyhedron of the solutions of the dual problem is

$\{u\geq 0: Au=0\}$

$=\mathbb{R}\geq 0(180850000)$

$+\mathbb{R}\geq 0(0821470000)$

$+\mathbb{R}0(\geq 060761000)$

$+\mathbb{R}_{\geq 0}(020210100)$

$+\mathbb{R}0(\geq 020220010)$

$+\mathbb{R}\geq 0(010210001)$ ,

where interior 1-simplices are indexed lexicographically. The first three 1-rays corre-
spond to the solutions made by the contradicting cycles in view graphs $G_{v_{1}},$ $G_{v_{2}},$ $G_{v_{3}}$ ,
as in Subsection 2.2. The latter three 1-rays have no such correspondence.
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Example 3.3 (Counterexample to the reverse of the main theorem). With the
point configuration

$p_{1}=(00)$ , $p_{2}=(30)$ , $p_{3}=(34)$ , $p_{4}=(04)$ ,
$p_{5}=(11)$ , $p_{6}=(21)$ , $p_{7}=(23)$ , $p_{8}=(13)$ ,

the triangulation $\Delta$ indicated in Figure $3(\mathrm{a})$ below is a nonregular triangulation with
none of its view graphs $G_{v}$ containing a contradicting cycle. The matrix representing

(a) triangula- (b) support of the dual solu-
tion tions

Figure 3: Example 3.3.

the regularity of $\Delta$ is

The polyhedron of the solutions of the dual problem is

$\{u\geq 0 : Au--\mathrm{O}\}=\mathbb{R}\geq 0(0201020100001)$ ,

where interior 1-simplices are indexed lexicographically. The support of the nonzero
solutions is denote by bold edges in Figure $3(\mathrm{b})$ . If a contradicting cycle existed for
some view graph $G_{v}$ , this (directed) cycle should contain all of the bold edges (in its
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underlying undirected counterpart). However, there are no cycles containing all of these
bold edges. Hence, there exists no view graph $G_{v}$ containing a contradicting cycle for
this example. (Remark: If we take the edge $p_{6}p_{8}$ instead of $p_{5}p_{7}$ , this new flipped
triangulation becomes regular.)
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