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1. INTRODUCTION
This article is concerned with the following semilinear parabolic system

(1.1) $\{$

$u_{t1}=k\triangle u+u(a-u-cv)$ in $\Omega\cross(0, \infty)$ ,
$v_{t}=k_{2}\triangle v+v(b-du-v)$ in $\Omega\cross(0, \infty)$ ,
$u=v=0$ on $\partial\Omega\cross(0, \infty)$ ,
$u(\cdot, 0)=u_{0}$ , $v(\cdot, 0)=v_{0}$ in $\Omega$ ,

where $\Omega$ is a bounded domain in $R^{N}$ with smooth boundary $\partial\Omega,$
$u_{0},$ $v_{0}$ are given

nonnegative functions in $\Omega$ and $k_{1},$ $k_{2},$ $a,$ $b,$ $c,$ $d$ are positive constants. This system is
referred to the Lotka-volterra competition model with diffusion. In (1.1) $u$ and $v$ denote
population densities of two competing species. We are interested in positive stationary
solutions for (1.1). Such a solution is usually called a coexistence state. The existence,
uniqueness and non-uniqueness problem of coexistence states for (1.1) has been studied
by many authors (see $[1],[2],[3],[4],[8],[9],[10]$ and the references therein).

The main purpose is to give some remarks on the multiple existence of coexistence
states. A.fter rescaling of $u$ and $v$ we are led to the following steady-state problem:

$(\mathrm{S}\mathrm{P})$ $\{$

$\mu\triangle u+u(1-u-cv)=0$ in $\Omega$ ,
$\nu\triangle v+v(1-du-v)=0$ in $\Omega$ ,
$u=v=0$ on $\partial\Omega$ ,
$u\geq 0$ , $v\geq 0$ in $\Omega$ ,

where $\mu,$ $\nu,$ $c$ and $d$ are positive constants. Although non-uniqueness of coexistence
states has been discussed in a pretty number of works such as [4], [8], [9], [10], we
do not have satisfactory information about explicit conditions for the non-uniqueness.
We will give here some sufficient conditions

,
$\mathrm{o}\mathrm{n}u$ , lノ, $c,$ $d$ for the multiple existence of

coexistence states in two cases:
(A) $(c-1)(d-1)<0,$ $cd>1$ ,
(B) $c,$ $d$ are sufficiently large.

The analysis in the former case is carried out by using the degree theory or local
bifurcation theory, while the analysis in the latter case heavily depends on the theory
of Dancer and Du [5].

In Section 2 we will give some preliminary results on the existence of coexistence
states for $(\mathrm{S}\mathrm{P})$ . Multiple existence for case (A) is discussed in Section 3. In Section 4
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we get some multiplicity results of $(\mathrm{S}\mathrm{P})$ from the anal.ysis of suitable limit problems
with $c,$ $darrow\infty$ in $(\mathrm{S}\mathrm{P})$ .

2. PRELIMINARIES

We begin with the following auxiliary problem for a semilinear elliptic equation:

(2.1) $\{$

$\mu\triangle w+w(1-w)=0$ in $\Omega$ ,
$w=0$ on $\partial\Omega$ .

It is well known that (2.1) has a unique positive solution $\varphi_{\mu}$ if and only if $0<\mu<$
$\sigma^{*}:=1/\lambda_{1}$ , where $\lambda_{1}$ is the least eigenvalue for $-\triangle w=\lambda w$ in $\Omega$ with $w=0$ on $\partial\Omega.$ .
Moreover, it is also possible to show the following result (see, e.g., [10]).

Lemma 2.1. (i) If $0<\mu<\sigma^{*}$ , then there exists a unique positive solution $\varphi_{\mu}$ of (2.1)
such that $\varphi_{\mu}(x)$ is strictly decreasing with respect to $\mu$ for every $x\in\Omega$ .
(ii) $\muarrow\varphi_{\mu}$ is a $C^{1}$ -mapping from $(0, \sigma^{*})$ to $C_{0}(\overline{\Omega})$ , where $C_{0}(\overline{\Omega})$ denotes the.space of
all continuous functions $u$ in $\overline{\Omega}$ such that $u$ vanishes on $\partial\Omega$ .
(iii) $\lim_{\muarrow\sigma^{*}}\varphi_{\mu}=0$ uniformly in $\Omega$ . More precisely,

(2.2) $\varphi_{\mu}=\frac{\lambda_{1}(\sigma^{*}-\mu)}{m_{0}}\varphi^{*}+o(\sigma^{*}-\mu)$ as $\sigma^{*}-\muarrow 0$ ,

where $m_{0}= \int_{\Omega}\varphi^{*}(x)^{3}dX$ .

(iv) For any compact subset $F$ in $\Omega,\lim_{\muarrow 0}\varphi_{\mu}=1$ uniformly in $F$ .

Lemma 2.1 assures that $(\mathrm{S}\mathrm{P})$ has no coexistence states for $\mu\geq\sigma^{*}$ or $\nu\geq\sigma^{*};$ so we
assume

$0<\mu<\sigma^{*}$ and $0<\nu<\sigma^{*}$

in the sequel.
Define

(2.3) $f( \mu)=\sup\{\int_{\Omega}(1-d\varphi_{\mu})wd2x/||\nabla w||^{2}$ ; $w\in H_{0}^{1}(\Omega),$ $w\neq 0\}$ ,

where $||\cdot||$ denotes $L^{2}(\Omega)$ -norm.

Lemma 2.2. If $f$ is defined by (2.3), then it has the following properties.
(i) $f$ is a strictly increasing function of class $C^{1}$ in $(0, \sigma^{*})$ .
(ii) $\lim_{\muarrow\sigma}\cdot f(\mu)=\sigma^{*}$ and $\lim_{\muarrow\sigma}\cdot f’(\mu)=d$ .
(iii) $\lim_{\muarrow 0}f(\mu)=(1-d)^{+}\sigma*$ .

Proof. In order to prove (i) we will employ the argument in the proof of [16, Lemma
3.4]. We first observe that the supremum in (2.3) is attained by a positive function
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$w_{\mu}\in H_{0}^{1}(\Omega)$ , which is normalized with $||\nabla w_{\mu}||=1$ . It follows from the definition that

$f(\mu+h)$ $= \int(1-d\varphi\mu+h)w^{2}d\mu+hx\geq\int_{\Omega}(1-d\varphi\mu+h)w_{\mu}d_{X}2$

(2.4) $=J_{\Omega}(1-d \varphi_{\mu})w_{\mu}^{2}dx+d\int_{\Omega}(\varphi_{\mu}-\varphi_{\mu+h})w_{\mu}^{2}d_{X}$

$=f( \mu)+d\int_{\Omega}(\varphi_{\mu}-\varphi\mu+h)w_{\mu}d2X$.

Since a similar inequality t.o (2.4) holds $\mathrm{t}\mathrm{r}..\mathrm{u}\mathrm{e}$ if $\mu$ and $\mu.+h$ are exchanged, one can
derive

(2.5) $|f(\mu+h)-f(\mu)|\leq c||\varphi_{\mu+h}-\varphi\mu||_{\infty}$

for some $C>0$ , where $||\cdot||_{\infty}$ denotes the supremum norm. Thus (2.5), together with
Lemma 2.1, implies the Lipschitz continuity of $f$ with respect to $\mu$ . It is easy to see
$\lim_{\muarrow\sigma}\cdot f(\mu)=\sigma^{*}$ from (iii) of Lemma 2.1 because $w_{\mu}arrow w^{*}$ in $H_{0}^{1}(\Omega)$ , where $w^{*}$

satisfies $\mu^{*}\triangle w^{*}+w^{*}--\mathrm{O}$ in $\Omega$ and $||\nabla w^{*}||=1$ .
The Lipschitz continuity also means that $f(\mu)$ is differentiable for almost every $\mu\in$

$(0, \sigma^{*})$ . Making use of (2.4) we divide $f(\mu+h)-f(\mu)$ by $h>0(h<0)$ and let $harrow \mathrm{O}$ ;
then

(2.6) $f’( \mu)=-d\int_{\Omega}\frac{\partial\varphi_{\mu}}{\partial\mu}w_{\mu}^{2}dX$

for almost every $\mu\in(0, \sigma^{*})$ . By Lemma 2.1, the right-hand side of (2.6) is continuous
in $\mu\in(0, \sigma^{*}]$ ; so that (2.6) is valid for every $\mu\in(0, \sigma^{*}]$ . Clearly, (2.6) together with
(2.2) yields $f’(\mu)>0$ and

$\lim_{\muarrow\sigma^{*}}f’(\mu)--\frac{\lambda_{1}d}{m_{0}}\int_{\Omega}\frac{(\varphi^{*})^{3}}{||\nabla\varphi^{*}||2}dx=d,$

$\cdot.$

.

where we have used $w^{*}=\varphi^{*}/||\nabla\varphi^{*}||$ and $||\nabla\varphi^{*}||^{2}=\lambda_{1}$ .
It remains to show (iii). From the monotonicity in (i) there exists a limit of $f(\mu)$ as

$\muarrow 0$ ; so we put
$\lim_{\muarrow 0}f(\mu)=\nu^{*}$ .

Since $\varphi_{\mu}\leq 1$ in $\Omega$ , it is easy to see $f(\mu)\geq(1-d)||w||2/||\nabla w||^{2}$ for all $w\in H_{0}^{1}(\Omega)$ and
$\mu\in(0, \sigma^{*})$ ; so that, in view of $\sup\{||w||^{2}/||\nabla w||^{2}; w\in H_{0}^{1}(\Omega)\}=\sigma^{*}$ , we get

$\nu^{*}\geq(1-d)\sigma^{*}$ .

Moreover, even if the set $\{x\in\Omega;d\varphi_{\mu}(X)>1\}$ is non-empty, we can choose a suitable
function $w\in H_{0}^{1}(\Omega)$ such that $\int_{\Omega}(1-d\varphi_{\mu})w^{2}dx>0$ . This fact means $f(\mu)>0$ for
every $\mu>0$ . Therefore,

(2.7) $\nu^{*}\geq\max\{(1-d)\sigma^{*}, 0\}$ .

To prove the reverse inequality, we use a family $\{w_{\mu}\}$ again. Since $||\nabla w_{\mu}||--1$ , it
follows from Rellich’s theorem that there exists a sequence $\{\mu_{n}\}\downarrow 0$ such that $w_{n}=$

$w_{\mu_{n}}(n=1,2,3, \cdots)$ satisfy
$\lim_{narrow\infty}\prime w_{n}=\prime w_{\infty}$ strongly in $L^{2}(\Omega)$ ,..
$\lim_{narrow\infty}\nabla w_{n}=\nabla w_{\infty}$ weakly in $L^{2}(\Omega)$ , $\cdot$
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for some $w_{\infty}\in H_{0}^{1}(\Omega)$ . Note that $||\nabla w_{\infty}||^{2}\leq 1$ . As in the proof of [14, Lemma A.1],
one can prove

(2.8) $\nu^{*}=\lim_{narrow\infty}\int_{\Omega}(1-d\varphi_{\mu}n)w\frac{9}{n}d_{X}=(1-d)||w_{\infty}||^{2}$

by Lemma 2.1 and Lebesgue’s dominated convergence theorem. If $0<d<1$ , then
(2.7) and (2.8) imply $w_{\infty}\neq 0$ ; so that it follows from (2.8) that

$\nu^{*}\leq\frac{(1-d)||w_{\infty}||^{2}}{||\nabla w_{\infty}||^{2}}\leq(1-d)\sigma^{*}$,

which, together with (2.7), yields the assertion. In case $d>1,$ $(2.7)$ and (2.8) imply
$w_{\infty}=0$ , which shows $\nu^{*}=0$ . Thus we complete the proof. $\square$

Similarly, if we define

(2.9) $g( \nu)=\sup\{\int_{\Omega}(1-c\varphi\nu)wd2x/||\nabla w||^{9}\sim;$ $w\in H_{0}^{1}(\Omega.),$ $w\neq 0\}$ ,

then we can show an analogous result for $g$ .

Lemma 2.3. If $g$ is defined by (2.9), then it possesses the following properties.
(i) $g$ is a strictly increasing function of class $C^{1}$ in $(0, \sigma^{*})$ .
(ii) $\lim_{\mathrm{t}\text{ノ}arrow}*\sigma g(\nu)=\sigma^{*}$ and $\lim_{\mathrm{t}}\text{ノ}arrow\sigma^{\mathrm{s}}g’(\nu)=c$ .
(iii) $\lim_{\nuarrow 0g}(\nu)=(1-C)^{+}\sigma^{*}$ .

We are now ready to state the existence result, whichi is essentially due to Dancer
[3] or Blat-Brown [1]. See also [16, Theorem 3.6], in which the idea of the proof can be
found.
Theorem 2.1. Define

$\Gamma^{+}=$ { $(\mu,$ $\nu)\in(0,$ $\sigma^{*})\cross(0,$ $\sigma^{*});\nu<f(\mu)$ and $\mu<g(\nu)$ },
$\Gamma^{-}=$ { $(\mu,$ $\nu)\in(0,$ $\sigma^{*})\cross(0,$ $\sigma^{*});l\text{ノ}>f(\mu)$ and $\mu>g(\nu)$ },

and set $\Gamma=\Gamma^{+}\cup\Gamma^{-}$ If $(\mu, \nu)\in\Gamma_{f}$ then $(\mathrm{S}\mathrm{P})$ has at least one coexistence state.
In $\mu\nu$-plane draw two curves $s_{1}$ and $s_{2}$ defined by

$s_{1}$ : $\nu=f(\mu)$ and $s_{2}$ : $\mu=g(\nu)$ ;
so that $\Gamma$ is a region surrounded by $s_{1}$ and $s_{2}$ . By Lemmas 2.2 and 2.3, $\mathrm{I}^{\neg+}$ is non-
empty if $cd\leq 1,$ $(c, d)\neq(1,1)$ and $\mathrm{I}^{\neg-}$ is non-ernpty if $cd>1$ . Moreover, if $cd>1$ and
$(c-1)(d-1)<0$ , then both $\mathrm{I}^{\neg+}$ and $\Gamma^{-}$ are non-empty; in particular, $s_{1}$ and $s_{\underline{9}}$ meet
at a point except for $(\sigma^{*}, \sigma^{*})$ .

Remark 2.1. Theorem 2.1 implies that $(\mathrm{S}\mathrm{P})$ admits at least one coexistence state for
$(\mu, \iota \text{ノ})\in\Gamma$ . However, we do not have much information on the uniqueness and non-
uniqueness of coexistence states of $(\mathrm{S}\mathrm{P})$ except for $\mu=\nu$ . In the special case $\mu=\nu$ ,
Cosner-Lazer [2] have proved that, if $c<1$ and $d<1$ , then $(\mathrm{S}\mathrm{P})\mathrm{a}\mathrm{d}\mathrm{m}\mathrm{i}\mathrm{f}_{l}\mathrm{S}$ a unique
coexistence state and that, if $c=d=1$ , then there exists a continuurIl of coexistence
states for $(\mathrm{S}\mathrm{P})$ . Moreover, Gui-Lou [10] have shown that, if

$\cdot$

$c>1$ and $d>1$ , then
the situation becomes more complicate and the uni.queIless and non-uniqueness results
depend on the size of diffusion coefficients $\mu=\nu$ .
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3. MULTIPLE EXISTENCE IN CASE (A)

In this section we will give some conditions under which $(\mathrm{S}\mathrm{P})$ has at least two

coexistence states in case
(A) $(c-1)(d-1)<0$ and $d>1$ .

We will review Theorem 1.1 from the view-point of bifurcation theory. Let $\mu\in(0, \sigma^{*})$

be fixed and set $\nu^{*}=f(\mu)$ . We construct bifurcating solutions, which emerge from
$\{\varphi_{\mu}, 0\}$ at $\nu=\nu^{*},$ by regarding $\nu$ as a parameter and making use of the local bifurcation

theory. Define a positive function $\Psi_{\mu}$ by

(3.1) $\{$

\iota ノ*\triangle \Psi \mu +(l--d\mbox{\boldmath $\varphi$}\mu )\Psi \mu $=0$ in $\Omega.$ ,
$\Psi_{\mu}$ $=0$ on $\partial\Omega$ ,

and determine $\Phi_{\mu}$ by.

(3.2) $\{$

$\mu\triangle\Phi_{\mu}+(1-2\varphi\mu)\Phi_{\mu}$ $=c\varphi_{\mu}\Psi_{\mu}$ in $\Omega$ ,
$\Phi_{\mu}$ $=0$ on $\partial\Omega$ .

Since $(-\mu\triangle+(2\varphi_{\mu}-1)I)^{-1}$ is a strongly order-preserving operator and $\Psi_{\mu}$ is positive

in $\Omega$ , one can see $\Phi_{\mu}<0$ in $\Omega$ from (3.2). We normalize $\Phi_{\mu}$ and $\Psi_{\mu}$ so that they

satisfy $||\Phi_{\mu}||^{2}+||\Psi_{\mu}||^{2}=1$ . If a new parameter $\epsilon$ is introduced, coexistence states
$(u, v)=(u(\epsilon), v(\epsilon))$ of $(\mathrm{S}\mathrm{P})$ with $\nu=\nu(\epsilon)$ , which bifurcate from $\{\varphi_{\mu}, 0\}$ at $l\text{ノ}=\nu^{*}$ , can

be expressed as

(3.3) $\{$

$u(\epsilon)=\varphi_{\mu}+\epsilon\Phi_{\mu}+o(\epsilon)$ ,
$v(\epsilon)=\epsilon\Psi_{\mu}+o(\epsilon)$ ,
$\nu(\epsilon)=\nu^{*}+\nu_{1}(\mu)\epsilon+o(\epsilon)$ ,

for $0<\epsilon<\epsilon_{0}$ with some $\epsilon_{0}$ . Recall $\Phi_{\mu}<0$ and $\Psi_{\mu}>0$ in $\Omega$ in (3.3); so the sign

of $I^{\text{ノ_{}1}}(\mu)$ determines the direction of bifurcation with respect to $\nu$ . Here we note the

following lemma.

Lemma 3.1. Let $\mu\in(0, \sigma^{*})$ be fixed and let $\{u(\epsilon), v(\epsilon)\}$ be a family of coexistence

states of $(\mathrm{S}\mathrm{P})$ with $l\text{ノ}=\nu(\epsilon)$ of the form (3.3). Then it holds that

$\nu_{1}(\mu \mathrm{I}||\nabla\Psi|\mu|^{2}=-\int_{\Omega}\Psi_{\mu}^{2}(d\Phi_{\mu}+\Psi_{\mu})dx$ .

Proof. Substitution of (3.3) into the second equation of $(\mathrm{S}\mathrm{P})$ yields

(3.4) $\nu^{*}\triangle V(\epsilon)+(1-d\varphi\mu V(\epsilon)+\epsilon\nu_{1}\triangle\Psi-\mu\epsilon\Psi\mu(d\Phi_{\mu}+\Psi_{\mu})=o(\epsilon)$ in $\Omega$ as $\epsilonarrow 0$

with some $V(\epsilon)\subset C_{0}(\overline{\Omega})$ satisfying $\int_{\Omega}V(\epsilon)\Psi dx=0$ . Taking $L^{2}$-inner product of (3.4)

with $\Psi_{\mu}$ leads us to

$\epsilon\nu_{1}||\nabla\Psi_{\mu}||^{2}+\epsilon\int_{\Omega}\Psi_{\mu}^{2}(d\Phi_{\mu}+\Psi_{\mu})dx=o(\epsilon)$ as $\epsilonarrow 0$

(use (3.1)). Hence dividing the above identity by $\epsilon$ and letting $\epsilonarrow 0$ we get
$\mathrm{t}\mathrm{h}\mathrm{e}\square$

conclusion.
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Remark 3.1. Lemma 3.1 tells us the sign of $\mu_{1}(\nu)$ and, therefore, the direction of
the bifurcation of coexistence states from $\{\varphi_{\mu}, 0\}$ at $\nu=f(\mu)$ . The bifurcation is
supercritical (resp. subcritical) if $\mu_{1}(\nu)>0$ (resp. $\mu_{1}(\nu)<0$ ). Moreover, we can also
study the stability or instability of the bifurcating solutions. Indeed, $\{u(\epsilon), v(\epsilon)\}$ is
asymptotically stable (resp. unstable) if $\mu_{1}(\nu)<0$ (resp. $\mu_{1}(\nu)>0$ ).

Theorem 3.1. Let $(\mu_{0}, \nu_{0})$ be an intersection point of $s_{1}$ and $s_{2}$ curves. If $\nu_{1}(\mu_{0})\neq 0$ ,
then $(\mathrm{S}\mathrm{P})$ admits at least two coexistence states for $(\mu, \nu)$ in an open set A near $(\mu_{0}, \nu_{0})$ .

The proof of Theorem 3.1 can be accomplished by using the local bifurcation theory
or the degree theory (see, e.g., Yamada [16]).

We will review Theorem 3.1 from the point of the global bifurcation theory. In
[1] Blat and Brown have shown that, for fixed $\mu\in(0, \sigma^{*})$ , there exists a branch of
coexistence states for $(\mathrm{S}\mathrm{P})$ such that the branch bifurcating from $\{\varphi_{\mu}, 0\}$ at $(\mu, f(\mu))\in$

$s_{1}$ connects with $\{0, \varphi_{\nu_{*}}\}$ at $(\mu, \nu_{*})\in s_{2}$ satisfying $g(\nu_{*})=\mu$ (see also [5] or [9]).
Now let $(\mu_{0,0}\nu)$ be an intersection point of $s_{1}$ and $s_{2}$ and assume $\nu_{1}(\mu_{0})\neq 0$ . Theorem

3.1 means that each branch of coexistence states has a bending point in the bifurcation
diagram provided that $\mu$ lies in a suitable range $I(\mu_{0})$ near $\mu=\mu 0$ . For each $\mu\in I(\mu_{0})$ ,
let the branch possess a bending point at $\nu=\overline{\nu}(\mu)>f(\mu)$ (resp. $\underline{\nu}(\mu)<f(\mu)$ ) in the
case of supercritical bifurcation $\nu_{1}(\mu)>0$ (resp. subcritical bifurcation $\nu_{1}(\mu)<0$).
Suppose $\nu_{1}(\mu)>0$ for $\mu\in I(\nu_{0})$ . Then $(\mathrm{S}\mathrm{P})$ has at least two coexistence states if
$\nu\in(f(\mu), \overline{\nu}(\mu))$ . Analogous results are also valid for $\nu_{1}(\mu)<0$ .

We give a numerical example carried out by Professor Etsushi Nakaguchi (Osaka
University). For $\Omega=(0,1)$ with $N=1$ , he has studied

(3.5) $\{$

$\mu u’’+u(1-u-Cv)=0$ in $(0,1)$ ,
$\nu v^{J\prime}+v(1-du-v)=0$ in $(0,1)$ ,
$u(\mathrm{O})=u(1)=v(\mathrm{O})=v(1)=0$ ,
$u\geq 0$ , $v\geq 0$ in $(0,1)$ ,

$\nu$

$/p$

FIGURE 1. Local view of $i_{1}$, and $s_{2}$ .
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$||u||_{\infty}$

$||v||_{\infty}$

$\nu$

FIGURE 2. Bifurcation diagram of coexistence states for $\mu$ –0.003.
There exists a branch of coexistence states emerging from $\{\varphi_{\mu}, 0\}$ at
$l\text{ノ}=0.0120$ ( $s_{1}$ curve) and connecting to $\{0, \varphi_{\nu}\}$ at $\nu=0.0102$ ( $s_{2}$ curve).

This branch has a turning point at $\nu=0.0142$ .

with $c=1.2$ and $d=0.9$ , which satisfy condition (A). So two curves $s_{1}$ and $s_{2}$ meet at

a point $(\mu_{0}, \nu_{0})=(0.0039, 0.013)$ as in Figure 1. For $\mu=0.03$ , Figure 2 shows that the

bifurcation of. coexistence states at $\nu=0.0120$ is supercritical and that this branch has

a bending point at $\nu--0.0142$ . Therefore, if $\nu\in$ (0.0120, 0.0142), then (3.5) admits two

coexistence states. In Figure 3, we are studying the stability properties of semitrivial

solutions and positive solutions. The vertical axis denotes the position of the principal

eigenvalue for the linearized operator.

Remark 3.2. Let Iノ l $(\mu_{0})=0$ . According to Li and Logan [12], $(\mathrm{S}\mathrm{P})$ admits a con-

tinuum of coexistence states or a coexistence state for $(\mu, \nu)=(\mu_{0}, \nu_{0})$ . In the former

case, the set $\Lambda$ in Theorem 3.1, where non-uniqueness result holds true, $\mathrm{m}\mathrm{a}.\mathrm{v}$ be iden-

tical with a single point $\{(\mu_{0}, \nu_{0})\}$ .

Remark 3.3. Let $(\mu, \nu)\in(0, \sigma^{*})\cross(0, \sigma^{*})$ be fixed. One can show $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{C}s_{1}$ cnrve moves

downward as $d$ becomes larger. The situation is similar with respect to $s_{\underline{9}}$ curve; so

that $(\mu, \iota \text{ノ})$ eventually enter $\Gamma^{-}$ if $c,$ $d$ become $\mathrm{s}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{I}\iota \mathrm{c}\mathrm{l}\mathrm{y}$ large. Therefore, $\mathrm{T}]_{1\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{n}1}21$

$\mathrm{f}_{}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{s}$ us that $(\mathrm{S}\mathrm{P})$ has a coexistence state for suc.h $c,$ $d$ . In Section 4 we will show tiat

$(\mathrm{S}\mathrm{P})\mathrm{a}\mathrm{d}_{\mathrm{I}\mathrm{I}1}\mathrm{i}\mathrm{t}\mathrm{s}$ a finitely many nunlber of coexistence states if $l^{l}$ , lノ are small and $c,$
$d$ are

$\mathrm{s}\iota\iota \mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{l}\mathrm{y}$ large.
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$\nu$

FIGURE 3. Stability of steady-sCates. The vertical axis indicates the
principal eigenvalue for the corresponding linearized operator. The co-
existence states bifurcating from $\{\varphi_{\mu}, 0\}$ are unstable for a certain range
of $\nu$ , while those bifurcating from $\{0, \varphi_{\nu}\}$ are asymptotically stable for
the same range of $\nu$ .

4. MULTIPLE EXISTENCE IN CASE (B)

The analysis in this section employs the theory of Dancer and Du [5], who discuss
$(\mathrm{S}\mathrm{P})$ for sufficiently large interactions. According to their theory, if $c/darrow\alpha\in(0, \infty)$

as $c,$ $darrow\infty$ , then there is a close relationship between $(\mathrm{S}\mathrm{P})$ and the following limiC

problem

(4.1) $\{$

$\triangle w+\frac{w^{+}}{\mu}(1-\frac{w^{+}}{\mu})+\frac{}w^{-}}{\iota \text{ノ}(1+\frac{w^{-}}{\nu\alpha})=0$ in $\Omega$ ,

$w–0$ on $\partial\Omega\backslash$

,

where $w^{+}= \max\{w, 0\}$ and $w^{-}= \min\{w, 0\}$ . Indeed, Dancer and Du have established
the following result.

Theorem 4.1. [5, Theorem 2.2] Assume that $c_{n},$ $d_{n}arrow+\infty$ with $c_{n}/d_{n}arrow\alpha$ as $narrow$

$+\infty$ . Let $\{u_{n}, v_{n}\}$ be positive solutions of $(\mathrm{S}\mathrm{P})$ with $(c, d)=(c_{n)}d_{n})$ such that $c_{n}||v_{n}||_{\infty}arrow$

$+\infty$ and $d_{n}||u_{n}||_{\infty}arrow+\infty$ as $narrow+\infty$ , where $||\cdot||_{\infty}$ denotes the usual supremum norm

in $\Omega$ . $Moreover_{\mathrm{z}}$ assume that $w=0$ is a unique solution of

$\{$

$\triangle w+-w^{+}+\frac{}1}{\iota \text{ノ}w1-=0$ in $\Omega$ ,

$w=0^{\mu}$ on $\partial\Omega$ .

$Tf_{le}\prime n$ there ex’ists a subsequence of $\{u_{n}, v_{n}\}$ which converges in $L^{2}(\Omega)\cross L^{2}(\Omega)$ to
$\{w_{0}^{+}/\mu, -w0-/\nu\alpha\}f\mathit{0}7^{\cdot}$ a solution $w_{0}$ of (4.1) which changes sign in $\Omega$ .
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Dancer and Du have also shown that (4.1) gives some useful information on coex.is-
tence states of $(\mathrm{S}\mathrm{P})$ for sufficiently large $c,$ $d$ in the following sense:
Theorem 4.2. [5, Theorem 3.3] Let $w_{0}$ be an isolated solution of (4.1) such that $w_{0}$

changes sign in $\Omega$ and index of $w_{0}\neq 0$ . Then for any $\epsilon>0$ there exist positive constants
$M$ large and $\delta$ small such that for every $c,$ $d$ satisfying

$c\geq M$ and $| \frac{c}{d}-\alpha|<\delta$ ,

$(\mathrm{S}\mathrm{P})$ admits a positive solution $\{u, v\}$ such that

$||u- \frac{w^{+}}{\mu}||<\epsilon$ and $||v+ \frac{w^{-}}{\iota \text{ノ}\alpha}||<\epsilon$.

Here the index of $w_{0}$ means the fixed point index
index$c_{0}^{1}(\Omega)(A, w_{0})$

with

(4.2) $\mathrm{A}w=(-\triangle)^{-1}(\frac{w^{+}}{\mu}(1-\frac{w^{+}}{\mu})+\frac{w^{-}}{\nu}(1+\frac{w^{-}}{\iota \text{ノ}\alpha}))$ .

Remark 4.1. In the case when $c/darrow+\infty$ as $c,$ $darrow\infty$ , analogous theorems as
Theorems 4.1 and 4.2 hold true with (4.1) replaced by

(4.3) $\{$

$\triangle w+\frac{w^{+}}{\mu}(1-\frac{w^{+}}{\mu})+\frac{w^{-}}{\nu}=0$ in $\Omega$ ,

$w=0$ on $\partial\Omega$ .

and (4.2) replaced by

$Aw=(- \triangle)^{-1}(\frac{w^{+}}{\mu}(1-\frac{w^{+}}{\mu})+\frac{}w^{-}}{\iota \text{ノ})$ .

See [5, Theorems 2.3 and 3.4].

If we can show that (4.1) or (4.3) has many isolated solutions which change signs
and have non-zero indices, then theorem 4.2 and Remark 4.1 assure that $(\mathrm{S}\mathrm{P})$ admits
many coexistence states for sufficiently large $c,$ $d$ .

In what follows, we study (4.1) in a special case $\Omega=(0,1)$ with $N=1$ :
’

(4.4) $\{$

$w”+h(w)=0$ in $(0,1)$ ,
$w(0)=w(1)=0$ ,

where
$h(w)= \frac{w^{+}}{\mu}(1-\frac{w^{+}}{\mu})+\frac{w^{-}}{\nu}(1+\frac{w^{-}}{\iota \text{ノ}\alpha})$ .

Since (4.4) is a boundary value problem for an ordinary differential equation, it is
possible to get a complete information on the structure of solutions by the standard
phase plane analysis. See the work of Dancer, Hilhorst, Mimura and Peletier [7], where
a sinlilar problem has been discussed.

In a master’s thesis of my graduate student T. Hirose [11] a complete result is
obtained for the structure of non-trivial solutions for (4.4). We will sunlmarize his
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existence results. Let $w_{k,+}(\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}}. w_{k,-})$ denote a solution of (4.4) which changes sign
$k$ -times in $(0,1)$ with positive (resp. negative) first derivative at $x=0$ . Then one can
show the following result:
(i) there exists a unique solution $w_{2k,+}$ of (4.4) if and only if $(k+1)\sqrt{\mu}+k\sqrt{\nu}<1/\pi$ ,
(ii) there exists a unique solution $w_{2k,-}$ of (4.4) if and only if $k\sqrt{\mu}+(k+1)\sqrt{\nu}<1/\pi$ ,
(iii) there exists a unique pair of solutions $w_{2k-1,\pm}$ of (4.4) if and only if $k\sqrt{\mu}+k\sqrt{\nu}<$

$1/\pi$ .

These results help us to determine the set $W:=$ { $w\in C^{2}[\mathrm{o},$ $1];w$ is a solution of (4.4)}.
We define the following sets in $\mu\nu$-plane:

$D_{k}^{1}$ $=$ $\{(\mu, \nu);k(\sqrt{\mu}+\sqrt{\nu})<\frac{1}{\pi},$ $(k+1) \sqrt{\mu}+k\sqrt{\nu}\geq\frac{1}{\pi},$ $k \sqrt{\mu}+(k+1)\sqrt{\nu}\geq\frac{1}{\pi}\}$ ,

$D_{k}^{2}$ $=$ $\{(\mu, \nu);(k+1)(\sqrt{\mu}+\sqrt{\nu})\geq\frac{1}{\pi},$ $(k+1) \sqrt{\mu}+k\sqrt{\nu}<\frac{1}{\pi}$

$k \sqrt{\mu}+(k+1)\sqrt{\nu}<\frac{1}{\pi}\}$ ,

$D_{k}^{3}$ $=$ $\{(\mu, \nu);(k+1)\sqrt{\mu}+k\sqrt{\nu}\geq\frac{1}{\pi})k\sqrt{\mu}+(k+1)\sqrt{\nu}<\frac{1}{\pi}\}$ ,

$D_{k}^{4}$ $=$ $\{(\mu, \nu);(k+1)\sqrt{\mu}+k\sqrt{\nu}<\frac{1}{\pi},$ $k \sqrt{\mu}+(k+1)\sqrt{\nu}\geq\frac{1}{\pi}\}$ ,

where $k$ is a non-negative integer. Making use of the above results (i), (ii) and (iii) one
can show

Lemma 4.1. Let $(\mu, \nu)\in(0, \sigma^{*})\cross(0, \sigma^{*})$ . Then it holds that

$W=\{$

$\{0, w_{0,\pm}\}$ if $(\mu, \iota \text{ノ})\in D_{0}^{2}$ ,
$\{0, w_{0,\pm}, w_{1,\pm}, \cdots, w_{2k-1,\pm}\}$ if $(\mu, \mathrm{I}\text{ノ})\in D_{k}^{1}$ ,
$\{0, w_{0,\pm}, w_{1,\pm}, \cdots, w_{2k,\pm}\}$ if $(\mu)\nu)\in D_{k}^{2}$ ,

{ $0,$ $w_{0,\pm},$ $w_{1,\pm},$ $\cdots,$ $w_{2k-1,\pm)}w_{2k,-\}}$ if $(\mu, \iota \text{ノ})\in D_{k}^{3}$ ,
$\{0, w_{0,\pm}, w_{1,\pm}, \cdots, w_{2k-1,\pm}, w_{2k,+}\}$ if $(\mu, \nu)\in D_{k}^{4}$ ,

for $k=1,2,3,$ $\cdots$ . In $particu\iota_{ar_{f}}$ every element of $W$ is isolated.

Remark 4.2. One-dimensional version of (4.2) is given by

(4.5) $\{$

$w”+g(w)=0$ in $(0,1)$ ,
$w(0)=w(1)=0$ ,

with
$g(w)= \frac{w^{+}}{\mu}(1-\frac{w^{+}}{\mu})+\frac{w^{-}}{\nu}$ .

The same result as Lemma 4.1 also holds true for (4.5).

Moreover, Hirose [11] has shown that every non-trivial solution of (4.4) or (4.5) has
non-zero index. Indeed, the following theorem holds true.
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Theorem 4.3. Let $w_{m,\pm},$ $m=0,1,2,$ $\cdots$ , be any solution of (4.4) or (4.5). Then it
holds that

index of $w_{m,\pm}=(-1)^{m}$ for $m=0,1,2,$ $\cdots$

Remark 4.3. In (4.4) $\mathrm{a}\mathrm{n}\tilde{\mathrm{d}}(4.5)$ , reaction terms are not smooth in case $\mu\neq l\text{ノ}$ ; so that
$A$ defined by (4.3) is not of class $C^{1}$ . Hence one cannot directly aplly the index formula
to get the assertion of Theorem 4.3. To prove this theorem we need some devices based
on the homotopy invariance of the degree.

$\overline{\mathrm{v}}\mathrm{V}\mathrm{e}$ can see from Lemma 4.1 and Remark that (4.4) or (4.5) admits a sign-changing
solution if and only if $\sqrt{\mu}+\sqrt{\iota \text{ノ}}<1/\pi$ . Each sign-changing solution satisfies the
assumptions of Theorem 4.2 by virtue of Lemma 4.1 and Theorem 4.3. Therefore,

one can apply Theorem 4.2 for each sign-changing solution to get the corresponding

coexistenc.e state for large interactions (see also the work of Dancer and Guo [6]).

Theorem 4.4. Suppose that $(\mu, \nu)\in\cup D_{k}^{i}4$ for $k\in \mathrm{N}$ . Then there exist large numbers
$i=1$

$c^{*}$ and $d^{*}$ such that for every $c\geq c^{*}$ and $d\geq d^{*}$ the following properties hold true:

(i) if $(\mu, \nu)\in D_{k}^{1}$ , then $(\mathrm{S}\mathrm{P})$ (or (3.5)) admits at least $(4k-2)$ coexistence states,

(ii) if. $(\mu, \nu)\in D_{k^{f}}^{2}$ then $(\mathrm{S}\mathrm{P})$ (or (3.5)) admits at least $4k$ coexistence states,

(iii) if $(\mu, \nu)\in D_{k}^{3}\cup D^{4}k$ , then $(\mathrm{S}\mathrm{P})$ (or (3.5)) admits at least ( $4k-1\mathrm{I}$ coexistence states.

Remark 4.4. Theorem 4.4 says that, if (4.4) or (4.5) has a sign-changing solution,

then $(\mathrm{S}\mathrm{P})$ has a coexistence state which is very close to such a solution (in a certain
sense) with respect to $L^{2}(\Omega)$-norm if $c,$ $d$ are sufficiently large. If we use stability

results due to Dancer and Guo [6], we can get more information on the instability of

the above coexistence state. Indeed, the comparison method enables us to show that

every changing-sign solution $w_{0}$ of (4.4) or (4.5) is unstable as a stationary solution of

the natural corresponding parabolic equation. Therefore, if the non-degeneracy of $w_{0}$ is

established, then it becomes linearly unstable; so that Theorem 2.2 in [6] implies that

the coexistence state of $(\mathrm{S}\mathrm{P})$ associated with $w_{0}$ is unstable when $c,$ $d$ are sufficiently

large.

We can also see that profiles of these coexistence states are very similar $\mathrm{t}_{J}\mathrm{o}$ those of

limit-solutions given by sign-changing solutions. In this $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{C}^{\cdot}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ , it should be noted

that the following theorem holds true. See [11].
Theorem 4.5. Let $\{u, v\}$ be any coexistence state of $(\mathrm{S}\mathrm{P})$ .
(i) $u$ and $v$ have a finite number of local maximum poinis in $(0,1)$ .

(ii) Let $x_{1}<x_{2}<\cdots<x_{m}$ be local maximum points of
$\cdot$

$u$ in $(0,1)$ and let $y_{1}<y_{2}<$

. . . $<?/n$ be local maximum points of $v$ in $(0,1)$ . Then $|m-n|\leq 1$ .

(iii) Local rnaximum points of $u$ and those of $v$ appear alternately.

The proof of Theorem 4.5 can be accomplished along the idea used by Nalcashirna

[13]. We can also show the following result.
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Theorem 4.6. Let $\{c_{n}, d_{n}\}$ satisfy $c_{n}arrow\infty$ and $d_{n}arrow\infty$ with $c_{n}/d_{n}arrow\alpha$ as $narrow\infty$

and let $\{u_{n}, v_{n}\}$ be a coexistence state of $(\mathrm{S}\mathrm{P})$ ( or (3.5) such that

$\{u_{n}, v_{n}\}arrow\{\frac{1}{\mu}(w_{k})^{+}, -\frac{1}{\nu\alpha}(wk)^{-}\}$ in $L^{\sim}’(\Omega)$ as $narrow\infty$ ,

for some $k\in \mathrm{N}$ , where $w_{k}$ is a changing-sign solution of (4.4). Then for any $\epsilon>0$

there exixts a sufficiently large $n^{*}$ such that, for any $n\geq n^{*}$

the number of local maximum points of $u_{n}$ in $(\epsilon, 1-\epsilon)$

$=$ the number of local maximum points of $(w_{k})^{+}$ in $(0,1)$

and
the number of local maximum points of $v_{n}$ in $(\epsilon, 1-\epsilon)$

$=$ the number of local minimum points of $(w_{k})^{-}$ in $(0,1)$ .

Here we will give some numerical examples accomplished by Hirose for the following
system

(4.6) $\{$

$u_{xx}+u(a_{1}-u-c_{1}v)=0$ in $(0,1)$ ,
$v_{xx}+v(a_{2}-c_{2}u-v)=0$ in $(0,1)$ ,

$- u(\mathrm{O})=u(1)=v(0)=v(1)=0$ ,
$u\geq 0,- v\geq 0$ in $(0,1)$ .

Set
$U=u\underline{1}$ , $V=\underline{1}v$ , $c=\underline{a_{2}c_{1}})$ $d=\underline{a_{1}c_{2}}$ ;

$a_{1}$ $a_{2}$ $a_{1}$ $a_{2}$

then (4.6) is reduced to (3.5) for $\{U, V\}$ with $\mu=1/a_{1},$ $\nu=1/a_{2}$ .
Numerical experiments have been done for $a_{1}=60,$ $a_{2}=120$ , which corresponds

to ( $\mu$ , \iota ノ) $=(1/60,1/120)\in D_{1}^{3}$ . In $D_{1}^{3}$ , Lemma 4.1 implies $W=\{0, w_{0,\pm,1,\pm}w\}$ . The
profile of $w_{2,-}$ is given in Figure 4 (A), the profile if the limit solution, i.e., $|w_{2,-}|$ , is
given in Figure 4 (B) and profiles of corresponding coexistence states are exhibited in
$\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}^{-}5.--\mathrm{O}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\overline{\mathrm{V}}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\overline{\overline{\mathrm{a}}}\mathrm{t}^{-}\tau 4^{-}.6\rangle^{-\mathrm{n}}\mathrm{a}\overline{\mathrm{m}}$ its coexistence states which are very close to $|w_{2,-}|$

for sufficiently large interactions.

(A) Prohle of $w_{2,-}$ (B) Profile of limit solution

FIGURE 4. $\sin$-changing solution and limit solution

178



REFERENCES
[1] J. Blat and K. J. Brown, Bifurcation of steady-state solutions in predator-prey and competition

$sy$stems, Proc. Roy. Soc. Edinburgh $97\mathrm{A}$ (1984), 21-34.
[2] C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with

diffusion, SIAM J. Appl. Math. 44 (1984), 1112-1132.
$\underline{[3}1$ E. N. Dancer, On positive solutions of some pairs of differential. $eq.uati_{\mathit{0}}nS$ , Trans. Amer. Math.

. Soc. 284 (1984), 729-743.
$-[4]$ E. N. Dancer, On the existence and uniqueness of positive solutions for competing species models

with diffusion, Trans. Amer. Math. Soc. 326 (1991), 829-859.
$[,5]^{-}$ E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and

jumping nonlinearities, J. Differential Equations 114 (1994), 434-475.
[6] E. N. Dancer and Z. M. Guo, Uniqueness and stability for solutions of competing species equations

with large interactions, Comm. Appl. Nonlinear Anal. 1 (1994), 19-45.
[7] E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation of a competition-

diffusion system, European J. Appl. Math. 10 (1999), 97-115.
[8] J. C. Eilbeck, J. E. Furter and J. L\’opez-G\’omez, Coexistence in the competition model with

diffusion, J. Differential Equations 107 (1994), 96-139.

FIGURE 5. Profiles of coexistence states

179



[9] J. E. Furter and J. L\’opez-G\’omez, Diffusion-mediated permanence problem for a heterogeneous
Lotka-Volterra competition model, Proc. Roy. Soc. Edinburgh $127\mathrm{A}$ (1997), 281-336.

[10] C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra
competition model, Comm. Pure Appl. Math. 47 (1994), 1571-1594.

[11] T. Hirose, Multiple existence of positive solutions of competing species equations with diffusion
and large interactions, Master Thesis, Waseda University, 2000.

[12] L. Li and R. Logan, Positive solutions to general elliptic competition models, Differential Integral
Equations 4 (1991), 817-834.

[13] K. Nakashima, Multiple existence of spatially inhomogeneous steady-states for competition diffu-
sion systems, Adv. Math. Sci. Appl. 9 (1999), 973-991.

[14] K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-
diffusion, Adv. Differential Equations 1 $(1\dot{9}96)$ , 1099-1122.

[15] Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous
$Di_{7\dot{\mathrm{Y}}C}h\iota_{e}t$ conditions, SIAM J. Math. Anal. 21 (1990), 327-345.

[16] Y. Yamada, Coemstence states for Lotka-Volterra systems with cross-diffusion, Operator Theory
and Its Applications, edited by A. G. Ramm, P. N. Shivakumar and A. V. Strauss, Fields Institute
Communications 25, Amer. Math. Soc., Providence, $\mathrm{R}\mathrm{I}$ , 2000.

180


