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MULTIPLE COEXISTENCE STATES FOR LOTKA-VOLTERRA
COMPETITION MODEL WITH DIFFUSION

YOSHIO YAMADA (LI H 1)
DEPARTMENT OF MATHEMATICS, WASEDA UNIVERSITY

1. INTRODUCTION

This article is concerned with the following semilinear parabolic system

us = k1Au+ u(a — u — cv) in 2 x (0,00),
(1.1) ve = ko Av + v(b — du — v) in Qx(0,00),
' u=v=0 on 0N x (0, 00),
U(,O) = Up, U(')O) =V in ‘Q)

where €2 is a bounded domain in RV with smooth boundary 8Q, ug, v, are given
nonnegative functions in Q and ki, k9, a,b, ¢, d are positive constants. This system is
referred to the Lotka-volterra competition model with diffusion. In (1.1) u and v denote
population densities of two competing species. We are interested in positive stationary
solutions for (1.1). Such a solution is usually called a coexistence state. The existence,
uniqueness and non-uniqueness problem of coexistence states for (1.1) has been studied -
by many authors (see [1],(2],[3],[4],(8],[9],{10] and the references therein).

The main purpose is to give some remarks on the multiple existence of coexistence
states. After rescaling of u and v we are led to the following steady-state problem:

pAu+u(l —u—cv) =0 in Q,

vAv +v(l —du—v) =0 in Q,
(SP) u=v=0 on 09,

u>0, v>0 in €,

where p,v,c and d are positive constants. Although non-uniqueness of coexistence
states has been discussed in a pretty number of works such as [4], [8], [9], [10], we
do not have satisfactory information about explicit conditions for the non- -uniqueness.
We will give here some sufficient conditions on u,v,c, d for the multiple existence of
coexistence states in two cases:

(A) (c—=1)(d—1) <0,cd > 1,

(B) ¢, d are sufficiently large.
The analysis in the former case is carried out by using the degree theory or local
bifurcation theory, while the analysis in the latter case heavily depends on the theory
of Dancer and Du [5]. :

In Section 2 we will give some preliminary results on the existence of coexistence

states for (SP). Multiple existence for case (A) is discussed in Section 3. In Section 4
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we get some multiplicity results of (SP) from the analysis of suitable limit problems
with ¢,d — oo in (SP). ' : :

2. PRELIMINARIES

We begin with the following auxiliary problem for a semilinear elliptic equation:

(2.1)

pAw +w(l —w) =0 in Q,
w=0 on Of2.

It is well known that (2.1) has a unique positive solution ¢, if and only if 0 < p <
o* := 1/Ay, where J; is the least eigenvalue for —Aw = Aw in Q with w = 0 on 0.
Moreover, it is also possible to show the following result (see, e.g., [10]).

Lemma 2.1. (i) If0 < pu < o*, then there ezists a unique positive solution ¢, of (2.1)
such that @, (x) is strictly decreasing with respect to u for every z € Q. ,

(i) u — @, is a C'-mapping from (0,0*) to Co(Q), where Co(Q) denotes the space of
all continuous functions u in Q such that u vanishes on 0.

(iii) ;}HE' w0, =0 uniformly in Q. More precisely,

A(o* — ’
(2.2) op = -—1—(-0—————'“—)(,0* +o(c* — p) as o* —u—0,
Mo
where mq = / ©*(z)3dz.

Q
(iv) For any compact subset F in Q, liII(l) 0, =1 uniformly in F.
p=0 "
Lemma 2.1 assures that (SP) has no coexistence states for u > o* or v > o*; so we

assume

O<pu<o* and O<v<o’

in the sequel.
Define -

23) ) =sw{ [ (- dpduds IVl we B @)W £ 0},

where || - || denotes L?(Q2)—norm.

Lemma 2.2. If f is defined by (2.3), then it has the following properties.
(i) f is a strictly increasing function of class C* in (0,0*).

(ii) limyoe f(u) = 0* and lim,_,q- f'(p) = d. :

- (iil) limyoo f(p) = (1 = d)to™

Proof. In order to prove (i) we will employ the argument in the proof of [16, Lemma
3.4]. We first observe that the supremum in (2.3) is attained by a positive function
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w, € H(), which is normalized with ||Vw,|| = 1. It follows from the definition that
flu+h) = / (1= dpyen)w’ dz > /Q (1 — dpysn)widz
(2.4) /“(1 — dpu)w, 2dy + d/( go,&h)widx
= f(u) + d/ — Pu+h)W de

Since a similar inequality to (2.4) holds true 1f u and u + h are exchanged, one can
derive

(2.5) If(u +h) = f(u)] S Cllep+n = @ulloo

~ for some C > 0, where || - || denotes the supremum norm. Thus (2.5), together with
Lemma 2.1, 1mphes the Lipschitz continuity of f with respect to u. It is easy to see
lim, - f(u) = o* from (iii) of Lemma 2.1 because w, — w* in Hy(f), where w*
satisfies p*Aw* +w* =01in Q and ||Vw*|| = 1.

The Lipschitz continuity also means that f(u) is differentiable for almost every u €
(0,0*). Making use of (2.4) we divide f(u+h) — f(u) by h >0 (h < 0) and let h — 0;
then | o

2.6 "(u) = —d O0u w’d
for almost every p € (0,0*). By Lemma 2.1, the right-hand s1de of (2.6) is continuous
in 4 € (0,0*]; so that (2.6) is valid for every p € (0,0*]. Clearly, (2.6) together with

(2.2) yields f'(u) > 0 and
v . / Ald/ ((P*)3
lim = ———dx =d,
M T = g o TV
where we have used w* = ¢*/||Vp*|| and |[Ve*||? = A1
It remains to show (iii). From the monotonicity in (i) there exists a limit of f(u) as
1 — 0; so we put ‘
lim f (1) =
Since p, < 1in £, it is easy to see f( ) (1 = d)||w||?/||Vw|? for all w € Hg() and
u € (0,0%); so that, in view of sup{HwH /||le|2 w € HHQ)} = o*, we get
z (1 -d)o’

Moreover, even if the set {z € Q; dcp#(x) > 1} is non-empty, we can choose a suitable
function w € H}(Q) such that [,(1 — dy,)w?dz > 0. This fact means f(u) > 0 for
every pu > 0. Therefore, ~

(2.7) v* > max{(l — d)o*,0}.
To prove the reverse inequality, we use a family {w,} again. Since IVwu|| = 1, it

follows from Relhch s theorem that there exists a sequence {un} 40 such that Wy =
Wy (n=1,2,3,--+) satisfy

im0 w,; = Weo : strongly in LZ(Q),
limp 00 VWy, = Vg weakly in  L?(Q),
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for some wo, € Hy(Q2). Note that ||[Vwel||? < 1. As in the proof of [14, Lemma A1,
one can prove

9 «_ _ 2 — _ 2

(2.8) v nlggo Q(1 dpy, )wydz = (1 — d)||we ||

by Lemma 2.1 and Lebesgue’s dominated convergence theorem. If 0 < d < 1, then
(2.7) and (2.8) imply we, # 0; so that it follows from (2.8) that

(1 = d)flweoll®

v < - <(1-d)o",

Fuwle = 0707
which, together with (2.7), yields the assertion. In case d > 1, (2.7) and (2.8) imply
Weo = 0, which shows v* = 0. Thus we complete the proof. d

Similarly, if we define
(2.9) g(v) = sup {/(1 —cp,)widz [||Vw|?; we HHQ),w # O} :
Q

then we can show an analogous result for g.

Lemma 2.3. If g is defined by (2.9), then it possesses the following properties.
(i) g is a strictly increasing function of class C* in (0,0*).
(ii) lim, 0~ g(v) = 0* and lim, - ¢'(v) = c.
(iil) lim,o g(v) = (1 — ¢)Fo™.

We are now ready to state the existence result, whichi is essentially due to Dancer
[3] or Blat-Brown [1]. See also [16, Theorem 3.6], in which the idea of the proof can be
found.

Theorem 2.1. Define

D* = {(1,v) € (0,0%) x (0,0°);v < f(u) and p < g()),

= ={(u,v) €(0,0%) x (0,0%);v > f(u) and p>g(v)},
and set ' =T+*UTI'". If (u,v) € T, then (SP) has at least one coezistence state.

In pv-plane draw two curves s; and s, defined by
s1:v = f(u) and So i p= g(v);

so that I' is a region surrounded by s; and sy. By Lemmas 2.2 and 2.3, I't is non-
empty if cd <1, (¢,d) # (1,1) and I'" is non-empty if cd > 1. Moreover, if cd > 1 and
(c=1)(d—1) <0, then both I'" and ' are non-empty; in particular, s, and s, meet
at a point except for (o*,o*).

Remark 2.1. Theorem 2.1 implies that (SP) admits at least one coexistence state for
(u,v) € T. However, we do not have much information on the uniqueness and non-
uniqueness of coexistence states of (SP) except for u = v. In the special case u = v,
Cosner-Lazer [2] have proved that, if ¢ < 1 and d < 1, then (SP) admits a unique
coexistence state and that, if ¢ = d = 1, then there exists a continuum of coexistence
states for (SP). Moreover, Gui-Lou [10] have shown that, if ¢ > 1 and d > 1, then
the situation becomes more complicate and the uniqueness and non-uniqueness results
depend on the size of diffusion coefficients p = v.



3. MULTIPLE EXISTENCE IN CASE (A)

In this section we will give some conditions under which (SP) has at least two
coexistence states in case ‘

(A) (c-1)(d-1)<0 and d>1

We will review Theorem 1.1 from the view-point of bifurcation theory. Let u € (0,0%)
be fixed and set v* = f(u). We construct bifurcating solutions, which emerge from
{©u, 0} at v =", by regarding v as a parameter and making use of the local bifurcation
theory. Define a positive function ¥, by

{ VAU, + (1 —dp,)¥, =0 in Q,

(3.1) v, =0 on 0%,

and determine @, by

{ pAD, + (1 - 20,)®, = cpu¥, in Q,

(3:2) ¢, =0 on Of.

Since (—pA + (2¢, — 1)I)7! is a strongly order-preserving operator and ¥, is positive
in Q. one can see ®, < 0 in Q from (3.2). We normalize ®, and ¥, so that they
satisfy ||®,]|2 + |[¥,]|> = 1. If a new parameter € is introduced, coexistence states
(u,v) = (u(e),v(e)) of (SP) with v = v(€), which bifurcate from {(,, 0} at v =v*, can
be expressed as v

u(e) = ¢, + €@, + 0(¢),
(3.3) v(e) = e¥, + o(e),

v(e) = v +vi(pe + ole),
for 0 < € < € with some €. Recall ®, < 0and ¥, > 0in Q in (3.3); so the sign
of v1(x) determines the direction of bifurcation with respect to v. Here we note the
following lemma.

Lemma 3.1. Let u € (0,0%) be fized and let {u(e),v(e)} be a family of coexistence
states of (SP) with v = v(e) of the form (3.3). Then it holds that

IV = - [ Bh(ae, + vz
Proof. Substitution of (3.3) into the second equation of (SP) yields |
(3.4) v* AV (e) + (1 —dp,V(e) +en AT, — eV, (dP,+T,) =o(e) in £ as e— 0

with some V (€) C Co(Q) satisfying fo V(e)¥dz = 0. Taking L2-inner product of (3.4)
with ¥, leads us to

e || VE,|12 + e/ 2 (d®, + ¥,)de = o(e) as €—0
Q

(use (3.1)). Hence dividing the above identity by e and letting € — 0 we get the
conclusion. O
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Remark 3.1. Lemma 3.1 tells us the sign of u;(r) and, therefore, the direction of
the bifurcation of coexistence states from {p,,0} at v = f(u). The bifurcation is
supercritical (resp. subcritical) if p;(v) > 0 (resp. p1(v) < 0). Moreover, we can also
study the stability or instability of the bifurcating solutions. Indeed, {u(e€),v(e)} is
asymptotically stable (resp. unstable) if u;(v) < 0 (resp. ui(v) > 0).

Theorem 3.1. Let (uo, Vo) be an intersection point of s; and sy curves. If vy (ug) # 0,
then (SP) admits at least two coezistence states for (u,v) in an open set A near (uo, Vo).

The proof of Theorem 3.1 can be accomplished by using the local bifurcation theory -
or the degree theory (see, e.g., Yamada [16]).

We will review Theorem 3.1 from the point of the global bifurcation theory. In
(1] Blat and Brown have shown that, for fixed u € (0,0*), there exists a branch of
coexistence states for (SP) such that the branch bifurcating from {¢,,0} at (u, f(u)) €
s1 connects with {0, ¢, } at (u,v.) € s satisfying g(v.) = p (see also [5] or [9]).

Now let (1, o) be an intersection point of s; and s, and assume vy (uo) # 0. Theorem
3.1 means that each branch of coexistence states has a bending point in the bifurcation
diagram provided that 4 lies in a suitable range I(ug) near u = po. For each p € I(uo),
let the branch possess a bending point at v = T(u) > f(u) (resp. v(u) < f(u)) in the
case of supercritical bifurcation v1(p) > 0 (resp. subcritical bifurcation v,(u) < 0).
Suppose vi(u) > 0 for u € I(vy). Then (SP) has at least two coexistence states if
v € (f(n),7(u)). Analogous results are also valid for v4(u) < 0.

We give a numerical example carried out by Professor Etsushi Nakaguchi (Osaka
University). For Q = (0,1) with V = 1, he has studied

pu' +u(l—u—cv) =0 in (0,1),

(3.5) " +v(l—du—v)=0 in (0,1),
' u(0) = u(1) = v(0) = v(1) =0,

u>0, v>0 in (0,1),

0.015 ¢

0.01

0.00s | s1 — A

o

: N N N N : N " .
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 /

FiGURE 1. Local view of s; and s,.
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FIGURE 2. Bifurcation diagram of coexistence states for p = 0.003.
There exists a branch of coexistence states emerging from {9, 0} at
v = 0.0120 (s curve) and connecting to {0, ¢, } at v = 0.0102 (sq curve).
This branch has a turning point at v = 0.0142.

with ¢ = 1.2 and d = 0.9, which satisfy condition (A). So two curves s and s, meet at
a point (uo, vo) = (0.0039,0.013) as in Figure 1. For p = 0.03, Figure 2 shows that the
bifurcation of coexistence states at v = 0.0120 is supercritical and that this branch has
a bending point at v = 0.0142. Therefore, if v € (0.0120,0.0142), then (3.5) admits two
coexistence states. In Figure 3, we are studying the stability properties of semitrivial
solutions and positive solutions. The vertical axis denotes the position of the principal
eigenvalue for the linearized operator. ‘

Remark 3.2. Let v1(po) = 0. According to Li and Logan [12], (SP) admits a con-
tinuum of coexistence states or a coexistence state for (4, v) = (o, ¥o). In the former
case, the set A in Theorem 3.1, where non-uniqueness result holds true, may be iden-
tical with a single point {(uo,%0)}-

Remark 3.3. Let (u,v) € (0,0%) % (0,0%) be fixed. One can show that s; curve moves
downward as d becomes larger. The situation is similar with respect to sp curve; so
that (u, v) eventually enter [~ if ¢, d become sufficiently large. Therefore, Theorem 2.1
tells us that (SP) has a coexistence state for such ¢, d. In Section 4 we will show that
(SP) admits a finitely many number of coexistence states if j1, v are small and ¢, d are
sufficiently large. ' '
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FIGURE 3. Stability of steady-states. The vertical axis indicates the
principal eigenvalue for the corresponding linearized operator. The co-
existence states bifurcating from {¢,,0} are unstable for a certain range
of v, while those bifurcating from {0, @, } are asymptotically stable for
the same range of v.

4. MULTIPLE EXISTENCE IN CASE (B)

The analysis in this section employs the theory of Dancer and Du [5], who discuss
(SP) for sufficiently large interactions. According to their theory, if ¢/d = a € (0,c0)
as ¢,d — oo, then there is a close relationship between (SP) and the following limit
problem

+ + - "

Aw+3—(1——“i—>+w—<1+ﬂ—>:o in 0,
L L v va

w=0 on 01,

(4.1)

where w* = max{w,0} and w™ = min{w; 0}. Indeed, Dancer and Du have established
the following result.

Theorem 4.1. [5, Theorem 2.2] Assume that cn, d, — +oo with ¢p/dn — @ asn —

+oc. Let {uy, vy} be positive solutions of (SP) with (¢, d) = (cn,dn) such that Callvnlloo =
+00 and dp||tinllee — +00 asn — +00, where || - lloo denotes the usual supremum norm

in Q. Moreover, assume that w =10 15 @ unique solution of

1 1 )
Aw+-wr+-w =0 in Q,
pooov
w=20 on OfL.

Then there exists a subsequence of {un,r*un} which converges in L2(Q) x L*(Q) to
{wi [, —wy Jva} for a solution wy of (4.1) which changes sign in .
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Dancer and Du have also shown that (4.1) gives some useful information on coexis-
tence states of (SP) for sufficiently large c,d in the followmg sense:

Theorem 4.2. [5, Theorem 3.3] Let wy be an isolated solution of (4.1) such that wg
changes sign in Q and indez of wy # 0. Then for any e > 0 there exist posztwe constants
M large and & small such that for every c,d satisfying

c>M and l———al<5

(SP) admits a positive solution {u,v} such that

”U"—ﬁ‘“<f and ”'U-i——y——a—”<€.

Here the indez of wy means the fized point indez
indexcé Q) (A, U)o)
with

(4.2) Aw = (=A)! (“’5 (1 - 3"5) + wT_ (1 + %)) .

Remark 4.1. In the case when ¢/d — +o0 as ¢,d — oo, analogous theorems as
Theorems 4.1 and 4.2 hold true with (4.1) replaced by

+ —_

wt w w )
(4.3) Aw—i——;—(l-——)%———zo in Q,
w= . on. Of.

and (4.2) replaced by

See [5, Theorems 2.3 and 3.4].

If we can show that (4.1) or (4.3) has many isolated solutions which change signs
and have non-zero indices, then theorem 4.2 and Remark 4.1 assure that (SP) admits
many coexistence states for sufficiently large ¢, d.

In what follows, we study (4.1) in a special case Q = (0,1) with N=1

{ w” + h(w) =0 in (0,1),

(4.4) w(0) = w(l) =0,

where

U
Since (4.4) is a boundary value problem for an ordinary differential equation, it is
possible to get a complete information on the structure of solutions by the standard
phase plane analysis. See the work of Dancer, Hilhorst, Mimura and Peletier 7], where
a similar problem has been discussed.

In a master’s thesis of my graduate student T. Hirose [11] a complete result is
obtained for the structure of non-trivial solutions for (4.4). We will summarize his
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existence results. Let wg 4 (resp. wg -) denote a solution of (4.4) which changes sign
k—times in (0, 1) with positive (resp. negative) first derivative at = 0. Then one can
show the following result:

(i) there exists a unique solution way of (4.4) if and only if (k+1)\/m+ kv < 1/71'
(ii) there exists a unique solution wa,— of (4.4) if and only if k\/z + (kK + 1)V < 1/,
(i) there exists a unique pair of solutions wa—;+ of (4.4) if and only if k\/u+ k\/v <
1/7.

These results help us to determine the set W := {w € C’Q[O 1}; w is a solution of (4.4)}.
We define the following sets in uv-plane:

Dp = {n)ik(VE+v9) < 1k + DR+ T2 Ly 12 2]

D? = {(p,,u);(k—{-l)(\/ﬁ-}-\/lj) > %,(k+1)\/ﬁ+k\/5< %
kvi+ (k+1)v < —71;}

D} = <(pv)k+1)/o+kyv> %,kﬁ+(k+1)ﬁ< ;1;}

Dt = {(uwhilk+ DVE+hyT < 2bvE+ (4 vr2 1,

where k is a non-negative integer. Making use of the above results (i), (ii) and (iii) one
can show

Lemma 4.1. Let (u,v) € (0,0%) x (0,0*). Then it holds that

({0, wo,+} if (u,v) € D§,
{0, wox, wix, ~--, Wo-1,x} if (u,v) € Dy,
W =< {0, woz, wrs, -, W} , if (u,v) € D},
{0, wox, w1z, -+, wok—1,x, wak-} of (u,v) € Dy,
L {0, wos, wig, -, Wok—1,4, Wok+} o (p,v) € Dy,
for k=1,2,3,---. In particular, every element of W is isolated.

Remark 4.2. One-dimensional version of (4.2) is given by

{ w”+g(w)=0 in (0,1),

(4.5) w(0) = w(1) = 0,

with

7 p
The same result as Lemma 4.1 also holds true for (4.5).

Moreover, Hirose [11] has shown that every non-trivial solution of (4.4) or (4.5) has
non-zero index. Indeed, the following theorem holds true.
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Theorem 4.3. Let wy+,m = 0,1,2,---, be any solution of (4.4) or (4.5). Then it
holds that

index of wm+ = (—=1)™ for m=0,1,2,---

Remark 4.3. In (4.4) and (4.5), reaction terms are not smooth in case y # v; 50 that
A defined by (4.3) is not of class C'. Hence one cannot directly aplly the index formula
to get the assertion of Theorem 4.3. To prove this theorem we need some devices based
on the homotopy invariance of the degree.

We can see from Lemma 4.1 and Remark that (4.4) or (4.5) admits a sign-changing
solution if and only if \/a + /¥ < 1/m. Each sign-changing solution satisfies the
assumptions of Theorem 4.2 by virtue of Lemma 4.1 and Theorem 4.3. Therefore,
one can apply Theorem 4.2 for each sign-changing solution to get the corresponding
coexistence state for large interactions (see also the work of Dancer and Guo [6]).

4
Theorem 4.4. Suppose that (u,v) € U Dt for k € N. Then there exist large numbers

i=1
¢* and d* such that for every ¢ > c* and d > d* the following properties hold true:
(i) if (u,v) € D}, then (SP) (or (3.5)) admats at least (4k — 2) coezistence states,

(i) f (u,v) € D2, then (SP) ( or (3.5)) admats at least 4k coeristence states,

(iii) if (1, v) € D}UD}, then (SP) ((or (3.5)) admits at least (4k — 1) coezistence states.

Remark 4.4. Theorem 4.4 says that, if (4.4) or (4.5) has a sign-changing solution,
then (SP) has a coexistence state which is very close to such a solution (in a certain
sense) with respect to L*(Q)-norm if ¢,d are sufficiently large. If we use stability
results due to Dancer and Guo [6], we can get more information on the instability of
the above coexistence state. Indeed, the comparison method enables us to show that
every changing-sign solution wy of (4.4) or (4.5) is unstable as a stationary solution of
the natural corresponding parabolic equation. T herefore, if the non-degeneracy of wy is
established, then it becomes linearly unstable; so that Theorem 2.2 in [6] implies that
the coexistence state of (SP) associated with wo is unstable when ¢, d are sufficiently
large.

We can also see that profiles of these coexistence states are very similar to those of
limit-solutions given by sign-changing solutions. In this connection, it should be noted
that the following theorem holds true. See [11].

Theorem 4.5. Let {u,v} be any coezistence state of (SP).

(i) u and v have a finite number of local mazimum points in (0,1).

(i) Let 7y < xp < --+ < Tm be local mazimum points of u in (0,1) and let y1 < y2 <
... < yp be local mazimum points of v in (0,1). Then |m —n| < 1.

(iii) Local mazimum points of u and those of v appear alternately.

The proof of Theorem 4.5 can be accomplished along the idea used by Nakashima
[13]. We can also show the following result.
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Theorem 4.6. Let {c,,d,} satisfy cn, = 00 and dp, = 00 with ¢, /dp — @ as n — 0
and let {un,vn} be a coexistence state of (SP)( or (3.5) such that

1 1
{tn,va} = {=(wp)*,——(wk)"} in L*Q) as n— oo,
L va
for some k € N, where wy is a changing-sign solution of (4.4). Then for any ¢ > 0

there exizts a sufficiently large n* such that, for any n > n*

the number of local mazimum points of u, in (€,1 — ¢€)
= the number of local mazimum points of (wx)™ in (0,1)
and
the number of local mazimum points of v, in (e,1 — €)
= the number of local minimum points of (wx)~ in (0,1).

Here we will give some numerical examples accomplished by Hirose for the following
system -

Uge +u(a; —u —cv) =0 | in (0,1),
(4.6) Vgg + V(A —Cu—v) =0 in (0,1),
SN u(0) = u(1) = v(0) = v(1) =0, ‘
u>0, - v>0 in (0,1).
Set . )
U= —u, V=—u, 0:92_017 dzfl—lﬂ;
Ay as ay a9

then (4.6) is reduced to (3.5) for {U,V} with p =1/ai,v =1/as. =
Numerical experiments have been done for a; = 60,a, = 120, which corresponds
to (u,v) = (1/60,1/120) € D3. In D} Lemma 4.1 implies W = {0, wo,+, wy,+}. The
profile of w, _ is given in Figure 4 (A), the profile if the limit solution, i.e;; |wa |, is
given in Figure 4 (B) and profiles of corresponding coexistence states are exhibited in
“Figure 5. Observe that (4.6) admits coexistence states which are very close to |wy,_|

for sufficiently large interactions.

)
- N W e w oo

(A) Profile of w, _ (B) Profile of limit solution

FIGURE 4. sin-changing solution and limit solution
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