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A Singular Limit arising in Combustion
Theory: Identification of the Limit

G. S. Weiss*
Graduate School of Math. Sciences, University of Tokyo
3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan

This is an announcement of results to appear.
Let us consider the family of non-negative solutions for the initial-value prob-

lem

Oiue — Au, = _ﬂe(ue) n (07 OO) x R" ) ue(07 ) = U’S in R* . (1) |

Here € € (0,1), B(2) = 18(%), 8 € C3([0,1]), 8 > 0in (0,1) and [ B = 3. We
assume the initial data (u2)ce(,1) to be bounded in C*'(R™) and to satisfy
w? — u® in H*?(R™) and Uee(o1)supp u? C Bs(0) for some S < co.

Formally, each limit u with respect to a sequence €, — 0 will be a solution

of the free boundary problem

du—Au=0in {u > 0}N(0,00) xR™, |[Vu| =1 on 8{u > 0}N(0,00) xR" .

(2)
The singular limit problem (1) has been derived as a model for the propa-
gation of equidiffusional premixed flames with high activation energy ([4]);
here u = A(T, — T), T. is the flame temperature, which is assumed to be

constant, T is the temperature outside the flame and A is a normalization
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factor.

Let us shortly summarize the mathematical results directly relevant in this
context, beginning with the limit problem (2): In the excellent paper [1],
H.W. Alt and L.A. Caffarelli proved via minimization of the energy [(|Vu|*+
X{u>0}) — here X{u>o} denotes the characteristic function of the set {u > 0}
— existence of a stationary solution of (2) in the sense of distributions. They
also derived regularity of the free boundary 8{u > 0} up to a set of vanish-
ing n — 1-dimensional Hausdorff measure. The question of the existence of
classical solutions in three dimensions stands still exposed. Existence would
however follow by [13], once the non-existence of singular minimizing cones
has been established. Non-minimizing singular cones do in fact appear for
n = 3 (cf. [1, example 2.7]). Moreover it is known, that solutions of the
Dirichlet problem in two space dimensions are not unique (cf. [1, example
2.6]).

For the time-dependent (2), a “trivial non-uniqueness” complicates the mat-
ter further, as the positive solution of the heat equation is always another
solution of (2). Even for flawless initial data, classical solutions of (2) de-
velop singularities after a finite time span; consider e.g. the example of two

colliding traveling waves

u(t, z) = X{zres1)(exp(z +t —1) — 1) 3)
+ X{—att>13(exp(—z +t —1) —1) for t € [0,1) .

Let us now turn to results concerning the singular perturbation (1): For the
stationary problem (1) H. Béréstycki, L.A. Caffarelli and L. Nirenberg ob-
tained in [3] uniform estimates and — assuming the existence of a minimal
solution — further results.

L.A. Caffarelli and J.L. Vazquez contributed in [8] among other things the
corresponding uniform estimates for the time-dependent case and a conver-
gence result: for initial data u® that is strictly mean concave in the interior
of its support, a sequence of e-solutions converges to a solution of (2) in the

sense of distributions.
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Let us finally mention several results on the corresponding two-phase prob-
lem, which are relevant as solutions of the one-phase problem are automati-
cally solutions of the corresponding two-phase problem. In [6] and (7], L.A.
Caffarelli, C. Lederman and N. Wolanski prove convergence to a sort of bar-
rier solution in the case that {u = 0}° = @ . In [11], C. Lederman and N.
Wolanski show convergence to a viscosity solution in the sense of [5] and de-
rive regularity of the true two-phase part of the free boundary. These results
deal quite well with the true two-phase behavior of limits, but have — as will
become more plain in the examples below — to largely ignore the one-phase
behavior. One of the reasons for this is that the limit cannot be expected to
be close to a monotone function near free boundary points that are not true

two-phase points.

Our result: As an intermediate result we obtain that each limit u of (1) is a
solution in the sense of domain variations, i.e. u is smooth in {u > 0} and

satisfies

/OO/ (~28,uVu-€ + [Vul*div € — 2VuDEVY] = —/w/ ¢-vdH 1 dt
o JRr~ ' 0 JR(t)
(4)
for every € € Cy''((0,00) x R R™) . Here
R(t) := {z € o{u(t) > 0} : there is v(t,z) € dB,(0) such that u,(s,y) =

u(t + ris,z +ry)

— max(—y - v(t, ),0) locally uniformly in (s,y) € Rt
,

as r — 0}

is for a.e. t € (0, 00) a countably n — 1-rectifiable subset of the free boundary.
Let us remark that already this equation contains information (apart from
the rectfiability of R(¢)) that cannot be inferred from the viscosity notion of
solution [11, Definition 4.3]: whereas any function of the form o max(z,,0)+
Bmax(—,,0) with o, 8 € (0,1] is a viscosity solution in the sense of [11,

Definition 4.3], positive o and 3 have to be equal in order to satisfy (4).
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Our main result is then that each limit of (1) — no additional assumptions

are necessary — satisfies for a.e. t € (0, 00)

Jar (Bu(t)p + Vu(t) - Vo) = — Jpq) ¢ dH™
= Jo. 20(t, ) @AM — [y D dA(2)

for every ¢ € C}(R™) , that the non-degenerate singular set

(%)

Z.(t) :== {z € 0{u(t) > 0} : there is 0(¢,z) € .(0, 1] éﬁd &(t,z) € 8B1(0) such

u(t + r?s,z + ry)
T
in (s,y) € R"*! as r — 0}

that u,(s,y) = — 8(t, z)|y - £(t, )| locally uniformly

is for a.e. t € (0, 00) a countably n — 1-rectifiable subset of the free boundary
whereas A(t) is for a.e. ¢t € (0,00) a Borel measure such that the n — 1
dimensional Hausdorff measure is on

Z,(t) := {z € o{u(¢t) > 0} : r_"—2/ o) |[Vul|? — 0 as r — 0}
Q-(t,x

totally singular with respect to A(t) , i.e. r'™"A(t)(B,(z)) — 0 for H"1-
a.e. x € X,(t). Up to a set of vanishing H"~! measure, 8{u(t) > 0} =
R(t)UX,(t) UL, (¢).

Let us shortly describe relevant parts of the proof:

As a first step, we prove convergence of 2B, (u.,,) to a characteristic function.
We also need some control over the set of horizontal points, i.e. the set of
points at which the solution’s behaviour in the time direction is dominant.
A crucial tool in the local analysis at the free boundary is the monotonicity

formula
Theorem 1 (e-Monotonicity Formula) Let (ty, o) € (0,00)xR"™, T:=(t)

=(t0—47'2,t0—r2)xR",O<p<a<‘/Tt_5and

Gltosm0)(t, ) = 4 (ty — t) |47(to — )| 37" exp (—%—f%)
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Then : : ;
‘ =r? \Y 62 2Be € Gy T
(tO,xo)(T) T /Tr_(to) (I u l + (u )) (to,z0) T

L / L g A
- =7 u. G
2 Ty (to) to—t ° (to,20)
satisfies the monotonicity formula

o 1
€ — P > / ~1-2 /
(to,20)(7) (tos20)(P) 2 » r T (to) to — t

(vue (& — o)

2 .
- 2(t0 - t)atue - ’UJ5> G(to,zo) dr Z 0 .
The key to our result is then an estimate for the parabolic mean frequency.

Proposition 1 On the closed set & := {(t,z) € (0,00) xR™ : ¥ 4)(0+) =
2H,} the parabolic mean frequency 4

1
2/ 2 Grra / Vul Gy > 1 .
(T:(t)t—su (t’)> T:(t)l u Gen 2

The function r +— 772 fT;(t) ﬁuZ G,y 5 non-decreasing and has a right

limit 0%(t, ) fr- o) L |z1|*Go,0) - The function 0 is upper semicontinuous on

Y. At each (t,z) € £

/ 5'3/ ’(1—X)G(t,x)ds — Q0asr—0.
0 T (1)

It is a surprising fact that the parabolic mean frequency is bounded from
below at each point of highest density, which includes the set ¥, . As a
consequence we obtain unique tangent cones for a.e. time and at H" '-a.e.

point of the graph of u , whence GMT-tools lead to our result.
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