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Let us consider the family of non-negative solutions for the initial-value prob-

lem

$\partial_{t}u_{\epsilon}-\triangle u_{\epsilon}=-\beta_{\epsilon}(u_{\epsilon})$ in $(0, \infty)\cross \mathrm{R}^{n},$ $u_{\epsilon}(0, \cdot)=u_{\epsilon}^{0}$ in $\mathrm{R}^{n}$ (1)

Here $\epsilon\in(0,1),$ $\beta_{\epsilon}(z)=\frac{1}{\epsilon}\beta(\frac{z}{\epsilon}),$ $\beta\in C_{0}^{1}([0,1]),$ $\beta>0$ in $(0,1)$ and $\int\beta=\frac{1}{2}$ . We

assume the initial data $(u_{\epsilon}^{0})_{\epsilon\in(0,1)}$ to be bounded in $C^{0,1}(\mathrm{R}^{n})$ and to satisfy
$u_{\epsilon}^{0}arrow u^{0}$ in $H^{1,2}(\mathrm{R}^{n})$ and $\bigcup_{\epsilon\in(0,1)^{\sup \mathrm{p}u_{\epsilon}^{0}}}\subset B_{S}(0)$ for some $S<\infty$ .
Formally, each limit $u$ with respect to a sequence $\epsilon_{m}arrow 0$ will be a $\dot{\mathrm{s}}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

of the free boundary problem

$\partial_{t}u-\triangle u=0$ in $\{u>0\}\cap(0, \infty)\cross \mathrm{R}^{n},$ $|\nabla u|=1$ on $\partial\{u>0\}\cap(0, \infty)\cross \mathrm{R}^{n}$

(2)

The singular limit problem (1) has been derived as a model for the propa-

gation of equidiffusional premixed flames with high activation energy ([4]);

here $u=\lambda(T_{c}-T)$ , $T_{c}$ is the flame temperature, which is assumed to be

constant, $T$ is the temperature outside the flame and $\lambda$ is a normalization
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factor.
Let us shortly summarize the mathematical results directly relevant in this
context, beginning with the limit problem (2): In the excellent paper [1],
$\mathrm{H}.\mathrm{W}$ . Alt and $\mathrm{L}.\mathrm{A}$ . Caffarelli proved via minimization of the energy $\int(|\nabla u|^{2}+$

$\chi_{\{u>0\}})$ –here $\chi_{\{u>0\}}$ denotes the characteristic function of the set $\{u>0\}$

-existence of a stationary solution of (2) in the sense of distributions. They
also derived regularity of the free boundary $\partial\{u>0\}$ up to a set of vanish-
ing $n-1$-dimensional Hausdorff measure. The question of the existence of
classical solutions in three dimensions stands still exposed. Existence would
however follow by [13], once the non-existence of singular minimizing cones
has been established. Non-minimizing singular cones $do$ in fact appear for
$n=3$ (cf. [1, example 2.7]). Moreover it is known, that solutions of the
Dirichlet problem in two space dimensions are not unique (cf. [1, example
2.6]).
For the time-dependent (2), a “trivial non-uniqueness” complicates the mat-
ter further, as the positive solution of the heat equation is always another
solution of (2). Even for flawless initial data, classical solutions of (2) de-
velop singularities after a finite time span; consider e.g. the example of two
colliding traveling waves

$u(t, x)=\chi_{\{x+t>1\}}(\exp(x+t-1)-1)$
(3)

$+\chi\{-x+t>1\}(\exp(-x+t-1)-1)$ for $t\in[0,1)$ .

Let us now turn to results concerning the singular perturbation (1): For the
stationary problem (1) H. B\’er\’estycki, $\mathrm{L}.\mathrm{A}$ . Caffarelli and L. Nirenberg ob-
tained in [3] uniform estimates and–assuming the existence of a minimal
solution–further results.
$\mathrm{L}.\mathrm{A}$ . Caffarelli and $\mathrm{J}.\mathrm{L}$ . Vazquez contributed in [8] among other things the
corresponding uniform estimates for the time-dependent case and a conver-
gence result: for initial data $u^{0}$ that is strictly mean concave in the interior
of its support, a sequence of $\epsilon$-solutions converges to a solution of (2) in the
sense of distributions.

30



Let us finally mention several results on the corresponding two-phase prob-

lem, which are relevant as solutions of the one-phase problem are automati-
cally solutions of the corresponding two-phase problem. In [6] and [7], $\mathrm{L}.\mathrm{A}$ .

Caffarelli, C. Lederman and N. Wolanski prove convergence to a sort of bar-

rier solution in the case that $\{u=0\}^{\mathrm{o}}=\emptyset$ . In [11], C. Lederman and N.

Wolanski show convergence to a viscosity solution in the sense of [5] and de-

rive regularity of the true two-phase part of the free boundary. These results
deal quite well with the true two-phase behavior of limits, but have–as will

become more plain in the examples below–to largely ignore the one-phase

behavior. One of the reasons for this is that the limit cannot be expected to

be close to a monotone function near free boundary points that are not true

two-phase points.

Our result: As an intermediate result we obtain that each limit $u$ of (1) is a

solution in the sense of domain variations, i.e. $u$ is smooth in $\{u>0\}$ and

satisfies

$\int_{0}^{\infty}\int_{\mathrm{R}^{n}}[-2\partial_{t}u\nabla u\cdot\xi+|\nabla u|^{2}\mathrm{d}\mathrm{i}\mathrm{v}\xi-2\nabla uD\xi\nabla u]=-\int_{0}^{\infty}\int_{R(t)}\xi\cdot\nu d\mathcal{H}^{n-1}dt$

(4)

for every $\xi\in C_{0}^{0,1}((0, \infty)\cross \mathrm{R}^{n}$ ; $\mathrm{R}^{n}$ ). Here

$R(t):=\{x\in\partial\{u(t)>0\}$ : there is $\nu(t, x)\in\partial B_{1}(0)$ such that $u_{r}(s, y)=$

$\frac{u(t+r^{2}s,x+ry)}{r}arrow\max(-y\cdot l/(t, x),$ $0)$ locally uniformly in $(s, y)\in \mathrm{R}^{n+1}$

as $rarrow 0$}

is for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$ a countably $n-1$-rectifiable subset of the free boundary.

Let us remark that already this equation contains information (apart from

the rectfiability of $R(t))$ that cannot be inferred from the viscosity notion of

solution [11, Definition 4.3]: whereas any function of the form $\alpha\max(x_{n}, 0)+$

$\beta\max(-x_{n}, 0)$ with $\alpha,$ $\beta\in(0,1]$ is a viscosity solution in the sense of [11,

Definition 4.3], positive $\alpha$ and $\beta$ have to be equal in order to satisfy (4).
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Our main result is then that each limit of (1) –no additional assumptions
are necessary–satisfies for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$

$\int_{\mathrm{R}^{n}}(\partial_{t}u(t)\phi+\nabla u(t)\cdot\nabla\phi)=-\int_{R(t)}\phi d\mathcal{H}^{n-1}$

(5)
$- \int_{\Sigma_{*}(t)}2\theta(t, \cdot)\phi d\mathcal{H}^{n-1}-\int_{\Sigma_{z}(t)}\phi d\lambda(t)$

for every $\phi\in C_{0}^{1}(\mathrm{R}^{n})$ , that the non-degenerate singular set

$\Sigma_{*}(t):=\{x\in\partial\{u(t)>0\}$ : there is $\theta(t, x)\in(0,1]$ and $\xi(t, x)\in\partial B_{1}(0)$ such

that $u_{r}(s, y)= \frac{u(t+r^{2}s,x+ry)}{r}arrow\theta(t, x)|y\cdot\xi(t, x)|$ locally uniformly

in $(s, y)\in \mathrm{R}^{n+1}$ as $rarrow 0$}

is for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$ a countably $n-1$-rectifiable subset of the free boundary
whereas $\lambda(t)$ is for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$ a Borel measure such that the $n-1$
dimensional Hausdorff measure is on

$\Sigma_{z}(t):=$ { $x\in\partial\{u(t)>0\}$ : $r^{-n-2} \int_{Q_{r}(t,x)}|\nabla u|^{2}arrow 0$ as $rarrow 0$}

totally singular with respect to $\lambda(t)$ , i.e. $r^{1-n}\lambda(t)(B_{r}(x))arrow 0$ for $\mathcal{H}^{n-1_{-}}$

$\mathrm{a}.\mathrm{e}$ . $x\in\Sigma_{z}(t)$ . Up to a set of vanishing $\mathcal{H}^{n-1}$ measure, $\partial\{u(t)>0\}=$

$R(t)\cup\Sigma_{*}(t)\cup\Sigma_{z}(t)$ .

Let us shortly describe relevant parts of the proof:
As a first step, we prove convergence of 2 $B_{\epsilon_{m}}(u_{\epsilon_{m}})$ to a characteristic function.
We also need some control over the set of horizontal points, i.e. the set of
points at which the $\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}^{)}\mathrm{s}$ behaviour in the time direction is dominant.
A crucial tool in the local analysis at the free boundary is the monotonicity

formula

Theorem 1 ( $\epsilon$-Monotonicity Formula) Let $(t_{0}, x_{0})\in(0, \infty)\cross \mathrm{R}^{n},$ $T_{r}^{-}(t_{0})$

$=(t_{0}-4r^{2}, t_{0}-r^{2})\cross \mathrm{R}^{n}$ , $0< \rho<\sigma<\frac{\sqrt{t_{0}}}{2}$ and

$G_{(t\mathrm{o},x\mathrm{o})}(t, x)=4 \pi(t_{0}-t)|4\pi(t_{0}-t)|^{-\frac{n}{2}-1}\exp(-\frac{|x-x_{0}|^{2}}{4(t_{0}-t)})$
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Then
$\Psi_{(t0,x_{0})}^{\epsilon}(r)=r^{-2}\int_{T_{r}^{-}(t_{0})}(|\nabla u_{\epsilon}|^{2}+2B_{\epsilon}(u_{\epsilon}))G_{(t_{0},x_{0})}+$

$- \frac{1}{2}r^{-2}\int_{T_{r}^{-}(t_{0})}\frac{1}{t_{0}-t}u_{\epsilon}^{2}G_{(t\mathrm{o},x\mathrm{o})}$

satisfies the monotonicity formula

$\Psi_{(t0,x\mathrm{o})}^{\epsilon}(\sigma)-\Psi_{(t0,x_{0})}^{\epsilon}(\rho)\geq\int_{\rho}^{\sigma}r^{-1-2}\int_{T_{r}^{-}(t_{0})}\frac{1}{t_{0}-t}(\nabla u_{\epsilon}\cdot(x-x_{0})$

$-2(t_{0}-t)\partial_{t}u_{\epsilon}-u_{\epsilon})^{2}G_{(t0,x_{0})}dr\geq 0$

The key to our result is then an estimate for the parabolic mean frequency.

Proposition 1 On the closed set $\Sigma:=\{(t, x)\in(0, \infty)\cross \mathrm{R}^{n}$ : $\Psi_{(t,x)}(0+)=$

$2H_{n}\}$ the parabolic mean frequency

2 $( \int_{T_{r}^{-}(t)}\frac{1}{t-s}u^{2}G_{(t,x)})^{-1}\int_{T_{r}^{-}(t)}|\nabla u|^{2}G_{(t,x)}\geq 1$

The funciion $r \mapsto r^{-2}\int_{T_{r}^{-}(t)}\frac{1}{t-s}u^{2}G_{(t,x)}$ is non-decreasing and has a right

limit $\theta^{2}(t, x)\int_{T_{1}^{-}(0)}\frac{1}{-S}|x_{1}|^{2}G_{(0,0)}$ . The function $\theta$ is upper semicontinuous on
$\Sigma$ . At each $(t, x)\in\Sigma$

$\int_{0}^{r}s^{-3}\int_{T_{s}^{-}(t)}(1-\chi)G_{(t,x)}dsarrow 0$ as $rarrow 0$ .

It is a surprising fact that the parabolic mean frequency is bounded from

below at each point of highest density, which..includes the set $\Sigma_{*}$ . As a
consequence we obtain unique tangent cones for $\mathrm{a}.\mathrm{e}$ . time and at $\mathcal{H}^{n-1}- \mathrm{a}.\mathrm{e}$ .

point of the graph of $u$ , whence GMT-tools lead to our result.
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