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Abstract. Let $h$ : $Marrow M$ be a pseudo-Anosov $\mathrm{h}.\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}\mathrm{m}0\mathrm{r}_{\mathrm{P}^{\mathrm{h}}}\mathrm{i}\mathrm{s}\mathrm{m}$ on an orientable surface with

boundary. For the induced homomorphism $h_{*}$ : $\pi_{1}(M, *)arrow\pi_{1}(M, *)$ , we will simplify the formula on

calculation of exponential growth rate. If we choose $\alpha\in\pi_{1}(M, *)$ which is not represented by a boundary

parallel closed path, the simple limit $\lim_{narrow\infty}(1/n)\log|h_{*}^{m}(\alpha)|$ gives the exponential growth rate of $h_{*}$ .

1. Introduction. In this article we will give a formula on calculation of exponential
growth rates. Especially we are interested in exponential growth rates for homomorphisms
on the fundamental group of a compact oriented surface $M$ induced by homeomorphisms
$h:Marrow M$. Choosing a generating system of $\pi_{1}(M, *)$ , we denote by $|\alpha|$ the $\mathrm{w}\mathrm{o}\mathrm{r}\dot{\mathrm{d}}$ length
of $\alpha\in\pi_{1}(M, *)$ with respect to this generating system. Recall that for a homomorphism
$\phi$ of the group $\pi_{1}(M, *)$ , the exponential growth rate $\mathrm{E}\mathrm{G}\mathrm{R}(\pi_{1}(M, *),$ $\phi)$ is given by the
formula

$\mathrm{E}\mathrm{G}\mathrm{R}(\pi_{1}(M, *),$ $\phi)=$ $\sup$
$\lim\sup\log\underline{1}|\phi^{m}(\alpha)|$ .

$\alpha\in\pi_{1(M},*)marrow\infty m$

Note that the definition of the exponential growth rate is independerit of the choice of
generating systems of the group $\pi_{1}(M, *)$ .

In the case when a homeomorphism $h$ is pseudo-Anosov and $M$ has non-empty bound-
ary, this formula is slightly simplified for suitable choice of an element $\alpha\in\pi_{1}(M, *)$ .

Theorem. Assume that $h$ is a pseudo-Anosov homeomorphism on a compact oriented

surface $M$ with non-empty boundary. If an element $\alpha\in\pi_{1}(M, *)$ is not represented by a
boundary parallel closed path, then

$\mathrm{E}\mathrm{G}\mathrm{R}(\pi_{1}(M, *),$ $h_{*})= \mathrm{l}\mathrm{i}\mathrm{m}marrow\infty\frac{1}{m}\log|h_{*}^{m}(\alpha)|$ .
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Note that even if $h$ does not preserve the base point, the exponential growth rate is
well defined, because we have an isomorphism $\pi_{1}(M, h^{m}(*))arrow\pi_{1}(M, *)$ which is uniquely
determined up to inner automorphism of $\pi_{1}(M, *)$ .

In \S .2 for a pseudo-Anosov homeomorphism $h$ we will construct a graph so called a
train track [3] from the unstable and stable foliations [1] associated to $h$ . In \S .3 using the
train track we will give a lemma to describe the topology of the image of a closed path
under an iteration of $h$ , and then prove the theorem.

2. bain track. As the proof of 4. $1.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}[2]$ , remove from $M$ a neighborhood of the
singularity of the unstable foliation associated to $h$ and denote by $M_{1}$ the obtained holed
surface. We make a quotient space of $M_{1}$ by collapsing each connected component of the
intersection of $M_{1}$ with the stable leaves to a single point. Then we obtain a train track
$G_{1}$ , and furthermore $h:Marrow M$ and the projection $\pi$ : $M_{1}arrow G_{1}$ determine a homotopy
equivalence $f_{1}$ : $G_{1}arrow G_{1}$ . Note that $G_{1}$ may be viewed as to be embedded in $M$. Let $k$

be the number of singular points of the unstable foliation which are in the interior of $M$,
and let $F_{k}$ be the free subgroup of $\pi_{1}(G_{1}, *)$ which is defined by the boundary circles of
$M_{1}$ corresponding to the inner singularity. Then if we regard $\pi_{1}(M, *)$ as a subgroup of
$\pi_{1}(G_{1}, *)$ , it is obvious that $\pi_{1}(G_{1}, *)=F_{k}*\pi_{1}(M, *)$ . Let us choose a minimal generating
system of $\pi_{1}(G_{1}, *),$ $\alpha 1,$ $\cdots,$ $\alpha n’\alpha n+1,$ $\cdots$ , $\alpha_{n+k}$ , such that $\pi_{1}(M, *)=\langle\alpha_{1}, \cdots, \alpha_{n}\rangle$ and
$F_{k}=\langle\alpha_{n+1}, \cdots, \alpha_{n+}k\rangle$ , and let $p:\pi_{1}(G_{1}, *)arrow\pi_{1}(M, *)$ denote the projection.

Recall that the neighborhood of the singularity chosen in the previous paragraph is
the disjoint union of polygons (where we mean by a polygon the closed region bounded
by it) with edges transverse to the stable leaves and vertices on the unstable separatri-
ces. Furthermore for each single inner singular point we choose a distinct single polygon,
and for all singular points on each single boundary component of $M$ we choose a sin-
gle polygon with boundary in $\mathrm{I}\mathrm{n}\mathrm{t}M$ and with hole which is bounded by the boundary
component itself. If we choose polygons corresponding to the inner singularity as to be
sufficiently small relative to the neighborbood of $\partial M$ with respect to the sum of the length
of boundary edges measured by the transvers measure, then collapsing each subgraph of
$G_{1}$ corresponding to the inner singularity, we obtain a graph $G$ homotopy equivalent to
$M$. Let us denote this projection by $q:G_{1}arrow G$ . Then clearly $q_{*}=p$ , and $f1$ : $G_{1}arrow G_{1}$

projects down to a homotopy equivalence $f$ : $Garrow G$ . Furthermore we may assume that
any vertex of $G_{1}$ has three prongs.

3. Proof of Theorem. Using the train track constructed in the previous section we
will show the following lemma.
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Lemma. Under the same condition as Theorem, there enists a positive integer $m$ such
that for the generating system chosen in the previous section the reduced word of $h_{*}^{m}(\alpha)$

includes $\alpha_{j}$ or its inverse $\overline{\alpha}_{j}$ for all $j$ .

Proof. Let $a$ be the closed path in $G_{1}$ which determines $\alpha$ . We will construct a closed
path $\tilde{a}$ in $M$ which is homotopic to $a$ and which is the concatenation of segments lying
in the stable, unstable separatrices and boundary circles, and with one endpoint the sin-
gularity. More precisely in the following paragraph we will choose $\tilde{a}$ as the concatenation
$s_{0}\cdot u_{1}\cdot s1$ $u_{2}\cdot s_{2}\cdots u_{ll}$. $s$ , where each $s_{i}$ is in a stable separatrix, or in the union of
a boundary circle and a stable separatrix emanating from it, perhaps $s_{0}$ is trivial, $i.e$ .
a vertex, and each $u_{i}$ is in an unstable separatrix, and the initial points of $u_{j}$ and the
terminal points of $s_{j}$ are singular points.

By the assumption on $G_{1}$ , we can detect which singular point a vertex $v$ of $G_{1}$ corre-
sponds to, and more precisely which vertex of removed polygon it corresponds to. Assume
that $a$ passes an edge 6 with end points vertices $v_{1}$ and $v_{2}$ in the direction from $v_{1}$ to $v_{2}$ ,
and assume that $v_{j}$ correspond to distinct singular points $x_{j}$ for $j=1,2$ . By construction
$\pi^{-1}$ (Int $\epsilon$) is a foliated rectangle, and we can uniquely determine an unstable separatrix
$\zeta$ at $x_{1}$ which goes into $\pi^{-1}$ (Int s) and a stable separatrix $\xi$ at $x_{2}$ which intersects with $\zeta$

at $y$ in $\pi^{-1}(\pi(P_{2}))$ where $P_{2}$ denotes the boundary of the removed polygon for $x_{2}$ . Then
for paths $u_{j}$ and $s_{j}$ , with suitable index $j$ , we choose the paths in $\zeta$ and $\xi$ bounded by
$x_{1}$ and $y$ , and $y$ and $x_{2}$ respectively. If $x_{1}=x_{2}$ , we do not need to choose $u_{j}$ and $s_{j}$ for
the edge 6, and if $x_{1}$ and $x_{2}$ lie in the same boundary component, we also do not need to
choose $u_{j}$ and $s_{j}$ , but in this case we replace the last chosen $s_{j-1}$ by the concatenation of
it with the arc $\eta$ in the boundary bounded by $x_{1}$ and $x_{2}$ if $j\geq 2$ , and if $j=1$ , we choose
$\eta$ as $s_{0}$ . Note that by the assumption on $a$ , there exists a non-trivial, $i.e$ . not reduced to
a vertex, $u_{j}$ .

For each vertex $v$ of $G_{1}$ let us choose an edge path $\delta_{v}$ in $G_{1}$ connecting it to the base
$\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}*$ . Then for any path $\gamma$ in $G_{1}$ with endpoints $v_{0}$ and $v_{1}$ vertices, concatenating the
reverse path $\overline{\delta}_{v_{0}}$ to the one chosen for $v_{0},\gamma$ , and the path $\delta_{v_{1}}$ chosen for $v_{1}$ in this order,
we obtain a closed path. Let us denote by $\langle\gamma\rangle$ the element of $\pi_{1}(G_{1}, *)$ determined by
this closed path.

Assume that $u_{i}\cdot s_{i}$ has the initial point $x_{0}^{i}$ and the terminal point $x_{1}^{i}$ . For $\epsilon=0$ and llet
$B_{\epsilon}^{i}$ be the subgraphs of $G_{1}$ corresponding to the $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\Gamma \mathrm{y}$ components of $M_{1}$ with respect
to $x_{\epsilon}^{i}$ . Pushing out $u_{i}$ from the polygons chosen for the singularity as sliding along stable
leaves and keeping the terminal point in the sector bounded by two adjacent unstable
separatrices, we obtain a path $u_{i}’$ and then this projects down to a path $\tilde{u}_{i}$ in $G_{1}$ . For
each $i=1,2,$ $\cdots,$

$l$ the terminal point $\tilde{x}_{1}^{i}$ of $\tilde{u}_{i}$ and the initial point $\tilde{x}_{0}^{i+1}$ of $\tilde{u}_{i+1}$ are in
$B_{1}^{i}=B_{0}^{i+1}$ , and let us choose a path $t_{i}\sim$ in $B_{1}^{i}$ which connects $\tilde{x}_{1}^{i}$ with $\tilde{x}_{0}^{i+1}$ , where $l+1$ is
viewed as 1. Then the concatenation $\tilde{b}=\tilde{u}_{1}\cdot t_{1}\cdot\tilde{u}_{2}\cdot t\sim\sim 2\ldots\tilde{u}\iota\cdot tl\sim$ is a closed path in $G_{1}$ , and
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it defines the element a again even though the choice of $t_{i}\sim$ is not unique. Replacing $\tilde{a}$ , if
necessary, we may assume that $\tilde{b}$ has no back track, and more precisely we may assume
that if in a neighborhood of the singular point $x_{0i}^{i+1}u$ is pushed to a separatrix Xi along
stable leaves, then the separatrix $\chi_{i+1}$ in which $u_{i+1}$ lies is distinct to $\chi_{i}$ .

Set $u_{i}(m)=h^{m}(u_{i})$ and $s_{i}(m)=h^{m}(s_{i})$ . For paths $u_{i}(m)$ we perform the same con-
struction as to obtain $\tilde{u}_{i}$ from $u_{i}$ , and then we obtain paths $\tilde{u}_{i}(m)$ . Since $h$ maps the

singularity into itself, $\tilde{u}_{i}(m)$ is well determined. We choose paths $t_{i}(m)\sim$ in the same way
as to choose $t_{i}\sim$ . Set $\tilde{b}(m)=\tilde{u}_{1}(m)\cdot t_{1}\sim(m)\cdot\tilde{u}_{2}(m)-t_{2}\sim\sim(m)\cdots\tilde{u}_{l}(m)\cdot t\iota(m)$. By construction
$q(\tilde{b}(m))=f^{m}(q(\tilde{b}))$ and $q(\tilde{u}_{i}(m))=f^{m}(q(\tilde{u}_{i}))$ . Replace $\tilde{u}_{i}(m)$ by the inner most edge
path $\hat{u}_{i}(m)$ . Then by construction we have $q(\tilde{b}(m))=q(\hat{u}_{1}(m))\cdot q(\hat{u}_{2}(m))\cdots q(\hat{u}\iota(m))$ ,

and $h_{*}^{m}(\alpha)=q_{*}(\langle\hat{u}_{1}(m)\rangle\cdot\langle\hat{u}_{2}(m)\rangle l\cdot\cdot\langle\hat{u}_{l}(m)\rangle)$ up to conjugacy.
Now we will assert that a reduced word to represent $h_{*}^{m}(\alpha)$ is produced by formally

making a product $\langle\hat{u}_{1}(m)\rangle\cdot\langle\hat{u}_{2}(m)\rangle\cdots\langle\hat{u}\iota(m)\rangle$ and removing letters $\alpha_{n+1},$ $\alpha_{n+2},$ $\cdots$ , $\alpha_{n+k}$

from it. Then this completes the proof, because each unstable separatrix is dense in $M$,
and thus for a large $m\hat{u}_{i}(m)$ laps each edges sufficiently large times. Therefore the above
assertion implies that the reduced word to represent $h_{*}^{m}(\alpha)$ includes any $\alpha_{j}$ or its inverse
for $j=1,2,$ $\cdots,$ $n$ .

We denote by $\langle\langle\hat{u}_{i}(m)\rangle\rangle$ the word obtained from $\langle\tilde{u}_{i}(m)\rangle$ by removing letters $\alpha_{n+1},$ $\alpha_{n+2}$ ,
. . . , $\alpha_{n+k}$ . Let $\gamma_{i}$ and $\gamma_{i+1}$ be the last letter and the first letter of $\langle\langle\hat{u}_{i}(m)\rangle\rangle$ and $\langle\langle\hat{u}_{i+1}(m)\rangle\rangle$ .
Since $h$ maps a singular point with $k$ unstable separatrices to a singular point of the same
type, by construction we have that $\gamma_{i}\neq\overline{\gamma}_{i+1}$ , and thus cancellation may be done only in

each word $\langle\langle\hat{u}_{i}(m)\rangle\rangle$ . Suppose by contradiction that the word $\langle\langle\hat{u}_{i}(m)\rangle\rangle$ includes letters to
be cancelled. Then it follows that $\tilde{u}_{i}(m)$ has a back track, but this is impossible because
$\tilde{u}_{i}(m)$ is an immersed curve in $G_{1}$ . This completes the proof. $\square$

We have done the all preparations to prove the theorem. To complete the proof, only
a little bit argument is needed.

Proof of Theorem. As shown in the proof of Lemma, for a sufficiently large $\overline{m}\langle\hat{u}_{i}(\overline{m})\rangle$

has a word $\alpha_{j}$ or $\overline{\alpha}_{j}$ for any $j,$ $1\leq j\leq n$ , and when we remove $\alpha_{j},$ $n+1\leq j$ , any other
cancellation does not occur. Therefore we have

$\lim_{marrow}\sup_{\infty}\frac{1}{m}\log|h_{*}^{m}(\alpha)|\geq\lim_{marrow}\sup_{\infty}\frac{1}{m}\log|h_{*}^{m}(\alpha_{j})|$

Furthermore by the above argument $|h_{*}^{m}(\alpha_{j})|$ increase monotonically, and thus in the

above inequality we may replace the limit supremums by simple limits :

$\lim_{marrow\infty}\frac{1}{m}\log|h^{m}(*\alpha)|\geq\lim_{marrow\infty}\frac{1}{m}\log|h_{*}^{m}(\alpha_{j})|$ .

Since the contrary inequality is obvious, we complete the proof of Theorem. $\square$
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