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$0$ . Introduction
In this note, we compute the eigen-functions to the complex Ruelle

operator and the eigen-hyperfunctions to the dual of the Ruelle operator
applied on the space of pre-hyperfunctions and hyperfunctions respective-
ly supported on the Julia set of a complex dynamical system. In order to
examine the structure of the eigen-functions, we consider a most simple
and non-trivial case, $i.e.$ , the case of postcritically finite quadratic poly-
nomial $R(z)=z^{2}+i$ . The critical point, $z=0$ , is postcritically finite,
since $R(\mathrm{O})=i,$ $R(i)=i-1,$ $R(i-1)=-i$ , and $R(-i)=i-1$ . As men-
tioned in [10], the Fredholm determinant of the complex Ruelle operator
is a rational function in the postcritically finite case. It can be explicitely
computed. For more detailed definition of the space of prehyperfunctions
and the complex Ruelle operator operating on the prehyperfunctions, see
[10].

1. Prehyperfunctions supported on the Julia set and com-
plex Ruelle operator

In this section, we briefly recall the formulation of prehyperfunctions
defined in a neighborhood of the Julia set. In this note, for the sake of
simplicity, we consider only the case of the postcritically finite quadratic
function $R(z)=z^{2}+i$ The infinity is a superattractive fixed point of
$R$ . Let $F=F(R)$ denote the Fatou set of $R$ , and let $J=J(R)$ denote
the Julia set of $R$ . In our case, $F$ is the attractive basin of the infinity
and $J$ is a dendrite and they are both connected. In order to avoid
confusion we set $i=\sqrt{-1}$ and will not use $i$ as an index variable. The
origin $z=0$ is the critical point in the Julia set. The postcritical set
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$P=P(R)$ consists of three points $\{i, i-1, -i\}$ Note that we denote
by $R_{n}$ the n-th iterate of $R$ instead of $R^{n}$ or $R^{\mathrm{o}n}$ , since we have to
treat their derivatives. In the backward iterarion case, we denote also
$R^{-k}$ in place of $R_{-k}$ to emphasize it is backward.

Let $\mathcal{O}(J)$ denote the space of germs of functions $g:Jarrow \mathbb{C}$ which can
be extended holomorphically to some neighborhood of $J$ . The topology
if this space of functions is defined as follows : a sequence of functions
$\{g_{n}\}$ in $\mathcal{O}(J)$ converges to some function $g_{\infty}$ in $\mathcal{O}(J)$ if there exists a
neighborhood of $J$ such that $\{g_{n}\}$ are extendable to this neighborhood
and the sequence converges to $g_{\infty}$ uniformly in this neighborhood.

Let $\mathcal{O}(F)$ denote the space of holomorphic functions $f$ : $Farrow \mathbb{C}$ with
the topology of local uniform convergence. We denote by $\mathcal{O}_{0}(F)$ the set
of holomorphic functions $f\in \mathcal{O}(F)$ satisfying $f(\infty)=0$ .

The space of prehyperfunctions $\mathcal{H}(J)$ supported on $J$ is defined by a
direct sum:

$\mathcal{H}(J)=\mathcal{O}(J)\oplus \mathcal{O}\mathrm{o}(F)$ .

This space is a Fr\’echet space.
For $\varphi\in \mathcal{H}(J)$ , let $\varphi=\varphi_{J}\oplus\varphi_{F}$ with $\varphi_{J}\in \mathcal{O}(J)$ and $\varphi_{F}\in \mathcal{O}_{0}(F)$ . A

prehyperfunction $\varphi$ defines a function holomorphic in a deleted neigh-
borhood of the Julia set. Conversely, a function, defined in a deleted
neighborhood, say $U\backslash J$ , of the Julia set, and holomorphic in $U\backslash J$ , can
be decomposed uniquely into a direct sum by the following integrations.

$\varphi_{J}(x)=\frac{1}{2\pi i}\int_{\gamma_{J}}\frac{\varphi(\tau)}{\tau-x}d\tau$, for $x\in U$,

and
$\varphi_{F}(x)=\frac{1}{2\pi i}\int_{\gamma_{F}}\frac{\varphi(\tau)}{\tau-x}d\tau$ , for $x\in F$,

where the intagration path $\gamma_{J}\subset U\backslash J$ turns once aroud the Julia set
$J$ in the counterclockwise direction passing near the boudary of $U$ so
that $x$ belongs to the inside of the integration path, and the integration
path $\gamma_{F}\subset U\backslash J$ turns once around the Julia set $J$ in the clockwise
direction passing near the Julia set $J$ so that $x$ belongs to the outside of
the integration path. The integration paths are “ideal”, or the integration
should be considered as some limit. This defines functions $\varphi_{J}\in \mathcal{O}(U)$

and $\varphi_{F}\in \mathcal{O}_{0}(F)$ . Moreover, we have $\varphi=\varphi_{J}+\varphi_{F}$ in $U\backslash J$ . Here,
$\varphi_{J}+\varphi_{F}$ means the usual sum of functions, and we don’t distinguish the
prehyperfunction and the function defined by $\varphi$ in $U\backslash J$ . Note that the
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decomposition is unique, since a function belonging to $\mathcal{O}(U)\cap \mathcal{O}_{0}(F)$ is
holomorphic on the Riemann sphere and vanishes at the infinity, hence
it is identically zero.

Let us define the Ruelle’s transfer operator for our prehyperfunctions.

DEFINITION 1.1 Complex Ruelle operator $L$ : $\mathcal{H}(J)arrow \mathcal{H}(J)$ is
defined by

$(L \varphi)(x)=y\in R^{-1}()\sum_{x}\frac{\varphi(y)}{(R(y))^{2}},$ , $\varphi\in \mathcal{H}(J)$ , $x\in U\backslash J$.

This operator can be rewritten in an “integral operator form” as fol-
lows.

$(L \varphi)(x)=\frac{1}{2\pi i}\int_{\gamma j}+\gamma F\frac{\varphi(\tau)}{R’(\tau)(R(\tau)-X)}d\mathcal{T}$ ,

where the integration path $\gamma_{J}$ and $\gamma_{F}$ are taken as before. This formula
can be verified immediately by applying the residue formula. For each $x\in$

$U\backslash J$ , this formula defines the value $(L\varphi)(x)$ by choosing the integration
path $\gamma_{J}$ running sufficiently near the boudary $\partial U$ , and by choosing the
integration path $\gamma_{F}$ running sufficiently near $J$ .

The space of prehyperfunctions $\mathcal{H}(J)$ has a natural decomposition
$\mathcal{H}(J)=\mathcal{O}(J)\oplus \mathcal{O}_{0}(F)$ . This natural decomposition induces a natu-
ral decomposition of the complex Ruelle operator $L$ : $\mathcal{O}(J)\oplus \mathcal{O}_{0}(F)arrow$

$\mathcal{O}(J)\oplus \mathcal{O}0(F)$ as

$L=(_{LL}^{L_{JJ}L}FJ^{-}FJFF)$ .

In our case, these components are computed explicitly as follows.

$(L_{JJ} \varphi_{J})(X)=y\in R^{-1}(\sum_{x)}\frac{\varphi_{J}(y)}{(R(y))^{2}},+\frac{\varphi_{J}(0)}{R’’(0)(R(0)-X)}$ ,

$(L_{JF}\varphi_{F})(X)=0$ ,

$(L_{FJ} \varphi J)(\chi)=-\frac{\varphi_{J}(0)}{R’’(0)(R(0)-X)}$ ,

$(L_{FF} \varphi_{F})(x)=y\in R^{-1}()\sum_{x}\frac{\varphi_{F}(y)}{(R’(y))^{2}}$

Note that in our case, or more generally, in the case of polynomial
dynamical systems case with all finite critical points are included in the
Julia set, the component $L_{JF}$ vanishes and the complex Ruelle operator
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becomes a lower triangular matrix type. This fact simplifies our eigen-
value problem.

2. Eigenvalue problem and the Fredholm determinant
In this section, we consider the eigenvalue problem

$\lambda L\varphi=\varphi$ , $\lambda\in \mathbb{C}$ , $\varphi\in \mathcal{H}(J)$

of the Ruelle operator $L$ : $\mathcal{H}(J)arrow \mathcal{H}(J)$ . Note that the eigenvalues in
the usual sense is the inverses of the zeros of the Fredholm determinant.
In order to aviod confusions, a zero of the Fredholm determinant will be
called a singular value of the operator. As computed in [10], the Fredholm
determinant of $L$ is given by the trace formula.

$D( \lambda)=\det(I-\lambda L)=\exp(-\sum_{m=1}^{\infty}\frac{\lambda^{m}}{m}\mathrm{t}\mathrm{r}[Lm])$

In our case $R(z)=z^{2}+i$ , the Fredholm determinant $D(\lambda)$ of the transfer
operator $L$ is directly computed as follows.

$D( \lambda)=1+\sum_{k=1}^{\infty}\frac{\lambda^{k}}{R’’(0)R_{k-1}’(i)Rk(0)}$

$=(1- \frac{\lambda}{2})(1+\frac{1-i}{2}\lambda)\frac{1}{(1-\frac{\lambda^{2}}{4(1+i)})}$

This shows that the Fredholm determinant $D(\lambda)$ is rational and it is
holomorphic for $|\lambda|<2\sqrt[4]{2}$ . It has poles at $\lambda=\pm 2\sqrt{1+i}$. Note that the
absolute value $|\lambda|$ of the pole is related to the Collet-Eckmann condition,
since it is given by the eigenvalue of the repelling periodic point in the
postcritical set. $D(\lambda)$ has zeros at $\lambda=2$ and $\lambda=-(1+i)$ .

DEFINITION 2.1 Function $\chi((z)=\frac{1}{z-\zeta}$ is called the unit pole at $($ .
For each $(\in F, \chi_{\zeta}\in \mathcal{O}(J)$ , and for each $\zeta\in J,$ $\chi_{(}\in \mathcal{O}_{0}(F)$ .

Let $U$ denote the space of functions, spanned by unit poles at post-
critical set, of the following form.

$u=u_{1}\chi_{i}+u_{2x_{i}-1}+u_{3}\chi_{-i}$ , $u_{k}\in \mathbb{C},$ $k=1,2,3$ .
$U$ is an invariant 3-dimensional complex vector space. The eigenfunction
of $L$ computed formally by the formula

$f= \sum_{k=0}^{\infty}\frac{\lambda^{k}}{R_{k}’(R(0))}\chi R_{k(R}(0))$
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is given by
$f=- \frac{1+2i}{5}((2i-1)\chi i-2i\chi_{i-1}+\chi-i)$ .

The transfer operator restricted to this invarinat subspace $U$ can be rep-
resented by the matrix

$L_{U}=(_{0}^{\frac{i}{2}}- \frac{i}{2}$ $- \frac{1+i}{\frac{041+i}{4}}$
$- \frac{i}{2}\frac{i}{02})$

The characteristic polinomial of $L_{U}$ is computed as follows.

$\det(L_{U}-\lambda-1I)=-\lambda^{-1}(\lambda^{-1}-\frac{1}{2})(\lambda^{-1}-\frac{i-1}{2})$ .

The eigenvector belonging to singular value $\lambda=-(1+i)$ is given by

$\varphi_{3}(z)=(2i-1)xi-2ixi-1+x_{-i}=-\frac{(4+2i)}{(z-i)(_{Z}-i+1)(_{Z+}i)}$ ,

which belongs to the same eigenspace as $f$ above. Note that this function
is of order of $z^{-3}$ at the infinity. This is the reason why I denote it as $\varphi_{3}$ .

The eigenfunction belonging to singular value $\lambda=2$ is given by

$\varphi_{2}(z)=\chi_{i}-(1+i)\chi i-1+i\chi_{-}i=\frac{(3+i)z+1-i}{(z-i)(_{Z}-i+1)(_{Z+}i)}$ ,

and is of order $z^{-2}$ at the infinity.

The eigenfunction belonging to the singular value $\lambda=\infty$ is given by

$\varphi_{1}(z)=\chi_{i}+\chi_{-}i=\frac{2z}{z^{2}+1’}$

and is of order $z^{-1}$ at the infinity.

3. Backward expansion and the Fredholm determinant

In this section, we examine the relationship between the backward
expansion coefficients and the Fredholm determinant. Theorem in this
section holds for $R(z)=z^{2}+c$ . The backward expansion coefficients
$\{b_{k}\}_{k0}^{\infty}=$ and the coefficients $\{\omega_{k}\}_{k=}^{\infty}0$ of the Fredholm determinant are
defined as follows.

DEFINITION 3.1

$b_{0}=1$ , $b_{k}= \sum_{\eta\in R^{-}(0)}\frac{1}{(R_{k}^{l}(\eta))^{2}}k$ ’ $k=1,2,$ $\cdots$ .
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DEFINITION 3.2

$\omega_{0}=1$ , $\omega_{k}=\frac{1}{R_{k}’’(0)R_{k()}0}=\frac{1}{R’’(0)R_{k-1}\prime(R(0))Rk(0)}$ , $k=1,2,$ $\cdots$ .

The Fredholm determinant $D(\lambda)$ is rewritten as

$D( \lambda)=\sum_{k=0}^{\infty}\omega k\lambda k$

Let $B(\lambda)$ be the power series defined by

$B( \lambda)=\sum_{k=0}^{\infty}b_{k}\lambda^{k}$

The following theorem shows that the backward complex expansion rate
is directly related to the smallest singular value of the transfer operator.

THEOREM 3.3
$D(\lambda)B(\lambda)=1$

holds as power series.

This theorem follows immediately from the following propositon.

PROPOSITION 3.4

$\sum_{s=0}^{k}\omega_{S}b_{k-S}=0$ , $k=1,2,$ $\cdots$ .

PROOF As $R_{k}(z)$ is a polynomial of degree $2^{k}$ , rational function
$(R_{k}’(z)R_{k}(Z))^{-1}$ has no residue at the infinity, for $k\geq 1$ . Let $C(R_{k})$

denote the set of all critical points of $R_{k}(z)$ in the complex plane. In our
case of $R(z)=z^{2}+c$ , we have a decomposition of the set of critical points

$C(R_{k})= \bigcup_{s=1}^{k}R^{-}(k-s)(\mathrm{o})$ .

As the sum of all resudues of this rational function vanishes. We have,
for $k\geq 1$ ,

$0= \frac{1}{2\pi i}\int_{\gamma_{J}}\frac{d\tau}{R_{k}’(\tau)Rk(\mathcal{T})}$

$= \eta\in R^{- k}()\sum_{0}\frac{1}{(R_{k}’(\eta))^{2}}+y\in c_{(}\sum_{k}R)\frac{1}{R_{k}’’(y)Rk(y)}$
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$=b_{k}+ \sum_{=S1}^{k}\frac{1}{R_{S}’’(\mathrm{o})}y\in R^{k}S(0)\sum_{-}\frac{1}{(R_{k-S}’(y))^{2}R_{s}(0)}$

$=b_{k}+ \sum_{=S1}^{k}\frac{1}{R_{S}’’(\mathrm{o})(R_{S}(0)-\mathrm{o})}y\in R^{k}S(0)\sum_{-}\frac{1}{(R_{k-s}’(y))^{2}}$

$=b_{k}+ \sum_{=S1}^{k}b_{k}-S\omega S=\sum_{s=0}^{k}b_{kS}-\omega_{S}$ .

4. Dual Ruelle operator and its formal eigenhyperfunction
The dual operator of the complex Ruelle operator was defined in [10].

Here we recall some definitions and notaions. For the precise definitions,
see [10].

DEFINITION 4.1 A complex linear functional $\Phi$ : $\mathcal{O}(J)arrow \mathbb{C}$ is said
to be holomorphic if the value $\Phi[g_{\mu}]$ depends holomorphically upon $\mu$ for
holomorphic family of functions $g_{\mu}$ .

DEFINITION 4.2 The dual space $\mathcal{O}^{*}(J)$ is the space of continuous,
complex linear, and holomorphic functionals $\Phi$ : $\mathcal{O}(J)arrow \mathbb{C}$ .

Representation of functionals as integral operators is given by the fol-
lowing propositions.

PROPOSITION 4.3 The dual space $\mathcal{O}^{*}(J)$ is isomorphic to $\mathcal{O}_{0}(F)$ .
More precisely, for $\Phi\in \mathcal{O}^{*}(J),$ $f(\zeta)=\Phi[\chi_{\zeta}]$ defines an $f\in \mathcal{O}_{0}(F)$ , and
we have

$\Phi[g]=\frac{1}{2\pi i}\int_{\gamma_{F}}f(\tau)g(\mathcal{T})d\tau$, for $g\in \mathcal{O}(J)$ .

PROPOSITION 4.4 The dual space $\mathcal{O}_{0}^{*}(F)$ is isomorphic to $\mathcal{O}(J)$ . More
precisely, for $\Psi\in \mathcal{O}_{0}^{*}(F),$ $g(z)=\Psi[\chi_{z}]$ defines a $g\in \mathcal{O}(J)$ , and we have

$\Psi[f]=\frac{1}{2\pi i}\int_{\gamma_{J}}g(\tau)f(\mathcal{T})d\tau$ , for $f\in \mathcal{O}_{0}(F)$ .

Isomorphisms in Propositions 4.3 and 4.4 are called Cauchy transfor-
mations, since they are defined by the Chauchy kernel $x_{\zeta}(z)$ .

DEFINITION 4.5 The pairings $\langle f, g\rangle_{F}$ and $\langle g, f\rangle_{J}$ are defined for $g\in$

$\mathcal{O}(J)$ and $f\in \mathcal{O}_{0}(F)$ by

$\langle f, g\rangle_{F}=\frac{1}{2\pi i}\int_{\gamma_{F}}f(\tau)g(\tau)d_{\mathcal{T}}$,
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and
$\langle g, f\rangle_{J}=\frac{1}{2\pi i}\int_{\gamma j}g(\mathcal{T})f(\tau)d_{\mathcal{T}}$ .

For $\varphi=\varphi_{J}\oplus\varphi_{F}\in \mathcal{H}(J)$ and $\psi=\psi^{J}\oplus\psi^{F}\in \mathcal{O}_{0}(F)\oplus \mathcal{O}(J)\simeq \mathcal{O}^{*}(J)\oplus$

$\mathcal{O}_{0}^{*}(F)=\mathcal{H}^{*}(J)$ , the pairing $\langle\psi, \varphi\rangle$ is defined by

$\langle\psi, \varphi\rangle=\langle\psi^{J}, \varphi_{J}\rangle_{F}+\langle\psi F, \varphi_{F}\rangle_{J}$ .

Let $L^{*}$ : $\mathcal{H}^{*}(J)arrow \mathcal{H}^{*}(J)$ denote the dual operator of the complex
Ruelle operator $L$ : $\mathcal{H}(J)arrow \mathcal{H}(J)$ . And let $\mathcal{L}^{*}$ : $\mathcal{O}_{0}(F)\oplus \mathcal{O}(J)arrow$

$\mathcal{O}_{0}(F)\oplus \mathcal{O}(J)$ denote its representation via the Cauchy transformation.
We call this operator $L^{*}$ the adjoint Ruelle operator. The dual space of
$\mathcal{H}(J)$ will be denoted by $\mathcal{H}^{*}(J)$ , and we abuse this notation to denote the
“adjoint” space $\mathcal{O}_{0}(F)\oplus \mathcal{O}(J)$ , too. The components of $\mathcal{L}^{*}$ with respect
to the natural decomposition will be denoted as

$\mathcal{L}^{*}=$

The explicit formula for the adjoint Ruelle operator of our case can be
computed directly as follows.

PROPOSITION 4.6 For $\psi=\psi^{J}\oplus\psi^{F}$ with $\psi^{J}\in \mathcal{O}_{0}(F)\simeq \mathcal{O}^{*}(J)$ , and
$\psi^{F}\in \mathcal{O}(J)\simeq \mathcal{O}_{0}^{*}(F)$ ,

$( \mathcal{L}^{*}\psi)(z)=(\frac{\psi^{J}(R(z))}{R(z)},+\frac{\psi^{F}(R(0))}{R’(0)},\chi_{0}(z))$

$\oplus(+\frac{\psi^{F}(R(z))}{R(z)},-\frac{\psi^{F}(R(0))}{R’(0)},\chi_{0}(Z))$

And in $U\backslash J$ , where $\psi$ defines a holomorphic function,

$\mathcal{L}^{*}\psi=\frac{\psi \mathrm{o}R}{R},$ .

The proof is straightforward by direct computations applying the residue
theorem. For more general cases and for detailed calculations, see [10].

In our case $R(z)=z^{2}+i$ , and more generally, if the Fatou set contains
no critical points (except the infinity), then the component $\mathcal{L}_{FJ}$ vanishes.
In this case the adjoint operator becomes an upper triangular matrix
form.
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The eigenvalue problem for the adjoint Ruelle operator is formulated
as

$\lambda \mathcal{L}^{*}\psi_{=}\psi$ , $\lambda\in \mathbb{C}$ , $\psi_{\in \mathcal{H}^{*}}(J)$ .
In our case, the eigenfunction of $\mathcal{L}^{*}$ can be formally computed.

PROPOSITION 4.6 The image of a unit pole by the adjoint Ruelle
operator is given by

$\mathcal{L}^{*}\chi_{y}=\frac{\chi_{y}(R(0))}{R’(0)},\chi_{0}+\sum_{\eta\in R(y)}\frac{1}{(R’(\eta))^{2}}\chi_{\eta}-1^{\cdot}$

The forward image of a unit pole at $y$ consists of poles at its inverse
image and a pole at the critical point. Hence, the linear combinations
of poles at critical points and its backward images form an invariant
subspace. In this space, we find an eigenfunction as a formal sum

$\psi=\sum_{k=0y\in R^{-k}}^{\infty}\sum_{0()}\frac{\lambda^{k}}{(R_{k}’(y))^{2}}\chi_{y}$ .

Unfortunately, however, this formal sum is divergent for singular values
of $\lambda$ , since $B(\lambda)=\infty$ exactly when $D(\lambda)=0$ . We have to look for the
eigenfunctions in a larger space.

5. Dual Ruelle operator on a quotient space and hyperfunc-
tions

Our purpose of studying the transfer operator is to find invariant mea-
sures and Gibbs measures supported on the Julia set, which are related
to the eigen-functions.

DEFINITION 5.1 A hyperfunction supported on the Julia set is an
element of the quotient space $\mathcal{H}(J)/\mathcal{O}(J)$ .

What we are looking for are differential forms with hyperfunction co-
efficients. Since integration of a holomorphic differential form along a
boudary of simply connected domain vanishes if the differential form is
holomorphic in the domain, functions in $\mathcal{O}(J)$ do not contribute to the
measure $\mu$ defined by

$\mu(A\cap J)=\frac{1}{2\pi i}\int_{\partial A}\psi(_{\mathcal{T}})d\tau$

for open sets $A$ included in a neighborhood of $J$ , with appropriate mea-
surability properties. That is, we look for eigen-hyperfunctions for the
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dual operator $\mathcal{L}^{*}$ instead of eigen-prehyperfunctions. For $k=0,1,$ $\cdots$ , let

$\kappa_{k}(z)=\frac{1}{R_{k}’(z)Rk(Z)}$ .

We see immediately that $\kappa_{0}=\chi_{0}$ and

$(\mathcal{L}^{*}\kappa_{k})=\kappa_{k+1}$ , for $k=0,1,$ $\cdots$ .

PROPOSITION 5.2

$\kappa_{k}=y\in c_{(}\sum_{)R_{k}}\frac{1}{R_{k}’’(y)Rk(y)}\chi y+\sum_{0y\in R^{-k}()}\frac{1}{(R_{k}’(y))^{2}}\chi_{y}$.

The proof is immediate by decomposing $\kappa_{k}$ into partial fractions. Note
that $\kappa_{k}$ belongs to $\mathcal{O}_{0}(F)$ , since all poles of $\kappa_{k}$ are in the Julia set.

For $\lambda\in \mathbb{C}$ , let
$\psi_{\lambda}=\sum_{k=0}^{\infty}\lambda k\kappa k$ .

We see immediately that $\psi_{\lambda}\in \mathcal{O}_{0}(F)$ , since the sum converges uniformly
on compact sets in the Fatou set. This function is almost an eigenfunction
of $\mathcal{L}^{*}$ . We have the following proposition.

PROPOSITION 5.3
$\lambda \mathcal{L}^{*}\psi_{\lambda}=\psi_{\lambda}-\chi_{0}$ .

Functions $\kappa_{k}$ has poles at inverse images of the critical point. The
function $\psi_{\lambda}$ does not have poles except at the critical point of $R$ if $\lambda$ is a
singular value of the transfer operator.

PROPOSITION 5.4 If $D(\lambda)=0$ , then $\psi_{\lambda}$ does not have poles in the
backward orbit $O^{-}(0)$ of the critical point.

PROOF For $P\geq 1$ and $y\in R^{-\ell}(0)$ , the residue of $\psi_{\lambda}$ is

$\frac{\lambda^{\ell}}{(R_{l}’(y))^{2}}+\sum_{t=1}^{\infty}\frac{\lambda^{\ell+t}}{R_{t}’’(0)R_{t}(0)(R_{f())^{2}}\prime y}$

$= \frac{\lambda^{\ell}}{(R_{l}’(y))^{2}}(1+\sum_{=t1}\frac{\lambda^{t}}{R_{t}’’(0)R_{t}(0)}\infty)=\frac{\lambda^{l}}{(R_{f}’(y))^{2}}D(\lambda)=0$ .

As we mentioned in the previous section, the operator $\mathcal{L}^{*}:\mathcal{O}_{0}(F)\oplus$

$\mathcal{O}(J)arrow \mathcal{O}_{0}(F)\oplus \mathcal{O}(J)$ is of upper triangular form and the subspace
$\mathcal{O}_{0}(F)$ is mapped into itself by $\mathcal{L}^{*}$ .
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Let
$\mathcal{V}=\{f\in \mathcal{O}(J)|f(i)=f(i-1)=f(-i)=0\}$

be the space of functions which vanish on the postcritical set. This space
is a codimension 3 subspace of $\mathcal{O}(J)$ . We see immediately that this
subspace is mapped into itself by $\mathcal{L}^{*}$ .

PROPOSITION 5.5
$\mathcal{L}^{*}\mathcal{V}\subset \mathcal{V}$ .

PROOF For $f\in \mathcal{V}$ , we can find $g\in \mathcal{O}(J)$ such that

$f(z)=(z-i)(_{Z}-i+1)(_{Z}+i)g(_{Z})$ .

Then

$( \mathcal{L}^{*}f)(Z)=\frac{f(R(Z))}{R(z)},=\frac{1}{2}z(z-i)(Z-i+1)(Z+i)(z-1+1)g(_{Z}2i+)$.

Hence, $\mathcal{L}^{*}f\in \mathcal{V}$ .
Let $V=\mathcal{O}(J)/\mathcal{V}$ denote the quotient space. $V$ is a vector spa.ce of

complex dimension 3. We take a basis $h_{1},$ $h_{2},$ $h_{3}$ of $V$ by

$h_{1}(z)=- \frac{i}{2}(z+1-i)(z+i)=-\frac{i}{2}(z^{2}+z+1+i)$ ,

$h_{2}(z)= \frac{1+2i}{5}(z^{2}+1)$ ,

$h_{3}(z)= \frac{-2+i}{10}(z+1-i)(z-i)=\frac{-2+i}{10}(z^{2}+(1-2i)z-1-i)$ .

These functions are determined by the following condition.

$h_{1}(i)=1,$ $h_{1}(i-1)=0,$ $h_{1}(-i)=0$

$h_{2}(i)=0,$ $h_{2}(i-1)=1,$ $h_{2}(-i)=0$

$h_{3}(i)=0,$ $h_{3}(i-1)=0,$ $h_{3}(-i)=1$

Vector space spanned by these three functions is isomorphic to the qotient
space $V$ . We identify the quotient space $V$ and the subspace of $\mathcal{O}(J)$

spanned by this basis. The canonical projection fron $\mathcal{O}(J)$ to $V$ is given
by

$h=f(i)h_{1}+f(i-1)h_{2}+f(-i)h_{3}$ , for $f\in \mathcal{O}(J)$ ,

modulo $\mathcal{V}$ .
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The adjoint operator induces an operator on the quotient space $\mathcal{O}_{0}(F)\oplus$

V. This operator is of an upper triangular form with respect to this split-
ting. The (V, $V$ )-component of this operator is denoted as $\mathcal{L}_{V}^{*}$ : $Varrow V$ .
By a direct computation, we get the matix representation with respect
to the basis $h_{1},$ $h_{2},$ $h_{3}$ , as follws.

PROPOSITION 5.6

$\mathcal{L}_{V}^{*}=(\frac{1+i\frac{i}{2}}{-\frac{i}{2}4}-\frac{i}{2}0\frac{i}{2}-\frac{01+i}{\mathrm{o}^{4}})$

This matrix is the transpose of the matrix $L_{U}$ computed ine section
2. The eigenvalues of this matrix are $0,$ $\frac{1}{2}$ , and $- \frac{1}{1+i}$ . Hence the singular
values are 2 $\mathrm{a}\mathrm{n}\mathrm{d}-(1+i)$ and $\infty$ .

6. Eigenhyperfunctions and various measures on the Julia
set

Singularvalues, eigenvectors, and eigenfunctions of $\mathcal{L}_{V}^{*}$ are, respec-
tively,

$\lambda=\infty$ , ${}^{t}(1,1,1)$ $\phi_{0}(_{Z})=1$

$\lambda=2$ , ${}^{t}(i, i-1, -i)$ $\phi_{1}(z)=Z$

$\lambda=-(1+i)$ , ${}^{t}(i, 1, -i)$ $\phi_{2}(z)=(i-1)h_{1}+(1+i)h_{2}+(1-i)h_{3}$ .

Let $\psi_{0}\in \mathcal{O}(J)$ be a representative of $\phi_{2}\in V$ given by

$\psi_{0}(_{Z)}=\frac{1+7i}{5}(z^{2}+1)+(1+i)z$ .

And let $\theta_{0}\in \mathcal{V}$ be defined by

$\theta_{0}(z)=\frac{3-4i}{3}(z-i)(z+i)(z-i+1)$ .

Further, deine a polynomial $\varpi\in \mathcal{O}(J)$ by

$\varpi(z)=\frac{z}{2}(z-1+i)$ .

And define functions $\theta_{k}\in \mathcal{V}$ for $k=1,2,$ $\cdot\cdot \mathrm{r}$ , by

$\theta_{k}=(\mathcal{L}^{*})^{k}\theta_{0}$ .

We see immediately that

$\theta_{k}(z)=\theta_{0}(z)\prod_{j=0}k-1\varpi(R_{j}(z))$ .
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A direct computation shows the following.

PROPOSITION 6.1 For $\lambda=-(1+i)$ , we have

$\lambda \mathcal{L}^{*}\psi_{0}=\psi_{0}+\kappa_{0}+\theta 0$

and by setting
$\Psi=\psi_{0}+\sum_{=k0}\kappa_{k}+\infty k\sum\infty=0\theta_{k}$ ,

$\lambda \mathcal{L}^{*}\Psi=\Psi$

holds in a formal sense.

This formal series $\Psi$ does not have a meaning as a prehyperfunction,
since the holomophic part $\Sigma_{k=^{0^{\theta_{k}}}}^{\infty}$ diverges in the Fatou set. However,
the limit is well defined in the quotient space $\mathcal{H}/\mathcal{V}$

THEOREM 6.2 $\Psi$ is well defined in $\mathcal{H}/\mathcal{V}$ and represents an eigenhy-
perfunction of the adjoint Ruelle operator $\mathcal{L}^{*}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{d}$ on the quotient
space.

THEOREM 6.3 The eigen-prehyperfunction $\varphi_{3}\in \mathcal{H}(J)$ of the transfer
operator $\mathcal{L}$ and the eigen-hyperfunction $\Psi$ defines a hyperfunction $\varphi_{3}\Psi\in$

$\mathcal{H}(J)/\mathcal{O}(J)$ represented by

$\varphi_{3}(\psi_{0}+\sum_{k=0}^{\infty}\kappa_{k)}$

THEOREM 6.4 The hyperfunction $\varphi_{3}\Psi$ defines an invariant measure
supported on the Julia set, and the hyperfunction $\Psi$ defines a complex
Gibbs measure for complex potential $\log((R’(z))^{2})$ .
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