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Abstract

We use methods from conformal geometry to give an explicit estimate for how
many iterations of Newton’s method it takes to find all the roots of an arbitrary
complex polynomial of fixed degree to prescribed precision.

1 Introduction
It is a fundamental problem to find all roots of a complex polynomial $p$ with prescribed
precision. The best known method is known as Newton’s method: starting with an
arbitrary starting point $z\in \mathbb{C}$ iterate the Newton map $z-\neq N_{p}(z)=z-p(z)/p’(z)$

until the iterates are sufficiently close to a root. Newton’s method is widely used
because of its simplicity and because it is efficient in practice: near a simple root, the
convergence is quadratic (the number of valid digits doubles in every iteration step),
and for “most” starting points of “most” polynomials, it does not take too long to find
good approximations of a root (see [Sm] for a survey).

There are problems, though: there are starting points which never converge to a root
under the Newton map (for example all the points on the boundaries of the basins of all
the roots). There may even be non-empty open sets of starting points which converge
to attracting periodic orbits away from the roots. Manning [Ma] has constructed an
explicit set of $O(d\log^{2}d)$ points of which at least one converges to a root, and it takes
$d\log(d^{3}/\epsilon)$ Newton iterations to get to distance at most $\epsilon$ from a root. Even if most
starting points converge to some root, one often wants to find all the roots (finding
some roots and factoring out is not an option for various reasons: it is numerically very
instable, so that after several long divisions the roots of the quotient polynomials are
far from the correct roots; moreover, the polynomial may be given for example by an
iteration which is easy to evaluate but difficult to convert into coefficient form). In
[HSS], a set of starting points has been constructed such that every root is found by at
least one of these points. This set can contain as little as 1.11 $d\log^{2}d$ points.

It has been an open question to find an explicit upper bound for the number of
iterations it takes to find all the roots with prescribed precision for arbitrary polynomials
using Newton’s method. (There are other methods for which efficient bounds on the
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“cost” of finding all the roots are known [NR], and there are probabilistic results for
Newton’s method [Mn].)

In our paper, we provide a bound for the number of Newton iteration steps to find
all the roots with prescribed precision. This bound is far from efficient, but there is
hope that it can be substantially improved; we outline where the efficiency is lost. Here
is our main result.

Theorem 1 (The Number of Iterations)
For every degree $d$ and every accuracy $\epsilon>0$ , there is a number $n=n(d, \epsilon)$ with the
following property: for every polynomial $p$ of degree $d$ , normalized so that all the roots
are in $\mathrm{D}_{f}$ and every root $\alpha$ of $p$ , there is a point $z$ with $|z|=2$ such that afler at most
$n$ iterations of the Newton $map_{f}$ the point $z$ has distance at most $\epsilon$ from $\alpha,\cdot$ we have the
estimate

$n=n(d, \epsilon)\leq\frac{9\pi d^{4}f_{d}^{2}}{\epsilon^{2}\log 2}+2+\frac{|\log\epsilon|+\log 13}{\log 2}$

with $f_{d}:= \frac{d^{2}(d-1)}{2(2d-1)}$ .

This estimate is clearly far from effective. For $p(z)=z^{d}$ , we have $N_{p}(z)=(d-1)z/d$ ,
so for $|z|=2$ it takes approximately $n=d\log(2/\epsilon)$ Newton iterations so that $|N_{p}^{\mathrm{o}n}(z)|<$

$\epsilon$ . We believe that this is the worst case.
All our polynomials will always be normalized so that their roots are in $\mathrm{D}$ ; this is

no real restriction because it is easy to estimate the largest absolute value of the roots,
allowing to rescale the discussion.

We will use $p$ for a polynomial and $N_{p}$ for its associated Newton map, and $d\geq 2$

will always denote the degree of $p$ .
The paper is organized as follows: in Section 2, we briefly review needed results

from [HSS]. We then introduce in Section 3 “clusters of roots”, which help to estimate
the distance from a given $z\in \mathbb{C}$ to the roots of $p$ . In Section 4 we show that for every
root, there is a nearby point in its immediate basin which can be connected to a point
$z$ with $|z|=4$ by a curve well inside the immediate basin (at definite distance to the
boundary), and we conclude the proof of the theorem. Finally, in Section 5, we discuss
where the efficiency is lost, and how close Newton’s method is from being an algorithm.

ACKNOWLEDGEMENTS. I have enjoyed many helpful discussions on Newton’s method
with Walter Bergweiler, Hartje Kriete, Steffen Rohde, Scott Sutherland, and particu-
larly with John Hubbard. The results in this paper were inspired by discussions with
Anthony Manning during a PRODYN Euro-conference in Warsay (1999). I would like
to thank them all. Special thanks go to Niklas Beisert for a suggestion about the proof
of Lemma 9.

2 Background
For every root $\alpha$ of $p$ , the basin of attraction is the open set of points $z\in \mathbb{C}$ such that
$N_{p}^{\mathrm{o}n}(z)arrow\alpha$ as $narrow\infty$ ; the immediate basin is the connected component containing
$\alpha$ . It is known [Pr, Sh] that every immediate basin $U$ is simply connected, hence
conformally isomorphic to the unit disk D. It carries a hyperbolic metric, normalized
so that the curvature is-l everywhere; we will denote it by $d_{U}(z_{1}, z_{2})$ or simply $d(z_{1}, z_{2})$ .
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By [HSS, Proposition 6], every immediate basin has some finite number $m\geq 1$ of
channels to infinity: a channel of the immediate basin $U$ of a root $\alpha$ is an unbounded
connected component of $U\backslash \overline{\mathrm{D}}$ , and it determines a homotopy class of curves $\gamma:[0,1]arrow$

$\overline{U}$ with $\gamma(0)=\alpha,$ $\gamma(1)=\infty$ and $\gamma([0,1[)$ $\subset U$ ; see Figure 1. The (
$‘ \mathrm{w}\mathrm{i}\mathrm{d}\mathrm{t}\mathrm{h}$

” of such
a channel is measured by its modulus: near $\infty$ , the quotient of the channel by the
dynamics of $N_{p}$ is conformally isomorphic to a complex annulus, that is the following
quotient

$\{z\in \mathbb{C} : |{\rm Im}(z)|<\pi/2\}/(z\equiv z+\tau)\}$

for some $\tau>0$ . This quotient is a cylinder of height $\pi$ and circumference $\tau$ , and the
modulus of the channel is $\pi/\tau$ , the conformal modulus of the cylinder. It is well known
that the unique simple closed geodesic in the cylinder (with respect to its hyperbolic
metric) has hyperbolic length $\tau$ . In [HSS, Proposition 7], it is shown that every root
has a channel with modulus at least $\pi/\log d$ .

Figure 1: The dynamics of the Newton map for a polynomial of degree 7:
shown are the $b$asins of attra$ct\mathrm{i}$ on of the se$ve\mathrm{n}$ roots; $ii$ can be seen that the
immediate $b$asin of every root Vas at least on$e$ “channel to $\infty$

” along which $t\mathrm{A}e$

$im$mediate $b$asin stretches out to $\infty$ .
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3 Distance to the Root
We define the round annulus $A_{a}(r, R)$ to be the region

$A_{a}(r, R):=\{z\in \mathbb{C} : r\leq|z-a|\leq R\}$ .

We say that $z\in \mathbb{C}$ with $|z-a|<r$ is inside $A_{a}(r, R)$ or surrounded by $A_{a}(r, R)$ .

Definition 2 (Cluster of Roots)
Suppose that $A_{a}(r, R)$ contains no roots of $p$ . Let $n$ and $N$ be the number of roots of $p$

inside resp. outside of $A$ such that $n\geq 2$ (with $n+N=d$). If

$\frac{R-r}{r}\geq\frac{2N}{n-1}$ or equivalently $R \geq(\frac{2N}{n-1}+1)r$ ,

then we say that the roots inside $A_{a}(r, R)$ form $a$ cluster of roots.

Theorem 3 (Cluster and Immediate Basins)
Let $A$ be an annulus surrounding a cluster of roots. Let $\alpha$ be some root with immediate
basin U. If there is a $z\in U$ which is surrounded by $A$ , then $\alpha$ is also surrounded by $A$ .

PROOF. We write the Newton map as $N_{p}(z)=z-1/\tau(z)$ , where $\tau:\mathbb{C}arrow\overline{\mathbb{C}}$ is defined
as

$\tau(z)$ $:= \frac{p’(z)}{p(z)}=\sum_{i=1}^{d}\frac{1}{z-\alpha_{i}}$ (1)

and $\alpha_{1},$
$\ldots,$

$\alpha_{d}$ are the roots of $p$ . The M\"obius transform $w\vdasharrow 1/(r-w)$ maps $\{z\in$

$\mathbb{C}:|z|=r\}$ to the vertical line at real part $1/2r$ , and it maps $\{z\in \mathbb{C}:|z|<r\}$ to the
right of this line.

Suppose that $A$ is centered around $\mathrm{t}\mathrm{h}\mathrm{e}_{\mathrm{I}}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}$ (i.e. $a=0$ ) with inner radius $r$ and
outer radius $R$ , and suppose that $z=r$ is real. Then the sum in (1), restricted
to roots with $|\alpha_{i}|<r$ , has real part greater than $n/2r$ . The remaining roots with
$|\alpha_{i}|>R$ contribute less than $N/(R-r)$ , so that ${\rm Re}(\tau(z))>n/2r-N/(R-r)$ . If
$(R-r)/r\geq 2N/(n-1)$ , then $N/(R-r)\leq(n-1)/2r$ and ${\rm Re}(\tau(z))>1/2r$ , so $1/\tau(z)$

is in the disk around $r$ with radius $r$ and $|N_{p}(z)|<r$ .
This means that when $a=0$ , the point $z=r$ on the inner boundary of $A$ is mapped

into the bounded complementary component of $A$ . In general, the Newton map respects
affine coordinate changes, so we may always suppose that $A$ is centered at $0$ and $z$ is
on the positive real axis. Under the conditions of the theorem, it follows that any $z$ on
the inner circular boundary of $A$ maps into the inner complementary component of $A$ .

If $z$ is in the immediate basin of a root $\alpha$ outside $A$ , then connect $z$ to $N_{p}(z)$ by a
curve within the immediate basin of attraction; iterating forward, we obtain a curve $\gamma$

from $z$ to a small neighborhood of $\alpha$ . Let $w$ be the last intersection point of $\gamma$ with
the inner boundary of $A$ (so that $\gamma$ restricts to a curve from $w$ to a neighborhood of $\alpha$

which meets the inner boundary of $A$ only in $w$ ). Then $N_{p}(w)$ is on $\gamma$ in the bounded
complementary component of $A$ , and this is a contradiction. $\square$

Lemma 4 (Near Root Implies Convergence)
For any root $\alpha$ which has distance at least $\epsilon$ to all other roots, the closed disk of radius
$\epsilon/2(d-1)$ around $\alpha$ is contained in the immediate basin of $\alpha$ .
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PROOF. This is easy to check using the ideas in the proof of Theorem 3: choosing
coordinates so that $\alpha=0,$ $\epsilon=2(d-1)$ and $z=1$ , the term $(z-\alpha)^{-1}$ equals 1, while
the remaining $d-1$ terms in (1) have absolute value at most $1/2(d-1)$ each or 1/2
combined, so $\tau(z)$ is in the closed disk around 1 of radius 1/2 and $1/\tau(z)$ is in a disk
with real center which intersects $\mathbb{R}$ in [2/3, 2], and $N_{p}(z)=z-1/\tau(z)\in\overline{\mathrm{D}}$. The case
$|N_{p}(z)|=1$ is possible only if $N_{p}(z)=-1$ and $\alpha_{i}=2(d-1)$ for all $\alpha_{i}\neq\alpha$ , and then
$|N_{p}(-1)|<1$ . $\square$

Lemma 5 (Short Displacement is Close to Root)
If a point $z$ is displaced by $\epsilon$ under the Newton map, then the Euclidean distance between
$z$ and some root is at most $d\epsilon$ . Moreover, if $z$ is in an immediate $basin_{f}$ then the
Euclidean distance between $z$ and the root it converges to is at most $f_{d}\epsilon$ (with $f_{d}$ as in
Theorem 1).

PROOF. If all $|z-\alpha_{i}|>d\epsilon$ , then $\sum(z-\alpha_{i})^{-1}<1/\epsilon$ , and the displacement is more
than $\epsilon$ . This proves the first statement.

Suppose that $z$ is in the immediate basin of some root $\alpha$ . Then some root $\alpha_{1}$ is at
most $d\epsilon$ away from $z$ . If $\alpha_{1}=\alpha$ , then we are done; otherwise, there must be another
root at distance at most $2d(d-1)\epsilon$ from $\alpha_{1}$ by Lemma 4. Let $\alpha_{2}$ be a closest such
root. If $\alpha_{2}=\alpha$ , we are done again; otherwise, by Theorem 3, there must be a third
root at distance at most $2d(d-1)\epsilon[2d-3]$ , and then a fourth root at most at distance
$2d(d-1)\epsilon[2d-3][d-2],$ $\ldots$ , and finally, the last d-th root is at most at distance

$2d(d-1) \epsilon\prod_{n=2}^{d-1}[2\frac{d-n}{n-1}+1]=2d(d-1)\epsilon\prod_{n=2}^{d-1}\frac{2d-n-1}{n-1}$

$=2d(d-1) \epsilon\frac{(2d-3)!}{(d-1)!(d-2)!}=2d(d-1)\epsilon\frac{d^{2}(d-1)}{2d(2d-1)(2d-2)}\cdot\frac{(2d)!}{d!d!}$

$= \frac{d^{2}(d-1)}{2(2d-1)}\epsilon=f_{d}\epsilon$ .

Therefore, if a point $z$ moves by at most $\epsilon$ in some iteration step and $z$ is in an immediate
basin, then the Euclidean distance between $z$ and its root is at most $f_{d}\epsilon$ (without any
required normalization of the polynomial). $\square$

4 Thick Curves in Channels
Lemma 6 (Hyperbolic Displacement in Iteration)
For every $r\geq 1$ , every immediate basin $U$ contains at least one point $z$ with $|z|=r$

such that $d_{U}(z, N_{p}(z))\leq\log d$ .

PROOF. Fix a channel with modulus at least $\pi/\log d$ (it exists by [HSS, Proposition 6];
compare Section 2). Restricting the channel to a neighborhood of infinity and taking
a quotient by the dynamics of $N_{p}$ , we obtain an annulus in which the unique simple
closed geodesic has length at most $\log d$ . Let

$Q:=\{z\in \mathbb{C}:|{\rm Im}(z)|<\pi/2,0\leq{\rm Re}(z)\leq\log d\}$ ,
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with both vertical ends identified, be a conformal model for the quotient of the channel,
and let

$Q’:=\{z\in:|{\rm Im}(z)|<\pi/2,0\leq{\rm Re}(z)\}$

be a semi-infinite cover of $Q$ with natural projection map $q$ . For every $w_{0}\in Q$ and
every $\epsilon>0$ , there is a $w_{0}’\in q^{-1}(w)$ such that in the hyperbolic metric of $Q’$ , we have
$d_{Q’}(w_{0}’, w_{0}’+\log d)<\log d+\epsilon$ : if $Q’$ was the universal cover, then the projection map
would be a local isometry; in our case, $Q’$ is a truncation of the universal cover. If $w_{0}’$

is chosen sufficiently far to the right, then the truncation affects only very far parts
of the universal cover, and consequently the hyperbolic distance $d_{Q’}(w_{0}’, w_{0}’+\log d)$ is
increased by less than $\epsilon$ .

There is a conformal embedding $j:Q’arrow U$ such that $j(w)=N_{p}(j(w+\log d))$ for
all $w\in Q’$ (the right end of $Q’$ corresponds to $\infty\in\partial U$). Since conformal embeddings
never increase hyperbolic distances, the point $z_{0}’:=j(w_{0}’+\log d)$ has $d_{U}(N_{p}(z_{0}’), z_{0}’)<$

$\log d+\mathcal{E}$ , and we may suppose that $|z_{0}’|>r$ . Now we iterate $N_{p}$ until $z’:=N_{p}^{\mathrm{o}n}(z_{0}’)$ has
$|z’|\leq r$ ; since the conformal map $N_{p}$ can only decrease hyperbolic distances, we have
$d_{U}(z’, N_{p}(z’))<\log d+\epsilon$ ; in fact, by adjusting $z_{0}’$ properly on the hyperbolic geodesic
between $z_{0}’$ and $N_{p}(z_{0}’)$ , we can arrange things so that $|z’|=r$ .

This is possible for every $\epsilon>0$ . As $\epsilon\searrow 0$ , we obtain a sequence of points $z’(\epsilon)\in U$

with $|z’(\epsilon)|=r$ . Let $z”$ be any limit point of $z’(\epsilon)$ ; then $z”\in\overline{U}$ and $|z’’|=r$ . Since
points $z$ near $\partial U$ have large $d_{U}(z, N_{p}(z))$ , any limit point $z”$ is in $U$ and satisfies the
claim. $\square$

Lemma 7 (Hyperbolic and Euclidean Length)
Let $U\subset \mathbb{C}$ be conformally isomorphic to $\mathrm{D}$ and let $\gamma:[a, b]arrow U$ be a continuously
differentiable curve such that

$\inf_{t\in[a,b]}\{|\gamma(t),$ $\partial U|\}=\delta$ .

If $\gamma$ has finite Euclidean length $\ell$ , then the hyperbolic length of $\gamma$ is at least $\frac{\log(1+l/\delta)}{2}$ .

PROOF. Let $\rho$ be the density of the hyperbolic metric with respect to the Euclidean
metric, that is the ratio of infinitesimal hyperbolic and Euclidean lengths. Then for any
$z\in U$ at distance $r$ from $\partial U$ , we have $1/2r\leq\rho(z)\leq 2/r$ . Suppose that $\gamma:[0, u]arrow U$

is parametrized by arc length, so that $|\gamma’|=1$ . Suppose first that the endpoint $\gamma(0)$ is
closest to $\partial U$ , hence $|\gamma(0)-\partial U|=\delta$ . Then the hyperbolic length of $\gamma$ is

$\int_{0}^{f}\rho(\gamma(t))|\gamma’(t)|dt\geq\int_{0}^{f}\frac{1}{2}|\gamma(t)-\partial U|^{-1}dt\geq\frac{1}{2}\int_{0}^{l}(\delta+t)^{-1}dt$

$= \frac{1}{2}(\log(\ell+\delta)-\log(\delta))=\frac{1}{2}\log((\ell+\delta)/\delta)$ .

If $\gamma(0)$ is not closest to $\partial U$ , cut $\gamma$ at one of its closest points to $\partial U$ and estimate
the hyperbolic length of one part as above. The hyperbolic length of the other part
can only be more than what our estimate for the rest would say, because it cannot be
further away from the boundary than estimated. $\square$

REMARK. The estimate in the Lemma 7 is realized for the Koebe extremal domain
$\mathbb{C}\backslash \mathbb{R}_{0}^{-}$ , where $\gamma$ is part of $\mathbb{R}^{+}$ . This is really the worst case: if the Euclidean distance
of $\gamma$ to $\partial U$ is comparable to $\delta$ during most of its length, then the hyperbolic length of
$\gamma$ is comparable to $\ell/\delta$ .
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Lemma 8 (Thick Curve in Channel)
For $\epsilon>0$ , let $\delta:=\epsilon/(f_{d}d^{2})$ with $f_{d}$ from Theorem 1. Then for every root $\alpha$ with
immediate basin $U$ and every $r\geq 1$ , there are two points $z,$ $w\in U$ with the following
properties: $|z|=r_{f}|w-\alpha|<\epsilon,$ $w$ is on the $N_{p}$ -orbit of $z_{y}$ and there is a curve within
$U$ connecting $z$ and $w$ which has everywhere distance at least $\delta$ from $\partial U$ .

PROOF. By Lemma 6, there is a point $z$ with $|z|=r$ and $d_{U}(z, N_{p}(z))\leq\log d$ . Let
$z_{1}:=z$ , let $(z_{n})$ be its orbit under the Newton iteration and let $z_{N}$ be the first point
on this orbit with $|zN-\alpha|<\epsilon$ . By Lemma 5, $|z_{n}-z_{n+1}|>\epsilon/f_{d}$ for $1\leq n<N$ . Let
$\gamma_{n}$ be a differentiable curve of hyperbolic length $\log d$ joining $z_{n}$ and $z_{n+1;}$ its Euclidean
length is then at least $|z_{n}-z_{n+1}|$ . If $\delta_{n}$ is the minimal distance of $\gamma_{n}$ to $\partial U$ , then by
Lemma 7, we have

$2\log d\geq\log(1+|z_{n}-z_{n+1}|/\delta_{n})\geq\log|z_{n}-z_{n+1}|-\log\delta_{n}$

or
$\log\delta_{n}\geq\log|z_{n}-z_{n+1}|-2\log d$ ,

hence $\delta_{n}\geq|z_{n}-z_{n+1}|/d^{2}>\epsilon/(f_{d}d^{2})$ . $\square$

Lemma 9 (Short Thick Curve to Neighborhood of Root)
For any root $\alpha$ and any $distance\epsilon$

)

$>0$ , there are two points $z,$ $w$ in the immediate basin
of $\alpha$ with $|z|=2,$ $|w-\alpha|<\epsilon$ such that $w$ is on the $N_{p}$ -orbit of $z$ and the hyperbolic
distance in $U$ between $w$ and $z$ is at most $9\pi d^{4}f_{d}^{2}/\epsilon^{2}$ .

PROOF. We take the points $z$ and $w$ from Lemma 8; they can be connected by a curve
$\gamma\subset U$ such that the Euclidean distance between $\gamma$ and $\partial U$ is at least $\delta=\epsilon/(f_{d}d^{2})$ .

For $a\in \mathbb{C}$ and $r>0$ , let $D_{r}(a)$ be the open disk around $a$ with radius $r$ . There are
finitely many points $b_{1},$ $b_{2},$

$\ldots,$
$b_{k}\in\partial U$ such that

$B$ $:=(U \cap\overline{D}_{2+\delta}(0))\backslash \bigcup_{j=1}^{k}D_{\delta}(b_{j})$

is compact, and every $b\in B$ has distance at least $\delta/2$ to $\partial U$ . Then $\gamma\subset B$ . Let $\gamma’$

be the (Euclidean) shortest curve within $B$ connecting $w$ and $z$ . If $z’,$ $z”\in\gamma’$ are such
that between $z’$ and $z”$ on $\gamma’$ there is no point on $\partial U$ , then $\gamma’$ connects $z’$ and $z”$ along
a straight line, or $\gamma’$ would not be shortest. It follows that $\gamma’$ consists of finitely many
straight line segments and arcs on $\partial D_{\delta}(b_{j})$ so that any two consecutive line segments
are connected by arcs and vice vers..a, in such a way that $\gamma’$ is continuously differentiable.

For each line segment on $\gamma’$ , consider the two parallel line segments of equal length
at distance $\delta/2$ on both sides; these span a rectangle of area $\ell’\delta$ , where $\ell’$ is the common
length of the line segments. For each arc segment of $\gamma’$ on $\partial D_{\delta}(b_{j})$ , let $\ell’’$ be its Euclidean
length; within the sector of the disk $D_{3\delta/2}(b_{j})$ spanned by the given arc segment, consider
the region between radii $3\delta/2$ and $\delta/2$ (the “

$\delta/2$-arc tube around the arc segment”).
This is part of the $\delta/2$-neighborhood of the arc segment, and an easy calculation shows
that its area is $\ell’’\delta$ . If the total length of $\gamma’$ is $\ell$ , then the sum of the areas of all
associated rectangles and arc tubes is $\ell\delta$ (compare Figure 2).
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Figure 2: Ill $\mathrm{u}st$ration of the rectangles and arc tubes $aro$und the $c\mathrm{u}\mathrm{r}ve\gamma’$ :
shown are fonr disks $D_{\delta}(b_{j})$ (large circles) as well as the $c\mathrm{u}\mathrm{r}v\mathrm{e}\gamma’$ , which is
surro $\iota\iota$nded by rectangles and arc tubes.

Our next claim is that the rectangles and arc tubes have disjoint interiors. To see
this, fix some point $z_{0}\in \mathbb{C}$ with $|z_{0}|\leq 2$ , let $D:=D_{\delta/2}(z_{0})$ and $D’:=D \backslash \bigcup_{j}\overline{D}_{\delta}(b_{j})$ . If
$z_{0}$ is contained in a rectangle or arc tube, then $\gamma’$ must intersect $D’$ , so $D’$ cannot be
empty; since $\partial U$ cannot intersect $D’$ , every connected component of $D’$ which intersects
$B$ is contained in $B$ . Suppose first that $D’$ is connected, so $D’\subset B$ . Then the shortest
curve in $B$ connecting two points in $D’$ runs through $D’$ , so $\gamma’$ intersects $\partial D$ in no more
than two points. It follows that $z_{0}$ is contained in the interior of at most one rectangle
or arc tube.

If $D’$ is not connected, it consists of at most two connected components: if no two
disks $\overline{D}_{\mathit{5}}(b_{j})$ and $\overline{D}_{\delta}(b_{j’})$ meet within $D$ , then $D’$ is connected; if $\overline{D}_{\delta}(b_{j})$ and $\overline{D}_{\delta}(b_{j’})$

intersect, then $D\backslash (\overline{D}_{\mathit{5}}(b_{j})\cup\overline{D}_{\mathrm{t}};(b_{j’}))$ has at most two connected components. At least
one connected component of $D\backslash (\overline{D}_{\delta}(b_{j})\cup\overline{D}_{\delta}(b_{j’}))\grave{\mathrm{m}}$ eets $\partial D$ at arc length less than $30^{\mathrm{o}}$

(in the extremal symmetric situation where $b_{j},$ $b_{j’}$ and $z_{0}$ are collinear and $|b_{j}-z_{0}|=$

$|b_{j’}-z_{0}|=\delta$ , both boundary arcs have length 2 arcsin(1/4) $<$ arcsin(1/2) $=30^{\mathrm{o}})$ . It
follows that at most one connected component of $D\backslash (\overline{D}_{\delta}(b_{j})\cup\overline{D}_{\delta}(b_{j’}))$ can intersect
$\gamma’$ , and again $z_{0}$ is contained in the interior of at most one rectangle or arc tube.

The rectangles and arc tubes around $\gamma’$ have total area $\ell\delta$ . They are all disjoint
and contained within the disk of radius $2+\delta/2$ around the origin, which has total area
$\pi(2+\delta/2)^{2}$ , it follows that

$\ell\leq\frac{\pi(2+\delta/2)^{2}}{\delta}=\frac{4\pi}{\delta}+2\pi+\frac{\pi\delta}{4}=\frac{4\pi}{\delta}(1+\frac{\delta}{2}+\frac{\delta^{2}}{16})$

Since the hyperbolic length of $\gamma’$ is decreasing as a function of $\delta$ (for $0<\delta<1$ which
are the values of interest to us) and $\delta\geq\epsilon/(f_{d}d^{2})$ , the hyperbolic length of $\gamma’$ is at most

$2\ell/\delta$ $\leq$ $8 \pi(\frac{f_{d}d^{2}}{\epsilon})^{2}(1+\frac{\epsilon}{2f_{d}d^{2}}+\frac{\epsilon^{2}}{16f_{d}^{2}d^{4}})$

$\leq$ $8 \pi(\frac{f_{d}d^{2}}{\epsilon})^{2}(1+\frac{1}{2\cdot 16}+\frac{1}{16\cdot 16^{2}})\leq 9\pi(\frac{f_{d}d^{2}}{\epsilon})^{2}$

(using $\epsilon/(f_{d}d^{2})\leq 1/16$ because $d\geq 2$ , and only $\epsilon\leq 1$ is of interest). $\square$

90



We are now ready to prove the main result.

PROOF OF THEOREM 1. Take the points $z$ and $w$ from Lemma 9 and let $\varphi:Uarrow \mathrm{D}$

be a Riemann map with $\varphi(\alpha)=0$ . Let $z’:=\varphi(z),$ $w’:=\varphi(w)$ and $R:=|\varphi(z)|$ ,
$r:=|\varphi(w)|$ , and write $R=1-A,$ $r=1-a$ .

The hyperbolic distance in $\mathrm{D}$ between $r$ and $R$ is known to be

$\log(\frac{(1-R)/(1+R)}{(1-r)/(1+r)})=\log(A/a)+1o\mathrm{g}\frac{1+r}{1+R}>\log(A/a)-\log 2$ .

The hyperbolic distance between $z’$ and $w’$ in $\mathrm{D}$ , and that between $z$ and $w$ in $U$ , is
then at least $\log(A/a)-\log 2$ , so we conclude from Lemma 9 that

$\log(A/a)\leq 9\pi d^{4}f_{d}^{2}/\epsilon^{2}+\log 2$ .

On the other hand, supposing that $\alpha$ is a simple root, we know that the Newton
dynamics transported into $\mathrm{D}$ is a Blaschke product with a superattracting fixed point
at $0$ ; if we write this as $f:=\varphi \mathrm{o}N_{p}\mathrm{o}\varphi^{-1}$ , then we know that $|f(x)|=|x^{2}|\cdot|r(x)|$ with
$|r(x)|\leq 1$ for all $x\in \mathrm{D}$ and

$|f^{\mathrm{o}n}(z’)|\leq R^{2^{n}}$

If $w=N_{p}^{\mathrm{o}n}(z)$ , then $w’=f^{\mathrm{o}n}(z’)$ and $R^{2^{n}}=r$ , hence

$n\log 2$ $\leq$ $\log(\frac{\log r}{\log R})=\log\frac{|1o\mathrm{g}(1-a)|}{|\log(1-A)|}<\log(\frac{\frac{a}{1-a}}{A})$

$=$ $\log(a/A)+|\log(1-a)|\leq 9\pi d^{4}f_{d}^{2}/\epsilon^{2}+\log 2+|\log r|$

(using $|\log(1-a)|<a/(1-a)$ for $0<a<1$ ). This number $n$ blows up if $r$ is very close
to $0$ : in the extreme case $r=0$ , the hyperbolic distance of the starting point $z$ to the
root $\alpha$ itself is bounded (which is the best possible case for fast iteration of Newton’s
map), but it takes forever until we hit the root exactly ($r=0$ means $w=\alpha$). Recall
that $w$ is the first point on the orbit of $z$ with $|w-\alpha|<\epsilon$ . Let $w_{1}$ be the last point on
the orbit of $z$ before $w_{1}$ (so that $N_{p}(w_{1})=w$ and $|w_{1}-\alpha|\geq\epsilon$ ).

We will give a lower bound for $d(w_{1}, \alpha)$ within $U$ : any $x\in U\cap D_{2}(0)$ has $|x-\partial U|<3$ ,
so the density $\rho$ of the hyperbolic metric is at least 1/6 on $U\cap D_{2}(0)$ . Since $|w_{1}-\alpha|\geq\epsilon$ ,
we have $d_{U}(w_{1}, \alpha)\geq\epsilon/6$ . Under the Riemann map $\varphi:Uarrow \mathrm{D}$ , let $r’:=|\varphi(w_{1})|$ . The
hyperbolic distance becomes

$d(0, \varphi(w_{1}))=\log(\frac{1+r’}{1-r’})\geq\epsilon/6$ or $1+ \frac{2r’}{1-r’}\geq\exp(\epsilon/6)>1+\epsilon/6$ ,

which implies $r’(2+\epsilon/6)>\epsilon/6$ or $r’>\epsilon/13$ (for $\epsilon<1$ ).
Back to our estimate for $n$ . If $r>\epsilon/13$ , we use the formula above; otherwise,

we iterate until we find $w_{1}$ and add one iteration. In any case, the number $n$ can be
estimated as

$n< \frac{9\pi d^{4}f_{d}^{2}}{\epsilon^{2}\log 2}.+2+\frac{|\log\epsilon/13|}{\log 2}$ (2)

This is what we claimed, at least when the root is simple. For a multiple root, we
can perturb the polynomial slightly so that the root becomes simple. The claim of the
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theorem is independent of the size of the perturbation, so it holds for arbitrarily small
perturbations and hence, by continuity, also for multiple roots. $\square$

REMARK. It may be surprising that the result transfers so easily from simple to multi-
ple roots, although the immediate basin undergoes drastic changes when several roots
collapse into a multiple root. What happens is that, from the point of view of the sim-
ple root, the points $z$ and $w$ move to infinity in the hyperbolic metric of the immediate
basin, but the distance between them does not change (in fact, if several immediate
basins merge, there is more space and the estimates get only better).

5 Discussion
WHERE THE INEFFICIENCIES COME FROM.
The main source for the extremely inefficient upper bound is the nested estimate of
clusters in Theorem 3: if there “almost” was a cluster, it is thrown away and adds
a factor in the estimates, and this can possibly happen repeatedly. However, if there
“almost” is a cluster, this means something about the approximate geometry of clusters:
the extreme cases can never happen simultaneously.

Another inefficiency of the estimates, relatively minor in comparison, is the follow-
ing: in the estimate of $\delta$ in Lemma 7, we used the extreme case that only one point on
the curve was close to the boundary, but the following estimates assumed that all points
on the curve were equally far from the boundary of the immediate basin (however, this
affects only a relatively minor factor of the estimate).

The remaining estimates do not contribute much to the inefficiencies because they
are bounded factors away from the sharp estimates, and they are used only once.

TURNING NEWTON’S METHOD INTO AN ALGORITHM.
Often, Newton’s method is called “Newton’s algorithm”, but for an algorithm one needs
to know that it terminates. The task is to find, given the degree $d$ of the polynomial
and a required accuracy $\epsilon>0$ , a set $\{\alpha_{1}’, \alpha_{2}’, \ldots, \alpha_{d}’\}$ of complex numbers such that
there is a bijection $\sigma$ to the set of exact roots $\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\}$ with $|\alpha_{k}-\alpha_{\sigma(k)}’|<\epsilon$ for
all $k$ .

The overall strategy will be to use a (small) set of starting points, for example as
given in [HSS], so that we can be certain that each root is found by at least one of
these starting points. The question is: which of the starting points should be used or
discarded? Our estimate for the number of iterations gives a partial answer: we can tell
how many iterations any “good” starting point takes at most to get $\epsilon$-close to “its” root,
and how close a point is from some root. If after the specified number of iterations a
starting point is still not close to some root then it should be discarded. That leaves at
least $d$ approximations with error bounds; some roots will be approximated by several
starting points, so we have to tell which roots are (to within our required precision)
multiple roots and which are simple.

We will not discuss this here. Our last remark closes the gap between our existence
result of a good starting point $z$ with $|z|=2$ for every root, and the result in [HSS]
which specifies a finite number of starting points at $|z|=2$ which find every root after
an unspecified number of iterations. If we use three times as many roots as specified in
[HSS], we can be certain to hit the middle third of every channel, so that every root has
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a starting point $z$ in its immediate basin $U$ for which $d_{U}(z, N_{p}(z))<3\log d$ (compare
Lemma 6). The factor $d^{2}$ in the estimate of $\delta$ (Lemma 8) now turns into $d^{6}$ , so the
number $n(d, \epsilon)$ increases by a factor of $d^{4}$ .
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