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概要

A geometric method is set up for Lyapunov analysis of natural Hamilto-
nian systems with $N$ degrees of freedom. For a geodesic on a Riemannian
manifold, one considers geodesic deviations through the Jacobi equation, a
linearization of the geodesic equation, which is a second-order differential
equation. However, one needs first-order linearized equations for Lyapunov
analysis of deviations. Hence a question arises as to how one obtains a kind
of Hamiltonian equations corresponding to Jacobi equations. A geometric
answer to this question is given through the geometry of the cotangent bun-
dle of the Riemannian manifold; first a geodesic equation is lifted up to a
first-order equation in the cotangent bundle and then the linearization pro-
cedure is performed to obtain a first-order differential equation which cor-
responds to the Jacobi equation in question. Through this procedure, one
can obtain Lyapunov vectors that satisfy the so-required properties that (i)
the N-th Lyapunov vector is tangent to the trajectory in question for all
time, (ii) the $(N+1)$-th Lyapunov vector points to the direction of the gra-
dient of the Hamiltonian for all time, and (iii) the other Lyapunov vectors
are orthogonal to the plane spanned by the above-mentioned two vectors
for all time, while these properties are not satisfied in linearized Newton’s
equations of motion.
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1 Introduction
Lyapunov analysis in terms of Lyapunov exponents is a useful tool to investigate

long-term behaviours of nearby trajectories of dynamical systems. Since Lyapunov
exponents are defined so as to measure averaged exponential $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$

of a trajectory during infinitely long time evolution, they are suitable to study av-
eraged properties of the $\mathrm{d}\dot{\mathrm{y}}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}_{\mathrm{C}}\mathrm{a}1$ systems accordingly. In Hamiltonian systems,
phase portrait in the phase space [MB93, YO87] and phase transition in a model
of condensed matter [BC87] are discussed in terms of Lyapunov exponents. More-
over, Lyapunov spectra have a universal characteristic independent of individual
dynamical systems; it is shown that according to whether the system is a fully
developed chaotic system or moderately chaotic system, the dependence of the
Lyapunov spectra $\{\lambda_{i}\}$ on indices $\{i/N\}$ is straight [LPRV87] or curved [Yam98],
if the system is subject to nearest neighbour interaction. Here $N$ stands for the
degrees of freedom. In contrast with this, local Lyapunov exponents, which are
defined for finite time intervals, are suitable to study dynamic properties during
short periods. For example, wondering motions between tori and a chaotic sea in a
Hamiltonian system with many degrees of freedom are studied through the largest
local Lyapunov exponents [Yam96].

Further, Lyapunov analysis in terms of Lyapunov vectors is of considerable use in
studying temporal $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ of trajectories in detail. A cluster motion is
discussed in relation to the Lyapunov vector corresponding to the smallest positive
Lyapunov exponent in a symplectic mapping [KK92].

The Lyapunov exponents and the Lyapunov vectors are obtained from linearized
equations of motion. Let us consider a dynamical system whose equation of motion
is

$\frac{\mathrm{d}x^{i}}{\mathrm{d}t}=f^{i}(x)$ , $(i=1, \cdots, l)$ (1)

then the linearized equation of motion is, using the Einstein’s sum rule,

$\frac{\mathrm{d}X^{i}}{\mathrm{d}t}=\frac{\partial f^{i}}{\partial x^{j}}(x(t))X^{j}$, $(i=1, \cdots, \ell)$ (2)

where $x(t)$ is a trajectory of the dynamics (1), and $X^{i}$ is i-th element of the

vector $X=X^{i_{\frac{\partial}{\partial x^{i}}}}$ . We introduce tangent vectors $\{X_{1}(t), x_{2}(t), \cdots, X_{l}(t)\}$

each of which follows the linearized equation of motion (2). Lyapunov vectors
$\{V_{1}(t), V_{2}(t), \cdots , V_{\ell}(t)\}$ are obtained by orthogonalizing the tangent vectors
with the Gram-Schmidt method from $X_{1}(t)$ to $X_{l}(t)$ at each time. That is,

$V_{i}(t)=^{\mathrm{x}}i(t)- \sum^{i}\frac{\langle X_{i}(t),V_{j(t)}\rangle}{\langle V_{j}(t),V_{j(t)}\rangle}Vj(t)j=1-1$ , $(i=1, \cdots, \ell)$
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where $\langle$X, $V\rangle$ stands for an inner product between $X$ and $V$ . The Lyapunov
exponents $\{\lambda_{1}, \lambda_{2}, \cdots , \lambda_{l}\}$ and the local Lyapunov exponents
$\{\lambda_{1}(n, \tau), \lambda_{2}(n, \mathcal{T}), \cdots , \lambda_{l}(n, \tau)\}$ are calculated from the Lyapunov vectors as

$\lambda_{i}=\lim_{tarrow\infty}\frac{1}{t}\ln\frac{||V_{i}(t)||}{||V_{i}(0)||}$ , $(i=1, \cdots, l)$

and
$\lambda_{i}(n, \tau)=\frac{1}{\tau}\ln\frac{||V_{i}(n\tau)||}{||V_{i}((n-1)_{\mathcal{T}})||}$, $(i=1, \cdots, \ell)$

respectively. Here $\tau$ is an arbitrary finite constant. Values of the Lyapunov ex-
ponents do not depend on the choice of initial set of Lyapunov vectors with unit
probability [Ose68, BGS76].

However, values of the Lyapunov exponents and the Lyapunov vectors may
depend on the choice of representation of dynamics, since we can get various
linearized equations of motion from one equation of motion when we transform
the independent parameter $t$ to $s$ as

$\mathrm{d}s=\emptyset(_{X})\mathrm{d}t$ . (3)

Applying the transformation (3), the equation of motion (1) becomes

$\frac{\mathrm{d}x^{i}}{\mathrm{d}s}=\frac{f^{i}(x)}{\phi(x)}$ . $(i=1, \cdots, \ell)$ (4)

The equations (1) and (4) are essentially same since the latter goes back to the
former by the inverse transformation of (3). However, the linearized equation of
(4) is

$\frac{\mathrm{d}X^{i}}{\mathrm{d}s}=\frac{1}{\phi(x)}[\frac{\partial f^{i}(x)}{\partial x^{j}}-\frac{f^{i}(x)}{\phi(x)}\frac{\partial\phi(x)}{\partial x^{j}}]X^{j}$, $(i=1, \cdots, \ell)$ (5)

and the inverse transformation of (3) no longer gives the equation (2) unless $\phi(x)$

is a constant function, since the transformed equation is

$\frac{\mathrm{d}X^{i}}{\mathrm{d}t}=[\frac{\partial f^{i}(x)}{\partial x^{j}}-\frac{f^{i}(x)}{\phi(x)}\frac{\partial\phi(_{X)}}{\partial x^{j}}]X^{j}$. $(i=1, \cdots, \ell)$ (6)

Accordingly, the Lyapunov exponents and the Lyapunov vectors may take different
values for different representations of a dynamics, for instance, for the representa-
tions (1) and (4).

The above consideration leads to a question: What is a (
$‘ \mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}$

” representation
of dynamics? To answer this question, we must introduce some natural require-
ments which are satisfied in the “good” representation. In Hamiltonian systems
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with $N$ degrees of freedom, $\lambda_{N}$ and $\lambda_{N+1}$ always vanish since they correspond
to tangential direction of trajectories and gradient direction of Hamiltonian func-
tions respectively, and no global $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ appears for the two directions.
However, for naive representation, local instability appears even for the two di-
rections. We therefore require that at any time (i) N-th Lyapunov vector points
to tangential direction of trajectories, (ii) $(N+1)$-th Lyapunov vector points to
gradient direction of Hamiltonian functions, and (iii) the other Lyapunov vectors
are orthogonal to the two directions. From the (

$‘ \mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}$

” representation, we obtain
purely $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}/\mathrm{u}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ directions without influence of the two marginal directions
corresponding to the zero Lyapunov exponents.

The three requirements are satisfied by a geometric method developed in this
paper. A geometric method is introduced to analytically estimate the largest Lya-
punov exponent $\lambda_{1}$ with the aid of statistical mechanics [Pet93, CP93, CPC99], and
it regards trajectories as geodesics on a Riemannian manifold. $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{I}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$

of geodesics is given by Jacobi(-Levi-Civita) equation, but it is a second order dif-
ferential equation while Lyapunov analysis needs a first order differential equation
as seen in equations (2) and (5). We therefore lift the Jacobi equation to the
cotangent bundle of the Riemannian manifold.

In this paper, we consider natural Hamiltonian systems with $N$ degrees of free-
dom

$H(q,p)= \frac{1}{2}\delta ijp_{i}pj+V(q)$ . (7)

Equation of motion of the system (7) is usually represented as

$\frac{\mathrm{d}^{2}q^{i}}{\mathrm{d}t^{2}}+\frac{\partial V}{\partial q^{i}}=0$ , $(i=1, \cdots, N)$ (8)

whose linearized equation of motion is

$\frac{\mathrm{d}^{2}X^{i}}{\mathrm{d}t^{2}}+\frac{\partial^{2}V}{\partial q^{i}\partial q^{j}}X^{j}=0$ . $(i, j=1, \cdots, N)$ (9)

We numerically compare this usual method with the geometric method through a
model system.

This article is organized as follows. In section 2 we review Riemannian geometry
and Riemannian manifolds on which geodesics become trajectories of the natural
Hamiltonian dynamics. In section 3 we lift vector field, metric, Christoffel symbol
and connection from Riemannian manifolds to their cotangent bundles. Dynamics
on the cotangent bundles are described in section 4, and we construct a set of
Lyapunov vectors satisfying the three requirements mentioned above. Section 5
is for numerical calculations of the lifted Jacobi equation. The final section 6 is
devoted to summary and discussions.
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2 Riemannian Geometry

2.1 Jacobi equations

Let $(M, g)$ be an $m$-dimensional Riemannian manifold with metric $g$ . The metric
induces the Levi-Civita connection $\nabla$ on $M$ ; for vector fields $X,$ $\mathrm{Y}\in X(M)$ ,
$X(M)$ denoting the set of vector fields on $M$ , the covariant derivative $\nabla_{X}\mathrm{Y}$ is
defined, in terms of local coordinates $(x^{1}, \cdots, x^{m})$ , to be

$\nabla_{X}\mathrm{Y}=X^{j}[\frac{\partial Y^{i}}{\partial x^{j}}+\Gamma iYjk]k\frac{\partial}{\partial x^{i}}$

where $(X^{i})$ and $(Y^{i})$ are components of $X$ and $\mathrm{Y}$ , respectively, the Christoffel
symbols $\Gamma_{jk}^{i}$ are defined as

$\mathrm{r}_{jk}^{\iota i}=\frac{1}{2}g^{i}l(\frac{\partial g_{lk}}{\partial x^{j}}+\frac{\partial g_{j\ell}}{\partial x^{k}}-\frac{\partial g_{jk}}{\partial x^{\ell}})$ ,

with components of the metric

$g_{ij}=g( \frac{\partial}{\partial x^{i}},$ $\frac{\partial}{\partial x^{j}})$ , $g_{ij}g^{jk}=\delta_{i}^{k}$ .

For a geodesic $c(s)$ with $s$ the arc length parameter, the tangent vector $\xi$ to the

geodesic satisfies the geodesic equation

$\nabla_{\xi}\xi=[\frac{\mathrm{d}\xi^{i}}{\mathrm{d}s}+\Gamma_{j}^{i}k\xi^{j}\xi^{k}]\frac{\partial}{\partial x^{i}}=0$ , (10)

where
$\xi=\frac{\mathrm{d}x^{i}}{\mathrm{d}s}\frac{\partial}{\partial x^{i}}|_{c(S})$

with
$\mathrm{d}s^{2}=g_{ij}\mathrm{d}X\mathrm{d}ix^{j}$ . (11)

We are interested in $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ of geodesics. To this end, we consider a

family of geodesic which looks like a fluid whose stream curves are geodesics. Then

we may consider that the tangent vector $\xi$ is extended to be a vector field defined

in the neighbourhood of the original geodesic $c(s)$ . We may also assume that a

vector field $X$ is defined in such a manner that $[\xi, X]=0$ in the same domain as
$\xi$ . The vector field $\xi$ may have singularity at which $\xi$ is not defined uniquely and
$X$ vanishes there. With this in mind, we operate equation (10) with $\nabla_{X}$ and use

the definition of the Riemannian curvature to obtain the Jacobi equation

$\nabla_{\xi}\nabla_{\xi}\mathrm{x}+R(\mathrm{x}, \xi)\xi=0$ . (12)
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The Jacobi equation, a linearization of the geodesic equation, is used to analyze
$\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{a}\sigma_{11\mathrm{i}\mathrm{t}}\mathrm{y}$ of geodesics. As is well known, the Riemannian curvature
tensor is defined as $R(X, \mathrm{Y})Z=\nabla_{X}\nabla_{\mathrm{Y}}Z-\nabla \mathrm{Y}\nabla xz-\nabla_{[x,\mathrm{Y}}]z$ for $X,$ $\mathrm{Y},$ $Z\in$

$X(M)$ , and their local components are put in the form

$R_{ijkl}=R_{i}$$mgjkml=g(R( \frac{\partial}{\partial x^{i}},$ $\frac{\partial}{\partial x^{j}})\frac{\partial}{\partial x^{k}},$ $\frac{\partial}{\partial x^{\ell}})$ ,

$R_{ijk}l= \frac{\partial\Gamma_{jk}^{l}}{\partial x^{i}}-\frac{\partial\Gamma_{ik}^{l}}{\partial x^{j}}+\Gamma^{lm}im\Gamma-jk\Gamma_{jmi}l\Gamma m_{k}$.

The Riemannian curvature tensor has the symmetries such as

$g(R(X, \mathrm{Y})|Z,$ $W)=-g(R(- \mathrm{Y}, X)z,$ $W)$
(13)

$=-g(R(X, \mathrm{Y})W,$ $Z)=g(R(Z, W)\mathrm{x},$ $\mathrm{Y})$ .

In the next two subsections, we show two examples of Riemannian manifolds
whose geodesics or projection of geodesics coincide with trajectories of the natural
Hamiltonian system (7). The whole configuration space with local coordinate
$(q^{1}, \cdots , q^{N})$ is referred as $M_{C}$ .

2.2 The Eisenhart metric

Let $M_{E}$ be $M_{C}\cross R^{2}$ with local coordinate $(q^{0}=t, q^{1}, \cdots , q^{N}, q^{N+1})$ . The
coordinate $q^{N+1}$ is determined as

$q^{N+1}= \frac{c_{1}^{2}}{2}t+c_{2^{-}}^{2}\int_{0}^{t}L(q,$ $\frac{\mathrm{d}q}{\mathrm{d}t})\mathrm{d}t$ ,

where the Lagrangian $L$ is $L= \sum_{i=1}^{n}(\dot{q}^{i})^{2}/2-V(q)$ , and $c_{1}$ and $c_{2}$ are real arbitrary
constants. The Eisenhart metric $g_{E}$ is

$(g_{E})_{ij}=$ ,

and hence $\mathrm{d}s^{2}=c_{1}^{2}\mathrm{d}t^{2}$ . We set $c_{1}^{2}=1$ since the constant $c_{1}$ is arbitrary.
The non-vanishing Christoffel symbols are

$\Gamma_{000i^{+1}}^{i}=-\Gamma^{n}=\frac{\partial V}{\partial q^{i}}$ $(i=1, \cdots, N)$
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and the geodesic equation is, using $\mathrm{d}s=\mathrm{d}t$ ,

$\frac{\mathrm{d}^{2}q^{0}}{\mathrm{d}t^{2}}=0$ ,

$\frac{\mathrm{d}^{2}q^{i}}{\mathrm{d}t^{2}}+\frac{\partial V}{\partial q^{i}}=0$ , $(i=1, \cdots, N)$

$\frac{\mathrm{d}^{2}q^{n+1}}{\mathrm{d}t^{2}}+\frac{\mathrm{d}L}{\mathrm{d}t}=0$.

The second equation coincide with Newton’s equation (8), and hence trajectories
of a Hamiltonian system are obtained as the canonical projection $\pi$ of geodesics
on the configuration space-time

$\pi$ : $M_{C^{\cross}}R^{2}arrow M_{C}\cross R$ : $(q^{0}, q^{1}, \cdots : q^{N}, q^{N+1})\vdasharrow(q^{01}, q, \cdots, q^{N})$ .

The non-vanishing elements of the Riemannian curvature tensor is

$R_{0ij0}= \frac{\partial^{2}V}{\partial q^{i}\partial q^{j}}$ $(i, j=1, \cdots, N)$

and the Jacobi equation (12) becomes

$\frac{\mathrm{d}^{2}Y^{i}}{\mathrm{d}t^{2}}+\frac{\partial^{2}V}{\partial q^{i}\partial q^{j}}Y^{j}=0$, $(i=1, \cdots, N)$

with the assumption $Y^{0}=0$ . Note this equation is the same as linearized Newton’s
equation (9).

2.3 The Jacobi metric

Let $M_{J}$ be an open submanifold of the configuration space $R^{N}$ defined by

$M_{J}=\{q\in Mc|V(q)<E\}$ ,

on which is defined the Jacobi metric $g_{J}$ to be

$(g_{J})_{ij}=2[E-V(q)]\delta_{ij}$ . (14)

From the equation (11), the arc length parameter $s$ is shown to be related to the
time parameter $t$ by

$\mathrm{d}s^{2}=4[E-V(q)]^{2}\mathrm{d}t2$ , (15)

and the tangent vector to a geodesic is always unity accordingly:

$g( \xi, \xi)=g_{ij}\xi i\xi j=2(E-V)\delta_{ij}\frac{\mathrm{d}q^{\dot{x}}}{\mathrm{d}s}\frac{\mathrm{d}q^{j}}{\mathrm{d}s}=[2(E-V)]^{2}(\frac{\mathrm{d}t}{\mathrm{d}s})^{2}=1$ .
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The geodesic equation for the Jacobi metric is expressed as

$\frac{\mathrm{d}^{2}q^{i}}{\mathrm{d}s^{2}}+\frac{1}{2(E-V)}[2\frac{\partial(E-V)}{\partial q^{j}}\frac{\mathrm{d}q^{j}}{\mathrm{d}s}\frac{\mathrm{d}q^{i}}{\mathrm{d}s}-g\frac{\partial(E-V)}{\partial q^{j}}ij]=0$,

which is equivalent to Newton’s equation of motion (8) on account of (15). How-
ever, the Jacobi equation with the curvature tensor fot the Jacobi metric is not
brought into the same equation as (9), a linearization of Newton’s equation of mo-
tion, in general. Components of the curvature tensor are indeed put in the form
[Ong75, CPC99]

$R_{ijk\ell=\frac{1}{n-2}}[C_{ij}\delta kl-Cjk\delta i\ell+ckl\delta_{ij}-ci\ell\delta jk]$ ,

where

$C_{ij}= \frac{n-2}{4(E-V)^{2}}[2(E-V)\frac{\partial^{2}V}{\partial q^{i}\partial q^{j}}+3\frac{\partial V}{\partial q^{i}}\frac{\partial V}{\partial q^{j}}-\frac{1}{2}\delta^{k\ell}\frac{\partial V}{\partial q^{k}}\frac{\partial V}{\partial q^{l}}\delta_{i}j]$ .

3 Geometry on the Cotangent Bundle
In the previous section, we have found that trajectories of natural Hamilto-

nian systems can be regarded as geodesics on suitable Riemannian manifolds, and
that $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ of the trajectories are analyzed through the Jacobi equa-
tion, a linearization of the geodesic equation. However, the Jacobi equation is a
second-order differential equation, while Lyapunov analysis is applied to first-order
differential equations. We hence need a first-order differential equation, associated
with the Jacobi equation in order to apply Lyapunov analysis. To find such a first-
order differential equation, we first study geodesic equations lifted to the cotangent
bundle $T^{*}M$ of the Riemannian manifold $M$ , and then perform the linearization
of the lifted geodesic equation to obtain a first-order differential equation, which
turns out to be a lift of the Jacobi equation. To carry out this procedure, we
need some geometric setting-up on the cotangent bundle. We discuss a way to lift
vector fields on $M$ to $T^{*}M$ , define a lifted Riemannian metric on $T^{*}M$ , and study
the Levi-Civita connection formed on $T^{*}M$ , which defines a connection on $T^{*}M$

in the sense that every tangent space to $T^{*}M$ is decomposed into a horizontal and
a vertical subspace.

3.1 Lift of vector fields

Let $(x^{i})$ and $(x^{i},p_{i})$ be local coordinates in $M$ and $T^{*}M$ , respectively. Let
$\theta=p_{i}\mathrm{d}x^{\dot{x}}$ be the standard one-form on $T^{*}M$ . For vector fields on $M$ , a way to lift
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them is not unique. The way we adopt here is the following: For $X\in X(M)$ , the
lifted vector field $\overline{X}$ is defined through

$\mathcal{L}_{\overline{X}}\theta=0$ , (16)

where $\mathcal{L}$ denote the Lie derivation. Using Cartan’s formula

$\mathcal{L}_{\overline{X}}\theta=\mathrm{d}(\iota(\overline{X})\theta)+\iota(\overline{X})\mathrm{d}\theta$ ,

where $\iota(\overline{X})\theta=\theta(\overline{X})$ , we verify that the vector field $\overline{X}$ takes the form

$\overline{X}=X^{i}\frac{\partial}{\partial x^{i}}+^{\hat{x}^{\overline{i}}\frac{\partial}{\partial p_{i}}}$ , (17)

where $\overline{i}=i+m$ and
$\hat{X}^{\overline{i}}=-pj^{\frac{\partial X^{j}}{\partial x^{i}}}$ .

3.2 Adapted frame

By the use of the connection $\nabla$ on $M$ , we can introduce the adapted frame on
(an open subset of) $T^{*}M$ by

$D_{i}= \frac{\partial}{\partial x^{i}}+p_{k}\Gamma_{ij}^{k}\frac{\partial}{\partial p_{j}}$ , $D_{\overline{i}}= \frac{\partial}{\partial p_{i}}$ (18)

and the adapted coframe

$\theta^{i}=\mathrm{d}x^{i}$ , $\theta^{\overline{i}}=\mathrm{d}p_{i}-pk\Gamma ij\mathrm{d}kx^{j}$ , (19)

which are dual, that is, satisfy

$\theta^{i}(D_{j})=\delta_{j}^{i}$ , $\theta^{i}(D_{\overline{j}})=0$ , $\theta^{\overline{i}}(D_{j})=0$ , $\theta^{\overline{i}}(D_{\overline{j}})=\delta_{j}^{i}$ .

See reference [YI73] for adapted frame in the tangent bundle $TM$ .
The lifted vector field $X$ takes the form, with respect to the adapted frame,

$\overline{X}=X^{i}D_{i}+X^{\overline{i}}D_{\overline{i}}$ , (20)

where
$X^{\overline{i}}=-pj\nabla iX^{j}$

and
$\nabla_{i}X^{j}=\frac{\partial X^{j}}{\partial x^{i}}+\Gamma_{ik}^{j}x^{k}$ .

For instanc.e, the tangent vector field $\xi$ to a congruence of geodesics is lifted to

$\overline{\xi}=\xi^{i}D_{i}$ .
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3.3 Lift of metric

In order to discuss orthogonality of vector fields on $T^{*}M$ later, we here define a
lifted metric $\overline{g}$ on $T^{*}M$ by

$\overline{g}=g_{ij}\theta^{i_{\otimes\theta^{ji}}}+g\theta j\overline{i}\otimes\theta^{\overline{j}}$. (21)

We adopt this metric on $T^{*}M$ to discuss orthogonality of Lyapunov vectors on
$T^{*}M$ .

3.4 Levi-Civita connection of $T^{*}M$

The Christoffel symbols for the Levi-Civita connection on $T^{*}M$ are brought
about from the lifted metric $\overline{g}$ . The Christoffel symbols with respect to the stan-
dard frame are given by

$\hat{\Gamma}_{BC}^{A}=\frac{1}{2}\hat{g}^{AD}(\partial_{B}\hat{g}CD+\partial C\hat{g}DB-\partial_{D}\hat{g}_{BC}))$

where the Roman capitals $A,$ $B,$ $C,$ $D$ run from 1 to $2m$ ,

$\partial_{i}=\frac{\partial}{\partial q^{i}}$ , $b_{i}= \frac{\partial}{\partial p_{i}}$ $(i=1, \cdots, m)$

and $\hat{g}_{AB}=\overline{g}(\partial_{A}, \partial_{B})$ . Let us denote by $\triangle_{\alpha}^{A}$ the transformation matrix between
the standard frame and the adapted frame

$D_{\alpha}=\triangle_{\alpha}^{A}\partial_{A}$ ,

where Greek letters also run from 1 to $2m$ , indicating the indices for the adapted
frame.

By using the transformation matrix $\triangle_{\alpha}^{A}$ , the Christoffel symbol with respect to
the .a.dapted frame and with respect to the standard frame are shown to be related
as

$\overline{\Gamma}_{\beta\gamma}^{\alpha}=\triangle_{A}^{\alpha}\triangle^{Bc}\beta\triangle_{\gamma BC}\hat{\Gamma}^{A}+\triangle_{A}^{\alpha}D_{\beta}\triangle_{\gamma}^{A}$ .

The Christoffel symbols, $\hat{\Gamma}_{BC}^{A}$ , with respect to the standard frame are symmetric
in lower indices, $B$ and $C$ , but are not those with respect to the adapted frame,
$\overline{\Gamma}_{\beta\gamma}^{\alpha}$ . We describe the non-commutativity as $\Omega$ ,

$[D_{\beta}, D_{\gamma}]=\Omega_{\beta\gamma}\alpha D_{\alpha}$ ,

and then obtain

$\overline{\Gamma}_{\beta\gamma}^{\alpha}-\overline{\Gamma}_{\gamma}^{\alpha}\beta=\triangle_{A}^{\alpha}(D_{\beta}\triangle_{\gamma}^{A}-D_{\gamma}\triangle^{A})\beta=\Omega_{\beta\gamma}\alpha$ .
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We are to determine $\overline{\Gamma}_{\beta\gamma}^{\alpha}$ as components of the Levi-Civita connection $\overline{\nabla}$ on
$T^{*}M$ . The covariant derivative of $\overline{X}$ with respect to $\overline{\mathrm{Y}}$ is defined to be

$\overline{\nabla}_{\overline{\mathrm{Y}}}\overline{X}=[\overline{Y}^{\beta}D_{\beta}\overline{X}^{\alpha}+\overline{\Gamma}_{\beta\gamma}^{\alpha}\overline{Y}^{\beta\gamma]}\overline{X}D_{\alpha}$ . (22)

The covariant derivative of the lifted metric $\overline{g}$ must vanish for all vector fields on
$T^{*}M$ ,

$\overline{\nabla}_{\overline{X}}\overline{g}=X^{\beta}[D_{\beta\overline{g}_{\gamma\delta^{-}}}\overline{\Gamma}\mathcal{E}-\beta\gamma\overline{g}_{8}\delta\overline{\Gamma}\in\beta\delta\overline{g}\gamma\epsilon]\theta^{\gamma}\otimes\theta^{\delta}=0$

which gives
$D_{\beta\overline{g}_{\gamma\delta^{-}}}\overline{\Gamma}_{\beta\gamma}^{\epsilon \mathrm{i}}\overline{g}\epsilon\delta-\overline{\Gamma}^{\xi}\overline{g}_{\gamma\epsilon}\beta\delta=0$,

and further

$D_{\beta\overline{g}_{\gamma\delta}+D_{\gamma}-}\overline{g}\delta\beta D_{\delta\overline{g}_{\beta\gamma}=}(\overline{\Gamma}_{\beta\gamma}\epsilon+\overline{\Gamma}_{\gamma\beta}\epsilon)\overline{g}\epsilon\delta+(\overline{\Gamma}_{\beta\delta}^{\epsilon}-\overline{\Gamma}_{\delta}\epsilon)\beta\overline{g}\epsilon\gamma+(\overline{\Gamma}_{\gamma\delta^{-}}^{\epsilon}\overline{\Gamma}_{\delta)}\epsilon\gamma\overline{g}\epsilon\beta$

$=(2\mathrm{I}_{\beta\gamma}^{\overline{\urcorner}}\epsilon-\Omega_{\beta\gamma}\epsilon)\overline{g}\epsilon\delta+\Omega_{\beta}\epsilon\overline{g}\delta\epsilon\gamma+\Omega\epsilon\overline{g}_{\epsilon}\gamma\delta\beta$.

Consequently, we obtain

$\overline{\Gamma}_{\beta\gamma}^{\alpha}=\frac{1}{2}\overline{g}^{\alpha\delta}(D\beta\overline{g}\gamma\delta+D_{\gamma}\overline{g}\delta\beta-D_{\delta}\overline{g}_{\beta\gamma})+\frac{1}{2}(\Omega\alpha+\Omega_{\beta}^{\alpha}+\Omega_{\gamma\beta}\alpha)\beta\gamma\gamma$

’

where
$\Omega_{\beta\gamma}^{\alpha}=\overline{g}^{\alpha\delta}\Omega_{\delta}\beta\epsilon\overline{g}\epsilon\gamma$.

These components have the explicit form

$\overline{\Gamma}_{jk}^{i}=\Gamma_{jk}^{i}$ , $\overline{\Gamma}_{j\overline{k}}^{i}=-\frac{1}{2}Rik\ell pjf$ , $\overline{\Gamma}\frac{i}{j}k=-\frac{1}{2}R^{ijl}kp_{l}$ , $\overline{\Gamma}\frac{i}{jk}=0$ ,
(23)

$\overline{\Gamma}_{jk}^{\overline{i}}=\frac{1}{2}$R $lp_{l}$

jki)
$\overline{\Gamma}_{j\overline{k}}^{\overline{i}}=-\Gamma_{i}^{k}j$

’
$\overline{\Gamma}_{k}\overline{\frac{i}{j}}=0$ , $\Gamma\frac{\overline{i}}{jk}=0$ .

The covariant derivative of $\overline{X}$ with respect to the lifted vector field $\overline{\xi}$ is expressed
as

$( \overline{\nabla}_{\overline{\xi}}\overline{X})^{i}=\frac{\mathrm{d}X^{i}}{\mathrm{d}s}+\mathrm{r}_{kj}^{i}\xi^{kj}x-\frac{1}{2}R_{k}^{i}j\ell p\ell\xi^{k}x\overline{j}$ ,
(24)

$( \overline{\nabla}_{\overline{\xi}}\overline{X})^{\overline{i}}=\frac{\mathrm{d}X^{\overline{i}}}{\mathrm{d}s}-\Gamma_{ik}^{j}\xi^{k}x\overline{j}\frac{1}{2}R_{j}l\xi^{kj}+kiplX$ .

In particular, we have
$\overline{\nabla}_{\overline{\xi}}\overline{\xi}=0$,

which implies that the lift of a geodesic on $M$ is also a geodesic on $T^{*}M$ with
respect to the lifted metric $\overline{g}$ .
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4Dynamics on the Cotangent Bundle

4.1 Linearization of Hamilton’s equation of motion

For a Hamiltonian $H$ given on the cotangent bundle $T^{*}M$ , Hamilton’s equation
of motion is given by

$\frac{\mathrm{d}x^{i}}{\mathrm{d}s}=\frac{\partial H}{\partial p_{i}}$ , $\frac{\mathrm{d}p_{i}}{\mathrm{d}s}=-\frac{\partial H}{\partial x^{i}}$ . (25)

The linearization of Hamilton’s equation of motion is expressed, for a vector field
$\overline{X}=X^{i}\partial_{i}+\hat{X}^{\overline{i}}b_{i}$ on $T^{*}M$ , as

$\frac{\mathrm{d}X^{i}}{\mathrm{d}s}=\frac{\partial^{2}H}{\partial p_{i}\partial x^{j}}X^{j}+\frac{\partial^{2}H}{\partial p_{i}\partial p_{j}}\hat{X}^{\overline{j}}$,

$\frac{\mathrm{d}\hat{X}^{\overline{i}}}{\mathrm{d}s}=-\frac{\partial^{2}H}{\partial x^{i}\partial_{X}j}x^{j}-\frac{\partial^{2}H}{\partial x^{i}\partial p_{j}}\hat{X}\overline{j}$,

where $\overline{X}$ stands for a deviation of Hamiltonian flows. With respect to the adapted
frame, the equation of deviation for $\overline{X}=X^{i}D_{i}+X^{\overline{i}}D_{\overline{i}}$ takes the form

$\frac{\mathrm{d}X^{i}}{\mathrm{d}s}=[\frac{\partial^{2}H}{\partial p_{i}\partial x^{j}}+\frac{\partial^{2}H}{\partial p_{i}\partial p\ell}p_{k}\Gamma^{k]}\ell jX^{j}+\frac{\partial^{2}H}{\partial p_{i}\partial p_{j}}X^{\overline{j}}$ ,

$\frac{\mathrm{d}X^{\overline{i}}}{\mathrm{d}s}=-[\frac{\partial^{2}H}{\partial x^{i}\partial_{X^{j}}}+\frac{\partial^{2}H}{\partial x^{i}\partial p_{\ell}}p_{k}\Gamma k+j\ell(\frac{\partial^{2}H}{\partial p_{l}\partial x^{j}}+\frac{\partial^{2}H}{\partial p_{\ell}\partial p_{m}}pn\Gamma^{\mathrm{t}}nmj)pk\Gamma^{k}i\ell$ (26)

$- \frac{\partial H}{\partial x^{k}}\Gamma_{ij}^{k}+pk\frac{\partial\Gamma_{ij}^{k}}{\partial x^{m}}\frac{\partial H}{\partial p_{m}}]X^{j}-[\frac{\partial^{2}H}{\partial x^{i}\partial p_{j}}+\frac{\partial^{2}H}{\partial p\ell^{\partial}pj}pk\Gamma^{k}i\ell]X^{\overline{j}}$.

The geodesic flow on the cotangent bundle $T^{*}M$ has the Hamiltonian

$H^{(\mathrm{g}\mathrm{e}\circ)}(x,p)= \frac{1}{2}g^{ij}(_{X)pip}j\cdot$ (27)

In fact, on account of the relation

$- \frac{\partial g^{kl}}{\partial x^{i}}=gmikm_{\Gamma^{\ell\ell}}+gm\Gamma^{k}1mi$

’

the Hamiltonian vector field associated with (27) is put in the form

$X_{H}= \frac{\partial H^{(\mathrm{g}\mathrm{e}\mathrm{o}})}{\partial p_{i}}\frac{\partial}{\partial x^{i}}-\frac{\partial H^{(\mathrm{g}\mathrm{e}\mathrm{o}})}{\partial x^{i}}\frac{\partial}{\partial p_{i}}=g^{i}p_{j}D_{i}j$ ,

which turns out to be equal to $\overline{\xi}$ with the condition $p_{i}=g_{ij}\xi^{j}$ . Substituting the
Hamiltonian (27) into the equation of deviation (26), we obtain the following

$\frac{\mathrm{d}X^{i}}{\mathrm{d}s}=-\Gamma_{jk}^{i}\xi kxj+gX^{\overline{j}}ij$ ,
(28)

$\frac{\mathrm{d}X^{\overline{\dot{x}}}}{\mathrm{d}s}=-R_{jk\ell i}\xi k\xi lXj\Gamma j\xi ikkX\overline{j}+$.
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If $\overline{X}$ is a lifted vector field, and if $P=g^{ij}X^{\overline{j}} \frac{\partial}{\partial x^{i}}\in X(M)$ is imposed, the above

equation reduces to the Jacobi equation. Thus we have fount that equation (28)

is the first-order differential equation associated with the Jacobi equation, which
we call the lifted Jacobi equation.

It is to be noted that equation (28) is equivalently written as

$\overline{\nabla}_{\overline{\xi}}\overline{X}=\overline{\nabla}_{\overline{\mathrm{x}}}XH$ . (29)

4.2 Lyapunov vectors

In this subsection, we are to verify that Lyapunov vectors to be constructed on
the geometric method set up above satisfies the requirement mentioned in section
1. Let $T_{s}T^{*}M$ be the tangent space to $T^{*}M$ at $(x(s),p(s))\in T^{*}M$ . We denote

that gradient vector field by $(\mathrm{d}H^{(\mathrm{g}\mathrm{e}\mathrm{o})})*--p_{i}D_{\overline{i}}$ , which is dual to the one-form
$\mathrm{d}H^{(\mathrm{g}\mathrm{e}\circ)}=\xi^{i}\theta^{\overline{i}}$. With this notation, we define a subspace of $T_{s}T^{*}M$ to be a space
spanned by $\overline{\xi}$ and $(\mathrm{d}H^{(\mathrm{g}\mathrm{e}\mathrm{o})})*$ , and its orthogonal complement as follows:

$H_{s}=\{\overline{X}\in\tau_{S}T*M|\overline{X}=(\alpha\overline{\xi}+\beta(\mathrm{d}H^{(\mathrm{e}\mathrm{o}}\mathrm{g}))*)|_{S}, \alpha, \beta\in R\}$ ,

$V_{s}=\{\overline{X}\in\tau_{S}T*M|\overline{g}(\overline{X}, \overline{\xi})|_{s}=0, \mathrm{d}H^{(\mathrm{g}\mathrm{e}\mathrm{o})}(\overline{x})|_{s}=0\}$ .

We show

1. that a lifted Jacobi field which is in $H_{0}$ at an initial time remains to be in
$H_{s}$ at any instance $s$ ,

2. and that a lifted Jacobi field which is in $V_{0}$ at an initial time remains in $V_{s}$

at any instance $s$ .

On the basis of these facts, we can construct a set of Lyapunov vectors
$\{V_{1}, V_{2}, \cdots, V_{2m}\}$ satisfying the requirement mentioned in section 1. In this

subsection, we adopt the Riemannian manifold $(M_{Jg_{J}},)$ introduced in subsection

2.3, and hence $m=N$ .
The proof of the above facts is carried out as follows: First it is easy to observe

that $\overline{\xi}$ and $(\mathrm{d}H^{(\mathrm{g}\mathrm{e}\mathrm{o})})*+s\overline{\xi}$ are solutions to the lifted Jacobi equation (28), which is

in $H_{s}$ . Accordingly, a lifted Jacobi field $\overline{X}=(\alpha-\beta s)\overline{\epsilon}+\beta((\mathrm{d}H^{()}\mathrm{g}\mathrm{e}\mathrm{o})*+s\overline{\xi})$ is in
$H_{s}$ at any instance $s$ . To prove the second fact, we consider the temporal evolution

of $\overline{g}(\overline{X}, \overline{\xi})$ for a lifted Jacobi field $\overline{X}$ . The first- and second-order derivations of
$\overline{g}(X, \xi)$ satisfy

$\frac{\mathrm{d}}{\mathrm{d}s}\overline{g}(\overline{X}, \overline{\xi})=\mathrm{d}H^{(}\mathrm{g}\mathrm{e}\mathrm{o})(\overline{\mathrm{x}})$ ,

$\frac{\mathrm{d}}{\mathrm{d}s}\mathrm{d}H^{(\circ)}\mathrm{g}\mathrm{e}(\overline{\mathrm{x}})=0$ ,
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respectively. Here we used the equations (24), (28) and (13). The above equations
result in

$\overline{g}(\overline{X}, \overline{\xi})|_{S}=g\sim(\overline{\mathrm{x}},\overline{\xi})|_{s}=0+s\mathrm{d}H^{(\circ)}\mathrm{g}\mathrm{e}(\overline{X})|_{S0}=$

’

$\mathrm{d}H^{(\mathrm{g}\mathrm{e}\mathrm{o})}(\overline{x})|s=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ ,

which implies that $\overline{X}(S)\in V_{s}$ if $\overline{X}(0)\in V_{0}$ .
We conclude this section with a construction of Lyapunov vectors satisfying

the three requirements. The first $N-1$ linearly independent solutions to the
lifted Jacobi equation are chosen in $V_{s}$ , which are orthogonalized to give first
$N-1$ Lyapunov vectors $\{V_{1}, \cdots, V_{N-1}\}$ . The N-th and $(N+1)$-th Lyapunov
vectors are chosen as $\overline{\xi}$ and $(\mathrm{d}H^{(\mathrm{g}\mathrm{e}\mathrm{o})})*$ , respectively. This is because they are
mutual orthogonal and because $\overline{\xi}$ and $(\mathrm{d}H^{(\mathrm{g})}\mathrm{e}\circ)*+s\overline{\xi}$ are solutions to the lifted
Jacobi equation and further orthogonal to the first $N-1$ Lyapunov vectors. The
remaining $N-1$ Lyapunov vectors are chosen in $V_{s}$ which are orthogonal to $\overline{\xi}$ and
$(\mathrm{d}H^{(\mathrm{g})}\mathrm{e}\circ)*\mathrm{b}\mathrm{y}$ the very definition. Consequently, we can obtain a set of Lyapunov
vectors satisfying the three requirements by choosing $\overline{X}_{i}(0)\in V_{0}(i=1,$

$\cdots,$ $N-$
$1,$ $N+2,$ $\cdots,$ $2N),$ $\overline{X}_{N}(0)=\xi(0)$ and $\overline{\mathrm{x}}N+1(0)=(\mathrm{d}H^{(\mathrm{g}\mathrm{e}\mathrm{o}}))^{*}(0)$ at the initial time
$s=0$ .

5 Numerical Calculations
We numerically compare Lyapunov exponents and Lyapunov vectors obtained by

the geometric method and ones by usual method in a model system with 3 degrees
of freedom. We use the configuration space and the Jacobi metric introduced in
subsection 2.3.

5.1 Model

We introduce a model with 3 degrees of freedom which has interactions of H\’enon-

Heiles type,

$H(q,p)= \sum_{=i1}^{3}[\frac{1}{2}p_{i}^{2}+V_{HH}(q, q^{i1})i+]$ ,
(30)

$V_{HH}(x, y)=x^{2}y- \frac{1}{3}y^{3}$ ,

where $q^{4}=q^{1}$ .
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Temporal evolutions of $(q(t),p(t))$ and tangent vectors in usual method are per-
formed by 4th order symplectic integrator [Yos93], which gives explicit discretiza-
tion keeping symplectic properties. On the other hand, discretization of the lifted
Jacobi equation (28) must be implicit if we keep the symplectic properties, and
hence we use 6th order symplectic implicit Runge-Kutta method (Kuntzmann
&Butcher method, see Appendix A) [HNW93]. We set the time slice as $h=$

$2.5\cross 10^{-6}$ . Initial conditions on $T^{*}M$ are $q^{j}(0)=0$ and $p_{j}(0)=\alpha\gamma_{j}(j=1,2,3)$ ,
where each random variable $\gamma_{j}$ follows the uniform distribution function on the
interval $[0,1]$ and the constant a is determined as satisfying the energy condition
$\sum_{j=1}^{3}(p_{j(}\mathrm{o}))^{2}/2=E$ .

5.2 Results

Convergence of Lyapunov exponents is confirmed in figure 1 for $E=0.04$ , where
$\Lambda_{i}(t)$ is defined as

$\Lambda_{i}(t)=\frac{1}{t}\ln\frac{||V_{i}(t)||}{||V_{i}(0)||}$

and $\lim_{tarrow\infty}\Lambda_{i}(t)=\lambda_{i}$ . We got similar convergence also for $E=0,01,0.02$ and
0.03, and energy dependence of Lyapunov exponents are shown in figure 2. Lya-
punov exponents by the geometric method and usual method are good agreement
with each other.

The requirements introduced in section 1 are checked in figures 3 and 4. The for-
mer shows temporal evolutions of inner products between normalized Lyapunov
vectors and $\overline{\xi}$ , and the latter shows temporal evolutions of inner products be-
tween normalized Lyapunov vectors and the normalized gradient vector of Hamil-
tonian. Initial conditions of tangent vectors are $V_{3}(0)=\overline{\xi},$ $V_{4}(0)=(\mathrm{d}H^{(\mathrm{g})}\mathrm{e}\mathrm{o})*$

and $V_{i}(0)\in V_{0}(i=1,2,5,6)$ . In the geometric method, Lyapunov vectors except
for the 3rd one are always orthogonal to tangential direction of a trajectory, and
the 3rd one points to the tangential direction at any time. Moreover, Lyapunov
vectors except for the 4th one are always orthogonal to the gradient direction of
the Hamiltonian function, and the 4th one points to the gradient direction at any
time. That is, the three requirements are satisfied in the geometric method with
a little numerical error. On the other hand, the requirements are not satisfied in
usual method.
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$\underline{\overline{\mathrm{o}\mathrm{o}_{\mathrm{S}}\circ\tilde{)}}}$

$\prec\underline{\wedge}$

$t$

ロ’( 1: Convergence of Lyapunov exponents. $E=0.04$ . Curves represent $\Lambda_{1}^{(\mathrm{g}\mathrm{e}\circ)},\Lambda 1$ ,
$\Lambda_{2}(\mathrm{g}\mathrm{e}\mathrm{o}),\Lambda 2,$ $\Lambda(\mathrm{g}\mathrm{e}\circ)3’\Lambda 3$ from top to bottom, where $\Lambda_{i}^{(\mathrm{g}\mathrm{e}\circ)}$ are obtained by the geometric
method and $\Lambda_{i}$ are usual method.

$\underline{\wedge\Phi\circ\infty}\prec^{\sim}$

$\grave{\tilde{\prec}}$

$L$

$2$ : Comparison of Lyapunov exponents obtained by the geometric method and
by usual method. $\lambda_{i}^{(\mathrm{g}\mathrm{e}}\circ$

) are obtained by the geometric method and $\lambda_{i}$ are usual
method, and both the methods give good agreement.
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(a) 1st vector (b) 2nd vector (c) 3rd vector

(d) 4th vector (e) 5th vector (f) 6th vector

$3$ : Temporal evolutions of inner products $\mathrm{b}\mathrm{e}\mathrm{t}_{\mathrm{W}\mathrm{e}\mathrm{e}\mathrm{n}}\overline{\xi}$ and normalized Lyapunov
vectors. Dark curves are from the geometric method $\overline{g}(\overline{V},\overline{\xi})$ , and gray curves are
usual method $<\overline{V},$ $\overline{\xi}>$ . The 1st and 2nd Lyapunov vectors are always orthogonal
to tangential direction of a trajectory, $\overline{\xi}$ , in the geometric method, but not always
orthogonal in usual method. Moreover, the 3rd Lyapunov vector always points
to the direction of $\overline{\xi}$ in the geometric method, but does not in usual method. In
$(\mathrm{d}),(\mathrm{e}),(\mathrm{f})$ , dark lines are hidden by gray lines.
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(a) 1st vector (b) 2nd vector (c) 3rd vector

(d) 4th vector (e) 5th vector (f) 6th vector

$\mathrm{H}4$ : Temporal evolutions of inner products gradient of the Hamiltonian function
and normalized Lyapunov vectors. Dark curves are from the geometric method
$\mathrm{d}H^{(\mathrm{g})}\mathrm{e}\circ(\overline{V})$ , and gray curves are usual method $\mathrm{d}H(\overline{V})$ . The 4th Lyapunov vector
always points to gradient direction of the Hamiltonian function, but not always in
usual method. Moreover, the 5th and 6th Lyapunov vectors are always orthogonal
to the gradient direction in the geometric method, but not in usual method. In
$(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$ , dark lines are hidden by gray lines.
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6 Summary
In this paper we developed a geometric method to calculate Lyapunov exponents

and Lyapunov vectors for natural Hamiltonian systems with $N$ degrees of freedom.
A former geometric method uses Jacobi equations to consider orbital instability,
but the Jacobi equations are second order differential equations while Lyapunov
exponents and vectors are defined through first order differential equations. We
therefore lifted the Jacobi equations from Riemannian manifolds to their cotangent
bundles in order to recover first order differential equations.

Lyapunov exponents and vectors may change the values from usual method
which uses linearized Newton’s equations of motion, when the independent pa-
rameter $s$ depends on position as the lifted Jacobi equation, i.e. $\mathrm{d}s=\phi(X)\mathrm{d}t$ . We
numerically compared the values of Lyapunov exponents between the two equa-
tions for a model system with 3 degrees of freedom, and obtain the same Lyapunov
exponents. We guess that the Lyapunov exponents are invariant if $\phi(x(t))<\infty$

where $x(t)$ is an arbitrary trajectory.
In the geometric method, we can choose Lyapunov vectors satisfy the following

requirements: (i) Lyapunov vectors except for $m\mathrm{t}\mathrm{h}$ and $(m+1)\mathrm{t}\mathrm{h}$ vectors are al-
ways orthogonal to both tangent direction of trajectory and gradient direction of
Hamiltonian function, (ii) $N\mathrm{t}\mathrm{h}$ Lyapunov vector points to the tangent direction
of trajectory, and (iii) $(N+1)\mathrm{t}\mathrm{h}$ Lyapunov vector points to the gradient direc-
tion of Hamiltonian function. From such Lyapunov vectors, we can obtain purely
(un)stable directions in phase spaces without influences of zero Lyapunov expo-
nents corresponding to the $N\mathrm{t}\mathrm{h}$ and $(N+1)\mathrm{t}\mathrm{h}$ Lyapunov vectors, while we cannot
do by usual method in general systems (one of exception is a system consists of
harmonic oscillators).
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ASymplectic Implicit Runge-Kutta method
Let us consider a dynamical system

$\frac{\mathrm{d}x(t)}{\mathrm{d}t}=f(X, t)$ , (31)

and discretizing this equation with time slice $h$ . The $s$-stage Runge-Kutta method
is represented as

$x’=x+h \sum_{i=1}b_{i}k_{i}S$

$k_{i}=f(x+h \sum_{j=1}a_{ijj}kS, t+c_{i}h)$ $(i=1, \cdots, s)$

where $(x, t)$ goes to $(x’, t+h)$ after one step, and $a_{ij},$
$b_{i}$ and $c_{i}$ are real constants

with $\sum_{i1^{C_{i}}}^{s}==1$ . Note that the second equation is implicit. The 6th order
Kuntzmann&Butcher method is defined as table 1.

$g_{1:}$ Kuntzmann&Butcher method, order 6. The upper right block is the matrix
$(a_{ij})$ , the left column is the vector $(b_{i})$ and the lower raw is the vector $(c_{i})$ .
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