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1. Introduction. In the theory of ordinary differential equations, it is well

known that a family F' of all solution curves for an initial value problem
z' = f(t,z), z(o) = xp (zg € R") (1)

has the Kneser’s property, namely, a cross section {z(7);z € F'} of F' with the hy-
perplane t = 7 is compact and connected if |0 — 7| > 0 is sufficiently small. In 1967,
Hukuhara [1] extended this local property to a global one under suitable assump-
tions. Separately from differential equations, he constructed a family of continuous
mappings having some topological properties which are required for solution curves
of (1) and called it Kneser family. He further proved the Nagumo’s existence the-
orem to boundary value problems for second order ordinary differential equations
from the viewpoint of Kneser family. By applying the theory of Kneser family di-
rectly, Kikuchi, Hayashi and the author obtained a variation of Nagumo’s existence
theorem and succeeded in solving a boundary layer problem in [4].

Solution curves of (1) are lying in finite dimensional spaces and are continuable
to both right and left, however, those of a partial differential equation are lying in
infinite dimensional spaces in some sense and are not always continuable to the left.
Recently, Kikuchi and the author [3] proved that a family of solution curves for a
semilinear parabolic partial differential equation has Kneser’s pfoperty. Consider-
ing these facts, we shall extend Hukuhara’s result to infinite dimensional spaces in
Sections 2 and 3, and it will be shown that our extension is applicable to solution

curves of a semilinear parabolic partial differential equation in Section 4.

2. Family of characteristics. Let X be a Banach space with norm || - ||, and
let d denote a metric in R x X defined by d((¢, z), (s,v)) = |t — s| + ||z — y]|. For
two nonvoid closed subsets A and B of R x X, we denote the Hausdorff distance
between A and B by dg(A, B), namely,

du(A, B) := inf{e > 0; N.(4) D B, N.(B) D A},
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where

N.(A) ={(t,z) € R x X;d((t,z),A) < e},
d((t, z), A) = inf{d((t, ), (s,9)); (s,¥) € A}.

Let E be a family of all X-valued continuous mappings defined on compact in-
tervals which are allowed to be one point. We denote the domain of f € E by
I;. When Iy = [a, ], the points (c, f(a)) and (8, f(8)) are called, respectively,
left end point and right end point of f. The graph of f is denoted by I'f, namely,
I'y={ f(t)) € R x X;t € I;}. Here, we define a metric p in E by

o(f,9) == du(TT,)  for f,g € E.

For two elements f and g in E, f is called a part of g or g is called an extension
of f when I'y C 'y holds. Let F be a subset of E. An element f of F is called
right mazimal in F provided that the right end point of every extension of f in F
coincides with that of f. Similarly, we can define a left mazimal element of F. A
subset D(F') of R x X defined by D(F):= U{Ts; f € F } is called the fundamental
domain of F, and the boundary of D(F') is denoted by B(F'). For a subset &£ of
D(F), we denote by F*(£) a family of all elements g € F whose left end points
belong to £ and of all parts of such the elements g, that is, F*(£) is expressed by

F*(€)={fe€ E;3ge F,T'; CT,, left end point of g belongs to £}.

The fundamental domain D(F*(£)) of F*(£) is denoted by Z+(£). Furthermore,
the sets F*({p}) and Z*({p}) are denoted, respectively, by F*(p) and Z*(p), where
p € D(F).

Definition 1. A subfamily F of E is called a family of characteristics if the fol-
lowing conditions (C;) through (Cs) are fulfilled, and each element of F is called a
characteristic. '
(Cl) Every part of a characteristic is also a characteristic.

(Cs) If two characteristics f and g take the same value at ¢ = 7, then a mapping

' which coincides with f for ¢ < 7 and with g for t > 7 is also a characteristic.
(C3) D(F) is a closed subset of R x X.

(C4) All right end points of right maximal characteristics in F belong to B(F).
(Cs) If € is a compact subset of D(F'), then F*(£) is a compact subset of E.



If F is a family of characteristics and if D' is a closed subset of D(F'), then a family
F(D') defined by F(D') := {f € F;I'; C D'} forms a family of characteristics.

3. Kneser family. Throughout this section, we always assume that F denotes
a family of characteristics. We shall classify all points of B = B(F'). Right endpoint
of a right maximal characteristic is called a right extreme point of F. Similarly, we
define a left extreme point of F. The set of all rigth extreme points of F is called
the right boundary and is denoted by B" = B"(F). By (C4), we have that B" C B.
The set of all left extreme points which belong to B(F) is denoted by B = B(F).
We denote by BT = B*(F) the set of all points p € B\ B" with the property that
every point ¢ of Z*(p) \ {p} belongs to IntD when q is sufficiently near to p. In
other words, p € Bt if and only if p is an isolated point of Z*(p) N B. Finally, we
put B, = B.(F):= B\ (B"UB*). It is clear that p € B, if and only if p is an
accumulation point of Z¥(p) N B. Thus, B is expressed by B = B"UBT U B, as a
disjoint union.

For a subset S of R x X and a 7 € R, we define two sets S, and S|,, respectively,
by |

S, ={(t,zx) eS;t <7} and S|, ={(t,x) € S;t=1}.

For any 7 € R, we denote F(D,) by F,, where D = D(F). Furthermore, for any
compact subset £ of D, we put

ZH(€):=Z%(€), and F}E&):=F(ZF(¢)).
Here notice that F', and F}(€) are family of characteristics.

Definition 2. Let p = (a, &) be a point of D = D(F'). We call p a Kneser point if
one of the following conditions (K;) through (Kj) holds.
(K1) pe B".
(K3) p € Bt UIntD and Z%(p)|, is compact and connected if 7 — a > 0 is
sufficiently small. _
(K3) p € B and the union Z%(p)|, U (ZF(p) N B) is compact and connected if

T — a > 0 is sufficiently small.

Definition 3. F is called a Kneser family provided that B* is open in B, B* c B

and that every point of D is a Kneser point.

We can prove the following theorem by a similar argument as in the proof of
Proposition 4.2 in [1] (cf. [2]). |
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Theorem 1. Let F be a Kneser family. If £ is a compact and connected subset of
D(F), then so is Z*(&) N (B" U B,).

Remark Hukuhara [1] introduced a useful sufficient condition which guarantees a
point of B, to be a Kneser point. Though our definition of family of characteristics

is different from that in [1], his result is also applicable to ours.

4. Parabolic partial differential equation. Let 7" > 0 be an arbitrary fixed
number, and consider the initial boundary value problem for a semilinear parabolic

partial differential equation

g—Z:Au-I-f(u) for t >0,z €9,

. u(o, x) =u0(x)“ for z€Q, (E)
%:O . for t > o, x € 09,

{ Ov

where 0 < o < T, Q is a bounded and open domain with smooth boundary, v
denotes arunit outer normal vector of o, u € X :=C(Q,R)and f: R - R
is continuous. We denote the supremum norm of X by || - ||. In this section, we
shall apply the result given in Sections 2 and 3 to (E). Here, we further assume the

following assumption.
(A) There exist positive constants a and b such that |f(u)| < a + b|u| for v € R.

For any o € [0,T], let Y, be the Banach space C([o, T] x £, R) with supremum

norm. By a (mild) solution u of (E), we shall mean that u € Y, is represented by

t
u(t,) = [ U(t=o,2,9uoly)dy+ [ ds [ U(t = s,5,9)f(u(s,0)) dy,
where U is the fundamental solution of Ou/0t = Au with du/0v = 0. In [3], we

proved the following theorem for the case where o = 0.

Theorem 2. Suppose that (A) holds. Then (E) has at least one solution u € Y,
and a set {u € Y,; u is a solution of (E)} is compact and connected in Y, for any
(o,u) € [0,T] x X.

- For a continuous function u : [o,7] x @ — R with 0 < ¢ < 7 < T, we denote
a function u(¢,-) and the interval [o, 7], respectively, by @ and ;. Then we obtain
a continuous mapping @ : Iz — X. From Theorem 2, we can easily obtain the

following corollary.
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Corollary 1. For any (0,ug) € [0,7] X X and 7 € [0, T}, a set
{@(r) € X;u is a solution of (E)}
is compact and connected in X.
By virtue of the above corollary, we can prove the following theorem (see [2]).
Theorem 3. If (A) holds, then a family F' given by
F = {@;u is a solution of (E) on [o,7] x Q,[0,7] C [0,T],up € X}
forms a Kneser family whose fundamental domain is [0, 7] x X.

Suppose that D is a closed subset of [0,7] x X. Then, F(D) is a family of
chracteristics. Moreover, if D is a bounded and closed subset, then the assumption

(A) is not essential in Theorem 3, which will be seen in the following corollary.

Corollary 2. Suppose that the function f in (E) is continuous. If D is a bounded
and closed subset of [0,7] x X, then a family F(D) = {& € F;I'; C D} forms a
family of characteristics whose fundamental domain is D.

For the proof, see [2].
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