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1. Introduction. In the theory of ordinary differential equations, it is well

known that a family $F$ of all solution curves for an initial value problem

$x’=f(t, x)$ , $x(\sigma)=x_{0}$ $(x_{0}\in \mathrm{R}^{n})$ (1)

has the Kneser’s property, namely, a cross section $\{x(\tau);x\in F\}$ of $F$ with the hy-

perplane $t=\tau$ is compact and connected if $|\sigma-\tau|>0$ is sufficiently small. In 1967,

Hukuhara [1] extended this local property to a global one under suitable assump-

tions. Separately from differential equations, he constructed a family of continuous
mappings having some topological properties which are required for solution curves
of (1) and called it Kneser family. He further proved the Nagumo’s existence the-

orem to boundary value problems for second order ordinary differential equations

from the viewpoint of Kneser family. By applying the theory of Kneser family di-

rectly, Kikuchi, Hayashi and the author obtained a variation of Nagumo’s existence
theorem and succeeded in solving a boundary layer problem in [4].

Solution curves of (1) are lying in finite dimensional spaces and are continuable

to both right and left, however, those of a partial differential equation are lying in

infinite dimensional spaces in some sense and are not always continuable to the left.
Recently, Kikuchi and the author [3] proved that a family of solution curves for a
semilinear parabolic partial differential equation has Kneser’s property. Consider-
ing these facts, we shall extend Hukuhara’s result to infinite dimensional spaces in

Sections 2 and 3, and it will be shown that our extension is applicable to solution

curves of a semilinear parabolic partial differential equation in Section 4.

2. Family of characteristics. Let $X$ be a Banach space with norm $||\cdot||$ , and

let $d$ denote a metric in $\mathrm{R}\cross X$ defined by $d((t, x),$ $(s, y))=|t-S|+||x-y||$ . For

two nonvoid closed subsets $A$ and $B$ of $\mathrm{R}\cross X$ , we denote the Hausdorff distance

between $A$ and $B$ by $d_{H}(A, B)$ , namely,

$d_{H}(A, B):= \inf\{\in>0;N_{\epsilon}(A)\supset B, N_{\mathcal{E}}(B)\supset A\}$ ,
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where

$N_{\epsilon}(A)=\{(t, x)\in \mathrm{R}\cross X;d((t, x), A)<\epsilon\}$ ,

$d((t, x),$ $A)= \inf\{d((t, x), (s, y));(s, y)\in A\}$ .

Let $E$ be a family of all X-valued continuous mappings defined on compact in-
tervals which are allowed to be one point. We denote the domain of $f\in E$ by
$I_{f}$ . When $I_{f}=[\alpha, \beta]$ , the points $(\alpha, f(\alpha))$ and $(\beta, f(\beta))$ are called, respectively,
left end point and right end point of $f$ . The graph of $f$ is denoted by $\Gamma_{f}$ , namely,
$\Gamma_{f}=\{(t, f(t))\in \mathrm{R}\cross X;t\in I_{f}\}$ . Here, we define a metric $\rho$ in $E$ by

$\rho(f, g):=d_{H}(\Gamma_{f}, \Gamma_{g})$ for $f,$ $g\in E$ .

For two elements $f$ and $g$ in $E,$ $f$ is called a part of $g$ or $g$ is called an extension
of $f$ when $\Gamma_{f}\subset\Gamma_{g}$ holds. Let $F$ be a subset of $E$ . An element $f$ of $F$ is called
right maximal in $F$ provided that the right end point of every extension of $f$ in $F$

coincides with that of $f$ . Similarly, we can define a lefl maximal element of $F$ . A
subset $D(F)$ of $\mathrm{R}\cross X$ defined by $D(F):=\cup\{\Gamma_{f;}f\in F\}$ is called the fundamental
domain of $F$ , and the boundary of $D(F)$ is denoted by $B(F)$ . For a subset $\mathcal{E}$ of
$D(F)$ , we denote by $F^{+}(\mathcal{E})$ a family of all elements $g\in F$ whose left end points
belong to $\mathcal{E}$ and of all parts of such the elements $g$ , that is, $F^{+}(\mathcal{E})$ is expressed by

$F^{+}(\mathcal{E})=$ { $f\in E;\exists g\in F,$ $\Gamma_{f}\subset\Gamma_{g}$ , left end point of $g$ belongs to $\mathcal{E}$ }.

The fundamental domain $D(F^{+}(\mathcal{E}))$ of $F^{+}(\mathcal{E})$ is denoted by $Z^{+}(\mathcal{E})$ . Furthermore,

the sets $F^{+}(\{p\})$ and $\mathcal{Z}^{+}(\{p\})$ are denoted, respectively, by $F^{+}(p)$ and $Z^{+}(p)$ , where
$p\in D(F)$ .

Definition 1. A subfamily $F$ of $E$ is called a family of characteristics if the fol-
lowing conditions $(\mathrm{C}_{1})$ through $(\mathrm{C}_{5})$ are fulfilled, and each element of $F$ is called a
$c’ hara\dot{c}te\dot{r}i_{S}tic$.

$(\mathrm{C}_{1})$ Every part of a characteristic is also a characteristic.
$(\mathrm{C}_{2})$ If two characteristics $f$ and $g$ take the same value at $t=\tau$ , then a mapping

which coincides with $f$ for $t\leq\tau$ and with $g$ for $t\geq\tau$ is also a characteristic.
$(\mathrm{C}_{3})D(F)$ is a closed subset of $\mathrm{R}\cross X$ .
$(\mathrm{C}_{4})$ All right end points of right maximal characteristics in $F$ belong to $B(F)$ .
$(\mathrm{C}_{5})$ If $\mathcal{E}$ is a compact subset of $D(F)$ , then $F^{+}(\mathcal{E})$ is a compact subset of $E$ .
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If $F$ is a family of characteristics and if $D’$ is a closed subset of $D(F)$ , then a family
$F(D’)$ defined by $F(D’):=\{f\in F;\Gamma_{f}\subset D’\}$ forms $a$ family of characteristics.

3. Kneser family. Throughout this section, we always assume that $F$ denotes
a family of characteristics. We shall classify all points of $B=B(F)$ . Right endpoint
of a right maximal characteristic is called a right extreme point of $F$ . Similarly, we
define a left extreme point of $F$ . The set of all rigth extreme points of $F$ is called
the right boundary and is denoted by $\mathcal{B}^{r}=B^{r}(F)$ . By $(\mathrm{C}_{4})$ , we have that $\mathcal{B}^{\Gamma}\subset B$ .

The set of all left extreme points which belong to $B(F)$ is denoted by $B^{l}=B^{l}(F)$ .
We denote by $g+=B^{+}(F)$ the set of all points $p\in B\backslash B^{r}$ with the property that
every point $q$ of $Z^{+}(p)\backslash \{p\}$ belongs to Int$D$ when $q$ is sufficiently near to $p$ . In
other words, $p\in B^{+}$ if and only if $p$ is an isolated point of $Z^{+}(p)\cap B$ . Finally, we
put $B_{+}=B_{+}(F):=B\backslash (B^{r}\cup B^{+})$ . It is clear that $p\in B_{+}$ if and only if $p$ is an
accumulation point of $Z^{+}(p)\cap B$ . Thus, $B$ is expressed by $B=B^{r}\cup B^{+}\cup B_{+}$ as $a$

disjoint union.
For a subset $S$ of $\mathrm{R}\cross X$ and a $\tau\in \mathrm{R}$, we define two sets $S_{\tau}$ and $S|_{\tau}$ , respectively,

by
$S_{\tau}:=\{(t, x)\in S;t\leq\tau\}$ and $S|_{\mathcal{T}}:=\{(t, x)\in S;t=\tau\}$ .

For any $\tau\in \mathrm{R}$ , we denote $F(D_{\tau})$ by $F_{\tau}$ , where $D=D(F)$ . Furthermore, for any
compact subset $\mathcal{E}$ of $D$ , we put

$Z_{\tau}^{+}(\mathcal{E}):=Z^{+}(\mathcal{E})_{\mathcal{T}}$ and $F_{\tau}^{+}(\mathcal{E}):=F(Z_{\mathcal{T}}^{+}(\mathcal{E}))$ .

Here notice that $F_{\tau}$ and $F_{\tau}^{+}(\mathcal{E})$ are family of characteristics.

Definition 2. Let $p=(\alpha, \xi)$ be a point of $D=D(F)$ . We call $p$ a Kneser point if
one of the following conditions $(\mathrm{K}_{1})$ through (K3) holds.

$(\mathrm{K}_{1})p\in B^{r}$ .
$(\mathrm{K}_{2})p\in B^{+}\cup$ Int$D$ and $Z^{+}(p)|_{\tau}$ is compact and connected if $\tau-\alpha>0$ is

sufficiently small.
(K3) $p\in B_{+}$ and the union $Z^{+}(p)|_{\tau}\cup(Z_{\tau}^{+}(p)\cap B)$ is compact and connected if

$\tau-\alpha>0$ is sufficiently small.

Definition 3. $F$ is called a Kneser family provided that $g+$ is open in $B,$ $B^{+}\subset\beta^{l}$

and that every point of $D$ is a Kneser point.

We can prove the following theorem by a similar argument as in the proof of
Proposition 4.2 in [1] (cf. [2]).
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Theorem 1. Let $F$ be $a$ Kneser family. If $\mathcal{E}$ is a compact and connected subset of
$D(F)$ , then so is $Z^{+}(\mathcal{E})\cap(B^{r}\cup B_{+})$ .

Remark Hukuhara [1] introduced $a$ useful sufficient condition which guarantees $a$

point of $B_{+}$ to be $a$ Kneser point. Though our definition of family of characteristics
is different from that in [1], his result is also applicable to ours.

4. Parabolic partial differential equation. Let $T>0$ be an arbitrary fixed
number, and consider the initi$a1$ boundary value problem for a semilinear parabolic
partial differential equation

$\{$

$\frac{\partial u}{\partial t}=\triangle u+f(u)$ for $t>\sigma,$ $x\in\Omega$ ,

$u(\sigma, x)=u_{0}(x)$ for $x\in\overline{\Omega}$,

$\frac{\partial u}{\partial\nu}=0$ for $t>\sigma,$ $x\in\partial\Omega$ ,

(E)

where $0\leq\sigma\leq T,$ $\Omega$ is $a$ bounded and open domain with smooth boundary, $\nu$

denotes a unit outer normal vector of $\partial\Omega,$ $u_{0}\in X:=C(\overline{\Omega,}\mathrm{R})$ and $f$ : $\mathrm{R}arrow \mathrm{R}$

is continuous. We denote the supremum norm of $X$ by $||\cdot||$ . In this section, we
shall apply the result given in Sections 2 and 3 to (E). Here, we further assume the
following assumption.

(A) There exist positive const$a$nts $a$ and $b$ such that $|f(u)|\leq a+b|u|$ for $u\in \mathrm{R}$ .

For any $\sigma\in[0, T]$ , let $\mathrm{Y}_{\sigma}$ be the Banach space $C([\sigma, \tau]\cross\overline{\Omega}, \mathrm{R})$ with supremum
norm. By a (mild) solution $u$ of (E), we shall mean that $u\in Y_{\sigma}$ is represented by

$u(t, x)= \int_{\Omega}U(t-\sigma, x, y)u_{0}(y)dy+\int_{\sigma}^{t}ds\int_{\Omega}U(t-s, x, y)f(u(S, y))dy$ ,

where $U$ is the fundamental solution of $\partial u/\partial t=\triangle u$ with $\partial u/\partial\nu=0$ . In [3], we
proved the following theorem for the $\mathrm{c}a\mathrm{s}\mathrm{e}$ where $\sigma=0$ .

Theorem 2. Suppose that (A) holds. Then (E) has at least one solution $u\in \mathrm{Y}_{\sigma}$

and $a$ set { $u\in \mathrm{Y}_{\sigma};u$ is a solution of $(\mathrm{E})$ } is compact and connected in $\mathrm{Y}_{\sigma}$ for any
$(\sigma, u_{0})\in[0, T]\mathrm{x}X$ .

For a continuous function $u$ : $[\sigma, \tau]\cross\overline{\Omega}arrow \mathrm{R}$ with $0\leq\sigma\leq\tau\leq T$ , we denote
a function $u(t, \cdot)$ and the interval $[\sigma, \tau]$ , respectively, by $\tilde{u}$ and $I_{\overline{u}}$ . Then we obtain
a continuous mapping $\tilde{u}$ : $I_{\overline{u}}arrow X$ . From Theorem 2, we can easily obtain the
following corollary.
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Corollary 1. For any $(\sigma, u_{0})\in[0, T]\cross X$ and $\tau\in[\sigma, T],$ $a$ set

{ $\tilde{u}(\tau)\in X;u$ is a solution of $(\mathrm{E})$ }

is compact and connected in $X$ .

By virtue of the above corollary, we can prove the following theorem (see [2]).

Theorem 3. If (A) holds, then a family $F$ given by

$F=$ { $\tilde{u};u$ is a solution of (E) on $[\sigma,$ $\tau]\cross\overline{\Omega},$ $[\sigma,$ $\tau]\subset[0,$ $T],$ $u0\in X$ }

forms $a$ Kneser family whose fundament $a1$ domain is $[0, T]\cross X$ .

Suppose that $D$ is $a$ closed subset of $[0, T]\cross X$ . Then, $F(D)$ is $a$ family of

chracteristics. Moreover, if $D$ is a bounded and closed subset, then the assumption

(A) is not essenti$a1$ in Theorem 3, which will be seen in the following coroll$a\mathrm{r}\mathrm{y}$ .

Corollary 2. Suppose that the function $f$ in (E) is continuous. If $D$ is a bounded

and closed subset of $[0, T]\cross X$ , then $a$ family $F(D)=\{\tilde{u}\in F;\Gamma_{\overline{u}}\subset D\}$ forms $a$

family of characteristics whose fundamental domain is $D$ .

For the proof, see [2].

REFERENCES

[1] Hukuhara, M., Familles kneserienne et le probleme aux limites pour l’equation

differentielle ordinaire du second ordre, Publ. Res. Inst. Math. Sci., Kyoto Univ.
Ser. A 3, 243-270 (1967).

[2] Kaminogo, T, Kneser families in infinite-dimensional spaces, to appear in Nonlin-
ear Analysis.

[3] Kaminogo, T and Kikuchi, N., Kneser’s property and mapping degree to multi-

valued Poincar\’e map described by a semilinear parabolic partial differential equa-
tion, Nonlinear World 4, 381-390 (1997).

[4] Kikuchi, N., Hayashi, K. and Kaminogo, T., The boundary layer equation $x”’+$

$2xx”+2\lambda(1-x’)2=0$ for $\lambda>$ -0.19880, Fac. Eng. Keio Univ. Yokohama 28,

87-97 (1975).

91


