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A Quantization of Conjugacy Classes of Matrices
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1. Introduction

Let A be an element of the space M(n,C) of square matrices of size n with
components in C. Then the conjugacy class containing A is the algebraic variety
Va = U,eq Ad(g)A by denoting G = GL(n,C) and Ad(g)A = gAg~!. Under the
G-action on M (n,C), we will study a quantization of V4 interpreted as follows:

For the defining equations of V4 or the G-invariant defining ideal of V4 in the
ring of polynomial functions of M (n, C), we will associate left invariant differential
operators on (G or an ideal J4 of the ring of the left invariant differential operators
on G. The Lie algebra g of GL(n,C) is identified with M (n,C) and we identify the
left invariant differential operators on GG with the universal enveloping algebra U(g)
of g: Then our quantization of V4 is a U(g)-homomorphism of U(g)/J4 to a suitable
U(g) module M. Note that the quantization of V4 becomes a representation space
of a real form Ggr of G if M is a function space on a homogeneous space of Gr or
a space of sections of a Gr-homogeneous vector bundle.

Va=UgecgAd(g)A =~ —— G-invariant defining ideal of Vy4
lquantization

Representations of U(g) or Gg +—— | Ideal of U(g)

In §2 we introduce a homogenized universal enveloping algebra U¢(g) to study
our quantization together with “the classical limit” (e = 0). We construct gener-
ators of J4 from the generalized Capelli operators introduced by [O2] which can
be considered as quantizations of minors and we show in Theorem 2.8 that they
generate the annihilator of a generalized Verma module induced from a character
of a parabolic subalgebra of g. When € =0 and A is a nilpotent matrix, the corre-
sponding result is Tanisaki’s conjecture [Ta], which is solved by Weyman [We]. In
particular, if A is a regular nilpotent matrix, the result is due to Kostant [Ko].



In §3 we examine how the annihilator determines the difference between the
generalized Verma module and the Verma module, which is important for applica-
tions. For example, the theorem on boundary value problems for symmetric spaces
studied in [O2, Theorem 5.1} is improved by the generator system defined in this
note.

We can also quantize the minimal polynomial of V4 from which we can construct
another generator system of the annihilator. This is valid for other general reductive
Lie algebras and is studied in another paper [O3].

2. Elementary divisors

The Lie algebra g of G = GL(n,C) is identified with M (n,C) and also with
the space of left G-invariant holomorphic vector fields on. G. Then g is spanned by
E;j for 1 <i<mand 1< j<n where E;; is the fundamental matrix unit whose
(p, ¢)-component equals d; ,0;4 and

A | 9

v=1 vy

with the coordinate (1”) € G. Then g is naturally a (g, G)-module.

Using the non-degenerate symmetric bilinear form (X,Y) = Trace(XY) on
M(n,C) x M(n,C) we identify g with its dual g*. The dual basis {E};} of {E;;} is
given by E}; = Ej;. For simplicity, we will denote E; = E; and e; = E7,.

DEFINITION 2.1. The homogenized universal enveloping algebra U<(g) of g is
defined by

(2.2) U¢(g) = (i@kg) /[(XQY -YRX—¢X,Y]; X, Y €g)
k=0

and the subalgebra of G-invariants in U¢(g) is denoted by U¢(g)®. Here € is a
complex number (or an element commuting with g) and the denominator is the
span as a two-sided ideal of the numerator, the tensor algebra of g.

Note that U¢(g) is naturally a (g, G)-module induced from the tensor algebra.
U'(g) and U°%(g) are the universal enveloping algebra U(g) and the symmetric
algebra S(g) of g, respectively. If € # 0, the map defined by FE;; — ek;; gives an
algebra isomorphism of U¢(g) onto U(g).

The residue class of the element X1 @ Xo ® -+- @ X, (X; € g) in U*(g) will
be denoted by X;Xs-++ Xy, and the image of > ., ®%g in U¢(g) is denoted by
U(a)™.
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For an ordered partition {n},...,n}} of a positive integer n into L positive
p 1 » 'L P

integers put

(n; =ni+--+n, 1<i<L), no=0,
(23) 0 ={nl,n2,...,nL},
() =j ifnji<v<n; (1<v<n).

The ordered partition of n is expressed by the set © of strictly increasing positive
integers ending at n. Define Lie subalgebras ne, fie and me by the span of E;; with
e (i) > te(4), to(i) < te(j) and te (i) = te(4), respectively, and put pe = me +1ne.
We denote m§ = -, = (jy=k CBijs M = Dicicicn CEijy 1 = 21 <50 j<n CEuj,
a= Z;;l CE;and p = a+n. Then mg = m) & --- ®m& and pe is a parabolic
subalgebra containing the minimal parabolic subalgebra p. We remark that pe =
{X eg;(X,Y)=0 (VY €ng)}.
Fix A= (A1,...,ALr) € C and define a closed subset of p:

Ao = Z Mo Ej + e

Jj=1
([, )
1
(2.4) Ao AQIn’2 O
= Az Ass Asfng ; Ai_j € M(n;,'n;-;(C) ;-

(\ A1 A2 Az - Ay
Here I,, denotes the identity matrix of size m and M(k,£;C) denotes the space
of matrices of size k x £ with components in C. The generic element of Ag x
corresponds to a unique J ordan’s canonical form and any Jordan’s canonical form
is obtained by this correspondence with a suitable choice of © and A.

The set U,cq Ad(g9)Ae,x is a closed algebraic variety of M(n,C) because any
element of M(n,C) can be transformed into an element in p under the Ad-action
of the unitary group U(n). Then if € = 0, for f € U%(g) = S(g) we have

f( U Ad(g)4e,) =0 <= (Ad(9)f)(4enx) =0  (VgeG)
g€G .
< Ad(g)f € J6(A) (Vg € G)

< f € Anng (Mg(N))
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where
JEN) = Y U(8)(X — Ao (X)),
, Xepo
(2.5) Mg(A) = U(g)/J6 (),

Ann (M§(X)) = {D € U(g); DMéV(/\)‘:O},
Anng (M§(X)) = {D € U%(g); Ad(g)D € Ann (M§(})) (Vg € G)}
and the character Ag of pe is defined by ' '
L L
(2.6) do(Y + 3 Xi) =3 X Trace(Xy) for X € m§ and Y € ne.
k=1 k=1 ‘
When € =1, Mo(A) = Mé)()‘) is a generalized Verma module induced from the

character A\g of mg, which is a quotient of the Verma module '

(2.7) M(xe) =Ul(g)/J(Xe)

with :

(2.8) J¢(Xe) = Z U(g)(X — Xe(X)) and J(Ae) = J*(Xe).
Xep

In general we will omit the superfix € if € = 1.

PROPOSITION 2.2.

(2.9) Anng (M§(X)) = Ann (M&(N) ife#0,
(2.10) Anng (M§(N) = ()] Ad(9)J6(N)-
geG

Proof. We may assume € # 0 to prove the proposition.

Let D € Ann (M§(X)). Then for X € g and v € M§(A), (XD — DX =
X(Dv)— D(Xv) = 0 and therefore XD — DX € Ann (M§(})). Since XD~ DX =
ead(X)D in U¢(g), ad(X)D € Ann (M§(A)) and therefore Ad(g)D € Ann (M§(N)
for g € G.

Put I = ¢ Ad(g)J§(N). Since Ann(Mg(A)) C J§(}), Anng (M§(N) C I
For P € U¢(g), IP = PI =0 mod J§()) because I is a two-sided ideal of U*(g),
which means I C Ann (Mg())). O

DEFINITION 2.3. Define the polynomials and an integer

( L (n’+m—n)
de (z) = d5, (z;0,)) = [ (z— A\j —nj_1€) "’ ,
i=1

L
dp, = dm(0) = deg,. d;,,(T;0, ) = max{n +m —n, 0},
oy (0) = det, 5 (10, ) = 3 max( )
e, (z) = e5, (%30, ) = &5, (2)/dy, 1 (@),
L

¢°(z) = ¢°(2;0,) = [ (z — A — mj1¢)

\ j=1
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by putting
(2.12) Jo 2= (-1 ite>0,
1 if£<0
and call d5,(z), ¢°(z) and {e},(z); 1 < m < n} the characteristic polynomial, the

minimal polynomial and the elementary divisors of M§()), respectively.

REMARK 2.4. i) The set {e,(z)} recovers {d5,(z)} because e, (z) € Clz]es,_,(z—
€).

ii) For the generic element A of J(% (A), the greatest common divisor of m-minors
of the matrix zI,, — A equals d®, (z) and therefore when € = 0, the above definition
coincides with that in the linear algebra.

iii) The meaning of the minimal polynomial for € # 0 will be clear in [O3].

Now we introduce quantized minors.

DEFINITION 2.5. For set of indices I = {%1,...,%n} and J = {j1,...,Jm} with
iy jv € {1,...,n}, define a generalized Capelli operator (cf. [02])

(213) det 6(37; EIJ) = det ((iﬂ + (V - ‘m)E)(S-iuju - ‘E"’:;Lju) 1<u<m

1<v<m

in U¢(g)[z] by the column determinant:

(214) det (AHJJ) 1<u<m = Z Sgn(a)AU(l)lAa(Z)Z T A0(1n)m-

ISvsm  ge6,
PROPOSITION 2.6. The Capelli operators satisfy
(2.15) det “(z; By (1)o'(s)) = sgn(o) sgn(o’) det (z; Ery)  for o, = Sy,
(2.16) ad(E;;)det “(z; Ery) = D1 — Do
where |
o(I) = {io)- - loem}  0'(J) = {Jor)s-- - Jor(m) }s

D, — det “(z; E{il,___,iuil,j,z-wl,___,,-m}J) if there exists only one i, with i, = j,
! 0 otherwise,

Dy — det “(T; E1gjy,....ju_1,6iuirrnim}) U there ezists only one j, with j, =1,
2 0 otherwise.

Proof. When € = 1, (2.15) and (2.16) are proved by [02, Lemma 2.2 and
Proposition 2.4]. Combining this with the definition of U¢(g), we have the propo-
sition. O

DEFINITION 2.7. Under Deﬁnition‘2.3 and Definition 2.5, put
(2.17) det ¢(z; Bry) = hrs(x)dS, (z) +rfp~tad== 4ol ip 4+ 0Y,
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in U¢(g)[z] with hrs[z] € U¢(g)[z] and r}, € U¢(g)™ ) for j =0,...,dm — 1 and
define the two-sided ideal of U<(g):

dm—1

(2.18) IS\ = Z oo D) Uy

m=1#I=¢#J=m j=0

Note that if m < n —max{n{,...,n} } the summand equals 0 because d,, = 0.
Moreover note that {r},} with #I = n are in U¢(g)®. In particular, if © =
{1,2,...,n}, then pe = p and I§ () is generated by suitable n elements in U¢(g)®.

Now we can state the main result in this section and we call r} 7 quantized

Tanisaki generators of Anng (Mg(X)). In the case when € = A =0, d%(z;0,0) =

z% and the generators are introduced by [Ta).

THEOREM 2.8. Under the notation (2.5) and (2.18)
Anng (M5() = I5(2).

If all the roots of d5,(x) = 0 are simple, which is equivalent to say that the infini-
tesimal character of M§(X) is regular (cf. Remark 2.14), then

L N :
(2.19) Anng (M§(N) =) > US(g) D (Mg +np_1€).

k=1 #I=#J=n+1-n

Here for I = {i1,...,im} and J = {j1,-..,Jm} we put

(220) D§ (@) = (~1)" det*(; Ery) = det (B, ~ (@ + (v = m)935,1)) s <poam
IZVZ'm
If all the roots of d,_;(z) = 0 are simple, (2 19) holds modulo the ideal generated
by Anng (Me()\)) NU<(g)¢.
When € = 0, (2.19) holds if A; # Aj for 1 <i < j < L and the last statement
above holds if A; # Aj for 1 <i < j <L satisfying n > 1 and nj; > 1.

REMARK 2.9. Let {A],...,A}} be the set of the roots of d¢ (z) = 0 and let
my be the multiplicity of the root Aj. Here d,, = my + -+ +my and X, # A, if
1< u<v <k Then

dm—1 ) k. m;
(2.21) Z Cri; = ZZC(d j-1 1(@ )) z=A!
j=0 =1 j=1 ‘

for #I = #J = m.

The rest of this section will be devoted to the proof of this theorem. First we

will examine the image of our minors under the Harish-Chandra homomorphism.
Define the map w of U¢(g) to S(a) = U¢(a) by

(2.22) D —w(D) e U(gn +nU(n + a).
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Fix I = {i1,...,im} and J = {j1, -+ ,Jm} With 1 < i; <43 <-+- < iy < n and
1<j1 <j2 <+ <Jjm <n. Then [02, Corollary 2.11] in the case € = 1 shows

0 if I #J,
(2.23) w(Ds@) =1 1 (B, —z+(v—1)¢) #I=J

under the notation in Theorem 2.8. Introducing the algebra isomorphism

B S’(u) — S(a)
(2:24) with B, = Ej — ( 24+ (G-1)e forj=1,.
(cf. Remark 2.14), put
(2.25) &(P) = o(P).

Then @ defines the Harish-Chandra isomorphism of U e‘(g)G onto the algebra S(a)V
of &,-invariants in S(a). Here we note that if I = {i; < iy <+ <ip},

(2.26) - @(D§(2)) = H(E,,, —i)e) .

Since DYy .3(1,..n3(@) EUS (9)€[z] (cf. Proposition 2.6), it is clear that the coef-
ficients of Df; 101,23 (z) as a polynomial of z generate the algebra U¢(g)®.

LEMMA 2.10. Let g = n ® a @ n be a triangular decomposition of a reductive
Lie algebra g over C. Here n and n are nilpotent subalgebras of g and a is a Cartan
subalgebra of g and p = a ® n is a Borel subalgebra of g. For an element D of the
universal enveloping algebra U(g) of g, we define w(D) € S(a) so that

(2.27) D —w(D)eU(gn+nU(n + a).
For a subspace V' of U(g) put
(2.28) WV))s@= Y, S(a)p.

: pEwW(V)

Then if ad(g)V C V, we have
(2.29) w(PDQ) € (w(V))s@ Jforany P, Qe U(g) andany D e V.

Proof. Let {X1,...,Xn}, {Y1,...,Yn} and {Hi,...,Hp} be the basis of n, ft
and a, respectively. Then {Y*HAXY = Y ... YRNHP ... qgPMvx1 .. XN o €
NV BeNM ~e NV} with N={0,1,2,...} is a Poincare-Birkhoff-Witt’s basis
of U(g).

Let D € V. The assumption implies PDQ € U(g)V and therefore we may
assume @ = 1 in (2.29). Since XD = ad(X)D + DX € V + U(g)n for X € n, we
have X7D € V+U(g)n. On the other hand, Y*HPD-Y*HPw(D) € Y*HB (WU (n+
a) + U(g)n) C aU(f + a) + U(g)n and therefore w(Y*HPD) = HPw(D) if a = 0
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and 0 otherwise. Hence w(Y*HPXVD) € (w(V))s(a) and w(PD) € (w(V))s(a) for
P eU(g). - | 0

LEMMA 2.11. Under the notation in Lemma 2.'10, fir Ho € a so that the
condition ad(He)Y = cyY with cy € C and Y € n\ {0} means cy > 0. Suppose
ad(He)n # {0}. Let me be the ceniralizer of Ho in g and let ne and fg be
subspaces spanned by the elements Y inn andn, respectively, satisfying ad(He)Y =
cyY with cy # 0. Then pe = me ® ng be a Levi decomposition of a parabolic
subalgebra peo containing p. Let ag denote the center of mg. For an element A\ of
the dual afy of ag we define a character Ao of pe so that Ae(ne + [me,me]) =0
and Ao (H) = A(H) for H € ag. Suppose there exist D1(N),. .., Dp(X) in U(g)[N]
so that

(2.30) | ad(X)Dg(N) € iU(g)[)\]Dj()\) forXegandk=1,...,m,
=1
(2.31) Di(N) € Y U@N(X = Xe(X)) +AU(g)[N fork=1,...,m.
Xep
Then Di(X) € Y xepe UOAI(X — Ao(X)) and therefore Dy(X) € Ann(Me (X))
for k =1,...,m under the same notation as in the case g = gl(n,C).

Proof. Retain the notation in the proof of Lemma 2.10. We may assume
{Y1,...,Yn'} is a basis of ng for a suitable N'. We note that for D € U(g)[]

(2.32) D= ) ca(D;NY* mod Y U(@)N(X - e(X)).

aeNN' Xepo

Here co(D; M) € C[)] are uniquely determined by D because of the decomposition
U(g) = U(ne) ® U(g)ve.

Put I =0 U(g)De(AU(g) and I = 3" 4o S()[A|(H — M(H)) and sup-
pose D € I. Then (2.31) implies w(Dy(X)) € Iy for k = 1,...,m and therefore
w(PDr(NQ) € Iy for P, Q € U(g) by Lemma 2.10 which implies co(D;A) =
w(D)(A) = 0. Hence IMg()) is a proper g-submodule of Mg(A) for any fixed
A€ ag.

Since Mg () is an irreducible g-module for a generic A (if the infinitesimal
character of the Verma module with the highest weight which equals to the weight
Y with o # 0 plus A is different from that of Mg (), then Mg(A) is irreducible),
IMo()\) = 0 for a generic A. Hence co(D;A) = 0 for « € NN and TMe () = 0 for
any A. O

The following remark is clear from the argument in the proof of Lemma 2.11.

REMARK 2.12. i) Let £ be a positive integer and let (A, €) be a polynomial
function of (A, €) € CH! valued in U¢(g). If r(A,€) € Anng (M§(X)) for generic
(X, €), then r(X, €) € Anng (M§(X)) for any (A, e).
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ii) Let p be a suitable polynomial function of C¢ to af. Replacing Dy()),
U(g)[A] and A by Dy (), U(g)[u| and p(u), respectively, in Lemma 2.11, we have
the same conclusion if Me(p(x)) is irreducible for generic p € C*.

REMARK 2.13. Usetthe notation in Lemma 2.10. Let A € a* and consider the
Verma module M(X) = U(g)/(U(g)n + > pea U(9)(H — A(H))). Then

(2.33) - Py={D e U(g); w(D)(A) =w(ad(X)D)(A) =0 (VX € g)}

is the annihilator Ann (L(X)) of the unique irreducible quotient L(A) of M(X). Here
we identify S(a) with the space of polynomial functions of a*. This may be also
considered to be a quantization of the conjugacy class of semisimple matrices.

Proof. Lemma 2.10 proves that Py is a two-sided ideal of U(g). Since the
assumption means that the projection of PyL(\) into the highest weight space of
L(A) vanishes, PyL(X) = 0 because of the irreducibility of L(A). On the other hand,
if DL(A) =0, D € U(g)n + Y geo U(0)(H — M(H)) and therefore w(D)(A) = 0.
Since Ann (L(})) is a two-sided ideal of U(g), we have Ann (L(})) C Px. O

REMARK 2.14. Define p € a* by p(X) = 3 Tracead(H)|, and w.A = w(A+p)—p
for the element w of the Weyl group W of the pair (g,a). Then the infinitesimal
character of the highest weight module M()) is parametrized by W.A. We say that
the infinitesimal character is regular if w.A # X for any w € W with w # e.

If g = gl(n,C), then
(2.34) p=(-22F+0-D)er+ -+ (22 + (n—1)) en,

W~ &,, and

'w(z,ujej) = Zl,l,jewvl(j) = Z,u,w(j)ej for (p1,...,4n) € C" and w € W.
=1 =1 Jj=1 '

In U¢(g), p changes into p* = ep and the infinitesimal character of M§()) ‘eq’uals
that of M(Ae). Hence the infinitesimal character is regular if and only if all the

roots of d(x) = 0 are simple because the set of roots is { + 2—2'13; v=1,...,n}
by putting
(2.35) Ao + p¢ = Aieg + - + Mpen.

LEMMA 2.15. Let I = {i1,...,tm} and J = {j1,...,5m-1} be sels of positive
numbers with m > 0, 1] < iy < -+« < iy and j; < Jo < +++ < Jm—1. Then there
exists a positive number p < m such that #{j € J; j <i}=p—1 andi, ¢ J.

Proof. Suppose m > 1 since the lemma is clear when m = 1. If j,,_1 < i, We
can put u = m. If j;n—1 > im, we can reduce to the case when I = {i1,...,im—1}
and J={j1,...,jm_2}. O

Retain the notation in Theorem 2.8. Fix k with 1 < k < L and put m =
n+l-nyand J = {1,2,...,n}\{ng-1+1,nk—1+2,...,nk}. Note that #J =m—1.



For I = {i1,...,im} with 1 < 4; < -+ < 4, < n, choose an integer y as in
Lemma 2.15. Then ng_1 < i, < ny and #{1,2,...,n%-1} = g — 1, from which we
have y = ng—1 + 1 and A(E;,) — (A + ng—1€) + (1 — 1)e = 0 and therefore (2.23)
and Proposition 2.6 show

(2.36) w(Dfs( Ak + ni—1€)) € Z S(a)(H — MNH)) if#I=4#J= n+1-— .-
Hea
Denoting
(2.37) J(m,z)= > CDj,(z),
#I=#J=m

the basis of J(n + 1 — ng, Ax + ni—1€) satisfies the assumption in Lemma 2.11 for
€ = 1 and therefore

(2.38) J(n+1—np, \p +ng—1€) C Anng (M§(A)) fork=1,...,L.

for e = 1. But this holds for any € because of Remark 2.12 i) with the isomorphism
between U(g) and U*(g).

Now the Laplace expansions of D$;(z) with respect to the first and the last
column show (cf. {02, Proposition 2.6 1)])

(2.39) Jm+1L,A)+Jm+1L, +¢€) CU(g)J(m,\) ifm<n
and therefore
(2.40) J(n+1-np+j, M+ (nk—1+1)e) € Anng (Mg(N)) for 0<i<j<mnj— 1.

When € = 0, it is obvious by the Laplace expansion of D?,(z) that

di
(Db @) oy, SO for gl =#T =n+1l-nj+jwith0<i<j<m—1.

Hence if ¢ € C satisfies df,(c; ) = 0, then det;, (c; Ery) € I§(A) for #I = #J =m
by denoting

™~

(2.41) IS =) US9)J(n+ 1 — nj, A + ng—1).
k=1

We have proved
(2.42) I§(A) CI§(A) and I§(A)' C Anng (Mg(N)

and I§(A) = I§(A) if all the root of d,(z;A) = 0 are simple for m = 1,...,n
(cf. Remark 2.9). Hence it follows from Remark 2.12 i) that

(2.43) | I&§(X) C Anng (M§(X)).

Note that the element rJ; for #I = n in (2.17) are contained in J(A\e) because
they are in the center U¢(g)® of U¢(g) and U¢(g)¢ = C mod J¢(Xe).

111
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Thus we have only to show I§(\) D Anng (M§(X)) to complete the proof of
Theorem 2.8. We can prove this for generic A with € # 0 using the result in the
next section (cf. [O3]) or Theorem 2.21 but we reduce it to the claim ~

(2.44) | I3(0) = Anng (MZ(0)).

For € = A = 0, this is conjectured by [Ta] and is proved by [We]. In this case
7‘} 7 € S(g) are of homogeneous polynomials of g* with degree #I — j. Here we
note that det ¢(z; Er;) is homogeneous of degree #I with respect to (g, ¢, A), which
is well-defined under any choice of Poincare-Birkhoff-Witt basis because of the
homogenized universal enveloping algebra.

Let S(g)m be the space of homogeneous elements of S(g) with degree m. Then
U<(g)™ /U<(g)(™ ~ S(g),, and for D € U<(g)\"™), we denote by o, (D) the corre-
sponding element in S(g),,. Note that U#I_j(rfj) in (2.17) does not depend on A
and e. Hence '

n dm—1 '
(2.45) 13(0) = 3 > ) S@)om—s(riy)
m=n+1-max{n{,...,n} } #I=#J=m j=0

Put R¢(\)™ = Anng (M§(X)) NU<(g)™ and D € Re(A)™ \ RE(A)(m1),
We will prove D € I§ () by the induction on m. Since (2.10) implies Ad(g)D =0
mod U¢(g)(™ Ypg + U¢(g)(™ 1), we have

(2.46) om(D)(Ad(g)e) =0 (Vg€ G)

and o,,(D) € I3(0). Hence it follows from (2.44) and (2.45) that there exist
homogeneous elements p}; € S(g) satistying o, (D) = S P our- 3(7‘”) Here 7,
are generators of I§ () appeared in (2.17) and deg(pIJ)+#I j=m 1fp” # 0. Let
PIJJ € Ue(g)(m #1+3) with op,— #1+5( I.]) = p}; and put D' = ZPIJJD Then
D' € I§()) and D— D' € R¢(\)(™~Y and therefore we have D — D' € I§()) by the
hypothesis of the induction. Thus we have completed the proof of Theorem 2.8. [J

, REMARK 2.16. The procedure to deform A to 0 under the classical limit € =0
is studied by [BK]. '

In the proof of Theorem 2.8 we have shown the following, which is proved by
[BB] together with the fact that it is not valid for a generalized Verma module of a
general semisimple Lie algebra induced form a character of a parabolic subalgebra.

COROLLARY 2.17. The graded ring gr(AnnG (Mé()\))) @ (Anng (M@(/\))

U¢(g)(™)/(Anng (Mg(N)) NU<(g)™~V) equals the defining zdeal of the closure of
the milpotent conjugacy class of the generic element Ag g of the form (2.4). In
particular it is a prime ideal and does not depend on (A, €).



COROLLARY 2.18. The following two conditions are equivalent.
(2.47) Anng (M§ (X)) D Anng(ME (X)).

(2.48) d; (z;0,)) € Clz]ds, (z;0',X) form=1,...,n.

Proof. It is obvious that the latter condition implies the former. Hence suppose
the first condition. Let f,,(z) be the least common multiple of d,(z;©, ) and
di(z; 0, X). Then if #I = #J = m, det®(z; Ery) € U¢(g)fm(z) mod C[z] ®
Anng (M & ()\)) Applying o, to this relation as in the proof of Theorem 2.8, we have
det®(x; Ery) € S(g)z%°s(f=) mod Clz]® Anng (M3(0)) because of the homogenuity
with respect to (g,¢,A). Let Ago be the generic element of the form (2.4) and
let Jo be the maximal ideal of S(g) corresponding to Ag . Considering under
modulo Jg, we can conclude that all the m-minors of the matrix (a; - A@,O) are
in C[z]zd°€(/=). On the other hand, z%~(®) is the greatest common devisors of
m-minors of (:c — A@,o) and therefore deg f,(v) < dn(©) = degds,(z;0, ) and
we have the latter condition. U

REMARK 2.19. If € = 0, Corollary 2.18 gives the closure relation in the conju-
gacy classes of the matrices.

REMARK 2.20. The following theorem is a part of a conjecture proposed by
[O1] for the general symmetric pair. The case in this note corresponds to the pair
(GL(n,C),U(n)). In the case of the classical limit € = A = 0, the following theorem
is obtained by [DP] and [Ta].

THEOREM 2.21. Let Weg be the Weyl group of me and let W = W(O)We be
the decomposition of W = &,, so that W(0O) be the set of the representatives of
W/We with the minimal length. Then the common zeros of w(AnnG (Mé()\)))
coincides with the set {w.Ae; w € W(O)} counting their multiplicities.

In particular, the space S(a)/w( Anng (M3 (X)) is naturally a representation
space of W which is isomorphic to Ind%e id. :

Proof. Under the notation (2.35)

A= Ao) — ";1 +wv—-1) forv=1,...,n.

and
m

@D+ npm16) = [ [ (By, = X + (252 — et + 1 — i,)e).

pn=1 .
Fix kwithl <k < Landwe W(0O). Puum=n+1-n}, K= {ng_1+1,...,n%},
Ke={1,...,n}\ K and J = w(K®). For I = {i1,...,im} with 1 <i; <.-- <
im < n, choose p as in Lemma 2.15 and put £ = w='(i,). Then £ € K and
{v € K¢ w(v) < i,} = p— 1, which implies #{v € K; w(v) < i,} = i, — p.
On the other hand, since the condition ngx—1 < v < v’ < ng means w(v) < w(v'),

113
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we have {v € K;w(v) < i,} = {ng—1 + 1,761 +2,...,£ — 1} and therefore
£—mnp_1—1=1,—pand
j\g—Ak—l—("—;l—nk_l +p—iy)e= (L’—l—nk,_l +u~iﬂ)e=0.

Since A is the i,-th component of (5\1,,(1),. .. ,j\w(n)), we can conclude that
@(Drr)(Ak + ng—1€) vanishes at w(Ae + p¢), which is equivalent to the condition
that w(Dyr)(Ak +nk—1€) vanishes at w.Ag. Hence if A is generic, w(Ié ()\)) vanishes
at w.\e for w € W(0O) and therefore for any A € CL because of the continuity. In
particular, dim S(a)/w(I§ ()\)) > #W(0O) for generic A and therefore for any A by
the same reason.

Since w(I(f) ()\)) are generated by homogeneous polynomials of (a, A, €) and [Ta,
Theorem 1] shows dim S(a)/w(I3(0)) = #W(0), we have dim S(a)/w(I5(N)) <
#W(©). Thus we can conclude dim S(a)/w(I§(\)) = #W(0©) and the theorem
follows from this. In fact, the last claim is clear because Ig()) is W-invariant. O

3‘. Generalized Verma modules

~In this section we study the necessary and sufficient condition on A € C¥ so
that
(3.1) J&(A) = Anng (M§(N)) + J*(Ke)-
Note that it is clear by the definition that J§(X) D Anng (M§(X)) + J¢(Ae) and
(32)  Amg (M5(V) = Anng (US(s)/(Anng (M5(V) + J(Re)):
In general it is proved by [BG] and [Jo} that for u € a* the map
(3.3) {I; I is the two sided ideal of U(g) with I > Ann (M (u))}
I I+ J(p) € {J; J is the left ideal of U(g) with J D J(u)}
is injective if p is dominant: '

(3.4) QM ¢ {—1,-2,...} for any positive root o for the pair (n,a).

(@, a)

Moreover the map is surjective if p is regular, that is,

(3.5) (u+ p,a) #0 for any root « for the pair (n,a)

and dominant. Hence in our case with € # 0, (3.1) is valid if Ae + p© is regular and
dominant:

(3.6) Aj— A ¢ {0,—€,—2¢,...} for 1 <i<j<n.

For y € a* and D € U<(g) let v(u; D) denote the unique element in U¢(1) with
D = v(p; D) mod J¢(p). For a basis {R;} of an ad(g)-invariant subspace V' of
U¢(g) we note that

3.7) V(Y PiRy) € > U(m)y(w; R;) for Pj € U(g).



115

Let R_ denote the set of weights of U¢(n) with respect to a. Then

R_:{Zmiei; miEZ, Zm,=0 and m12m222mn}\{0}

=1

Suppose R; € U¢(g) are weight vectors and U¢(g)V +J¢(n) # U(g). Since y(y; R;)
has the weight which equals that of R;, v(u; R;) = 0 if the weight of R; is not in
R_. Moreover since F;;41 has a maximal weight e; — e;4-1 in R_ for any integer ¢
with 1 <4 < n,

(3.8) Euy1 €US(g)V +J°()\) & CEjqy = > Cy(p; R;)-

the weight of R; = e; —ej11

The key to studying the condtion for (3.1) is the following argument used in
[02, proof of Theorem 5.1].

Fix positive integers k, ¢ and j satisfying 1 < k < L and nx_1 <1 < j < ng.
Let I = {im,...,%1} and J = {jm,...,Jj1} be a set of positive numbers such that

| 1<y <ig <o <ipy <,
(39) by = Ju if v 7& ev
g =1<jo=3 <ipp1

with a suitable 1 < ¢ < m. Define non-negative integers

(1

m'  =n-—m,
a; =n}—#v;nj—1 <i, <ngl,
(3.10) ga; =nj—#{v;i, <nj}=a1+---+aj}, a0 =0,
b =#{v;np <i, <i},
b =4y J <ty < mp}.
Then
l1<ap=m'<n-2,1<a,=n,—-b-0b" -1,
(3.11) kR

OSag-gn;-—(Skj, Ogbgi—nk_1+1, OSb'Snk—j

and we have

m

det *(z; Ery) = H (x—E;, — (v—1)¢) - B
v=4F+1
e—1
(3.12) . H(z —F;,, — (v —1)¢) mod U¢(g)n

L (
= LFIPU( )E;- mod J¢(Ag)
S[J(CB)
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by putting

; n;-—a'.)
(3.13) P‘}J(:E) = (:1: - )‘j - (nj—l - a’j—l)e)( -

sry(z) =2 — A — (ng—1 — ag—1 + b)e.
Hence it follows from from (2.17) that
dp—1 ) € P L 1 N J€ R
10§ e, 2 {CF5 mod U it TTLury (o) ¢ Claloraa)dia)
= 0 mod J¢(A\) otherwise.

Since (n;-—a;-—aj_l)—( ;—m') =m'—a; > m'—ar, > 0, we can define polynomials

_ J

Prs(@) = (@ — X _p;";(_xl)e)(n;_m,) :
Then the condition H§=1 Py (x) € Cla]srs(z)dS, (z) is equivalent to the existence
of 7 with
(3.15) 7 5(z) € Cla]srs ().
If € # 0, the condition (3.15) is equivalent to the condition that v is an integer
satisfying
(3.16) 0<v<n;—a;—1 and (v <aj_y or I/Zaj_l-i—n;-—m')
by denoting
(3.17) Ak + (k=1 — ag—1 + b)e = Aj + (nj—1 — aj_1 + V)€
If e =0, it is equivalent to
(3.18) Aj =X and a) <m'.

Put I = {n,n—1,...,nk+1,4,m_1,m—1—1,...,1} and J = {n,n—1,..., 0+
1,7,Mk—1,%k—1 — 1,...,1}. Then :
m =n,—1,b=b0=0a,=n,—-1,a;=0andn} —a; —1=mn;—1if j #k.
Suppose (3.15) holds. Then j # k because p¥;(z) = 1. Since

{aj-1~—1=—1<0 and aj_1 +nl—m' =n}—ng +1 if j <k,

aj_1—1=mnp—2 and aj_1 +nf—m' =n;>n}—a; -1 ifj>k,
the condition (3.16) is equivalent to
{max{O,n}—n}c+1}§V’§n;-—1 if j <k,
1—n§c§u’§min{ng—n§c,—l} ifk<yj

with
v if 7 <k,
v—n+1 ifk<j.

Vi=w—aj_1)— (b—ar-1) = {
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Hence (3.15) is equivalent to the condition (cf. Remark 2.14)
(3.19)

AkOA; #0, A& Ay and (pe Ay, i € A\ Ay = (4 = p)(k—3) > 0)

with A; = {A; nim1 <v <mn;}={\+ ((1/ -1)- ”'2”1)6; n;_1 <v<n;}
if e #0,

Aj=Xgand n >1 ife=0.

Thus we have the following theorem. » 7
THEOREM 3.1. i) Fiz k with 1 < k < L. Recall m& = >, | <i<n. CEjj.
ng—1<j<ng
Then :
(3.20) Anng (M§(N)) + J¢(Xe) Dm& N#

if and only if (3.19) does not hold for j =1,..., L.
i) The equality (3.1) is valid if and only if (3.19) does not hold for j =1,...,L

and k =1,..., L, which is equivalent to the condition

(3.21)
min A; > min/_\j or max A; > max]&j or i NA; =0 or Ay =4, if €e#0,
Ai #Xjormp=mnl=1 if €e=0,

for 1<i<j< L.

Here A; = {Reu; p € A;} ete. In particular (3.1) is valid if the infinitesimal
character of M&(X) is reqular.

Proof. We have only to prove that (3.20) is not valid if (3.19) holds for a
suitable j. Suppose there exists j = j, which satisfles (3.19). Fix such j, and
continue the argument just before the theorem. Put j =1 + 1 and suppose (3.15)
does not valid for j = k. Then ife # 0, v = b in (3.17) and since 0 < b < nj —aj —1
and (3.16) is not valid with 7 = k, we have

(3.22) ap—1 <b<ap_1+ny—m and m' >mn) ife#0.

On the other hand, if € = 0, we have a}, = m’ because a;, < ar, =m'.

First consider the case when j, < k. Put £ = Ap+ng_1—Xj, —Nj,—1,1 = p—1+1
and j =i+ 1. Then b =0. If € # 0, ag—1 = a;, = 0 because of (3.22) and it follows
from (3.19) that

0<fL<mni and £+ny >nj .

In this case putting j = j, in (3.17) we have v = £ and then 0 < v, n; —n; +1 <wv
and v < n’; —1 in (3.16), which implies 71 (x) € Clz]srs(z). We have this relation
L=l —m/)y=m'—a} >
m' — (m/ —a}) = a}, > 0. Thus we can conclude r}; =0 mod J¢(Xe) if the weight

. X _ 30 () — !
also in the case when € = 0 because degp}’ (z) = n;,—a
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of r}.J is e — e;.1. Note that the weight of r‘gil,---,im}{jl,---ajm} is Y. e, — €j,.
Hence F5;,; ¢ Anng (M§())) + Jé(Ae) because of (3.8).

Lastly consider the case when k < j,. If € = 0, the same argument as in the
case when j, < k works and therefore we may assume € # 0. Put £ = X; +n;, 1 —
M — Ni—1, © = ng — 1 and j = ng. Then similarly we have |

1<{<ny, nk<£+n , b =0,a,=n,—-b-1

and a = a) + ag—1 > (N, —b—1)+ (b —np +m') = m' — 1 by (3.22). Since
a < ar, = m/, we have ax = aj, = a;j,—1 = m' and a;-a = 0. Putting j = j, in
(3.17), we have v = —f — ag—1 + b+ aj,—1 = aj, — £+ b =nj — £ —1 and therefore
0<vandv<nj —1=mnj —a} —landv <ny—1<m'=aj,— in (3.16). Hence
7% (x) € Clz]srs(z) and thus By, & Anng (Mg(A)) + J¢(Xe) as in the previous

case. U
EXAMPLE 3.2. Suppose n =3, © = {2,3} and A = (A1, A2). Then

d(z) = 1, d5(z) = 2 — Ar, d5(e) = (& — A)(@ — A — &)z — o — 2),

JMe) = Y. U@)E;+U(@)(Er —\)+U(g)(E — A1) +U(g)(Es — M),
3>i>j>1

J&(A) = J¢(Ne) + U (g)Era.

Since

DIJ("B) ( 151 (:1, - 6) 11]1) ( i2Ja $6i2j2)

- (Eizjl - (’B - 6) szl)( 172 ‘T(s'iljz)
for I = {i; > 45} and J = {j1 > jo}, we have

(By — A1+ €)(By — A1) — EoFo =0,
(B3 — A +€)(Fy — M) — Eazlizo =0,
— A1) — B33 =0,

1y (M) =

Digoyqay (A1) =

Di1yga1y (M) = (B — AL+ €)(E)

D{y1yy323(A1) = EsEra — E13(Ey — A1) = EgsEno,

(3:23) ¢ Dioiyqay (A1) = Eas(Er — A1) — EisBa =0,
D{g0y4013(A1) = Eso By — (B — A +€)E3 =0,
Digopay(A1) = (Bz — A+ €)Ey1 — Eg By =0,
Diz1y213 (A1) = Esa(By — A1) — E1aFs1 =0,

\DE31}{32}()‘1) = (B3 — A1 + €)E19 — E13FE3y = (A2 — A1 +€) Era.
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Here the above = is considered under modulo J¢(Ag). Note that

(3.24) AnnG(M(QE(A))z Z Ue(g)D§i1i2}{j1j2}(/\1)
3>i1 >i>1
3>71>7422>1

+ D, Ue)(D - w(D)Xe)).
DeUs<(g)“
Hence if A\; # A2 + € which is equivalent to (3.21), we have (3.1).
Suppose A\; = Az + €. Then since ad(p)(Es2E12) C J¢(Ae), we have

J6(A) =U(n)E12 & J¢(Xe)

2 Anng (Me(X)) + J¢(Xe) = US(R)Ea3E12 @ J(Xe) 2 J*(Ne).
If € # 0, the above inclusion relation gives a Jordan-Horder sequence of M¢(Ag)
and

(3.26) J&(N)/(Amng (Mg(A)) + J¢(Ae)) ~ M&/(X)

with @ = {1,3} and X = (A1 + €, A\; — €). Note that p¢ = (—¢,0,€), Ao + p¢ =
(A1 — € A1,A1), Aor — de = €(er — e2), (1,2).0e = A and Anng (M§(N)) =
Anng (Mg, (X)) under the notation in Remark 2.14. Here Ann (Me(})) is the
unique two-sided proper ideal of U (g) which is larger than U(g)(J(Xe) N U(g)€).

(3.25)
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