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Theoretical analysis of stress distribution in sand piles: the
result of an exactly solvable model and its controversial points

Hisao Hayakawa (&-JI[1i55)

Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto,
606-8501, Japan (FHSKF AR - BREFFEH)

The current understanding on the sandpile problem is reviewed. In particular, the
current development of exactly solvable continuous models is summarized. A try to get
stress distribution based on an oriented stress linearity (OSL) model is explained, but its
result except for the fixed principal axis ansatz does not work well.

1 Introduction

Physics of dry, cohesionless granular matter is one of challenging subjects in condensed matter
physics[l, 2, 3]. In particular, many papers on static stresses of granular matter from different
approaches have been published. Nevertheless, there is few consensus on what is the basic
mechanism involved in it. One of characteristic phenomena for static granular matter is the
dip formation of sand piles[4, 5] Namely, the pressure measured at the bottom of sand piles
has the minimum at the central part, and it has the maximum far from the center. The dip is
reproducxble even in two dimensional situations from simulations.[6, 7, 8, 9, 10]. There is an
experimental paper to show the dip formation in a quasi two-dimensional 51tuat10n[5].

To construct a statistical mechanics of discrete elements is a challenging approach, but this
approach will encounter the dlfﬁculty how to obtain a closure form of the correla.tlon functions
at present[ll] Thus the most of theoretical arguments are based on the continuum mechanics.
Amongst many papers Edwards and Oakeshott[12] gave -an explanation of the dip formation
with the introduction of a model in which the force is propagated w1th a fixed angle from the
slope. Later, Wittmer et al. [13] have revised Edwards’ model as a continuum model for the
stress tensor with the aid of the Fixed principal axis (FPA) ansatz where the major principal
axis MAPA) is inclined .with a fixed angle They succeeded to explain the dip formation and
have published series of papers[14] based on the idea of FPA or its generahzed model, the
oriented stress linearity (OSL) model in spite of the strong criticism by Savage[6]. The most
controverelal part of FPA is that the symmetric axis becomes a singular line which is the source
of MAPA, though the smgularlty causes the archlng of the stress field. '

On the other hand, the classical theory of granular continuum mechanics assumes a consti-
tutive relation of the Incipient Failure Everywhere (IFE) where the material is everywhere just
on the point.of fallure[15] Although the IFE model is regarded as a standard one in the engi-
neering llterature, its va,hdlty is not clear In fact, the static (active) mode of the IFE model
cannot describe the d1p formatlon and a recent 31mulat10n by Inagakl[lﬁ] clearly demonstrates
that the material does not satlsfy the Mohr-Coulomb yield criterion everywhere. It is, however,
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worthwhile to indicate that MAPA and the minor principal axis (MIPA) which is perpendicular
to MAPA are not straight lines but curved lines due to the effect of boundaries in the IFE
model[15, 17]. :

Numerical simulations of the sand piles are helpful to understand the behavior of the stress
field. For example, Luding(8] analyzed sand piles based on the distinct element method (DEM).
The initial configurations of his simulation are almost in regular lattice structure. His results
are summarized as follows: (i) For monodisperse particles, he found that the distance between
two center particles in the lower-most row is an important parameter. If the distance is a
little smaller than the regular value, he observed distinct dip in the vertical stress. (ii) The
arching can be produced by a defect (absent hole of a particle) of the lattice structure. (iii) For
polydisperse particles, he may find the dip after the average of 100 runs, though the fluctuation
is very large. :

Oron and Herrmann[9] performed the exact calculation of force networks in. regular piles.
They obtained a wide variety of results. Arching can occur by pushing corner particles, where
the clear dip can be observed. However, in many cases without external constraints, arching
is difficult to be observed but small dips can be observed. They also confirm the sensitivity of
results to the boundary condition at the base of piles. ‘

Inagaki[16] performed DEM to construct sand piles under the realistic situation: Particles
(circular ) are poured from the top of piles. Her result suggests that the dip formation seems
to be unstable for circular particles. In fact, Matuttis et al.[10] stressed that circular particles
cannot produce stable dips, but to adopt polygonal particles is a reasonable way to reproduce
dips and to simulate realistic sand piles. Note that real sand particles have random oriented
flat: surfaces. The contact between flat surfaces is stable and sticky to support piles. Thus,
metastable structure of sand piles with polygonal particles is more stable than that with circular
particles. At least, it is easy to imagine that arching'is easily achieved by the polygonal particles:

In this'paper we try to discuss whether arching is needed for dip formatior by the introduction
of a simple continuum model. The model (at present) is similar to FPA, where the MAPA ‘and
MIPA are straight lines outside the central region, while the symmetrlc axis is not the singular
source of MAPA and MIPA. In the next section, we will survey the outline of our idea. In
section 3, we will propose a new OSL model '

2 'The outline of our idea

-'Forisimplicity we restrict ourselves-to two dimensional cases: the governing equation.is'given

V.o =pg; d~_<“’“""”), e

Ozx Uzz

where 0, = 0,4, £ and z represent the horlzontal and the vertlcal coordlnate and Tg (0 9)
with the gravitational acceleration ¢g. Note that the origin-is assumed to be the top of sand
pile, and the pOS1t1ve direction of z coordmate is downward. We assume that the densxty p is
i constant and adopt ‘the ‘unif of pg = 1 and the helght of sand p11e is 1. We cannot solve
(1) without introducing a constitutive relatlon The conventlonal elastic theory assumes tha.t
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the strain is small and the resulting equations become elliptic, but the most of granular models
adopt the constitutive relation which lead to a set of hyperbolic equations.

As already introduced the classical constitutive relation is the Mohr-Coulomb yield condition.
This condition may be reasonable, because sand piles are easily mobilized by adding very small
forces. The Mohr-Coulomb condition satisfies that the ratio of the shear stress to the normal
stress on crack planes is tan ¢y where ¢¢ is the maximal internal friction angle or the angle
of maximum static friction constant[15]. Another simple constitutive one is Janssen’s one (or
BCC model) which satisfies 0, = Ko,, where K is the coefficient of earth pressure[18, 21].
When we adopt Janssen’s condition we obtain the one-dimensional wave equation for the stress
variables 0., 0,, and 0;,, where z can be regarded as the time variable. Janssen’s condition is
widely accepted in powder technology , civil engineering and soil mechanics, and is sometimes
regarded as equivalent one to the Mohr-Coulomb condition[15]. However, this statement is only
valid when the effects of boundaries can be neglected. Similarly, the FPA model assumes a
mixed constitutive equation o, = 05, — 2tan ¢|o,.|. FPA is also reduced to the wave equation
for combination of stress variables[13]. -

The studies introduced above may underestimate the effects of boundaries, because the most
of MAPA (or MIPA) may be a curve line[17]. For such the general situation, at first, let the
stress tensor be diagonalized as '

0
02

cosf —sinf
) ). @)

g1
= R(0
o =R )(0 sin0 cos @

)R(—e) . R(O) = (

where 01, 02 and @ are respectively the major principal stress, the minor principal stress (o1 >
02) and the angle between MAPA and z axis. In general the angle 6 and ¢ (the internal
friction angle) are the functions of position. It becomes a constant when the boundary effects
are negligible. Thus, the independent variables of this problem is the mean principal stress
0m = (01 +02)/2 and € or ¢ supplemented by a suitable constitutive relation. Using oy, 8 and
¢, £q.(1) can be rewritten as

Oz {om (1 + cos fsin #)} + 8,(0m sin Ppsin 20) = 0 ' (3)

and S . :
Oz (0m sin ¢psin20) + 0,{om(1 — cos20sin¢)} =1 (4)

Equations (3) and (4) supplemented by a suitable constitutive equation is the basic equation of
this problem.
One of the most important: characteristics of eqs.(3) and (4) is its hyperbolictity. Actually,

introducing a new variable
¥(z,2) = amsing, (5)

by eliminating oy, from (3) and (4) we obtain
20,0, (¥ cos 20) + (87 — 92)(¥sin26) = 0. (6)

Regardiﬂg this equatioﬁ as a partial differential equation of ¥, it is easy to obtain its charac-
teristic equation is B 7 v
| ' A2 —2csc20A-1=0. ‘ (7)
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The roots of this equation A = A1 are obtained as
Ay =—cotf, A_ =tand. (8)

Thus, if we know the constitutive equation for 6, eq.(6) is a standard linear partial differential
equation (PDE). Even if we adopt a constitutive equation for ¢, @ becomes a function of ¢ and
om- In this case, as long as 6 is real, its hyperbolicity is invariant.

The most of conventional or standard PDE models of granular continuum mechanics belong to
hyperbolic equations. For example, Janssen’s one and FPA[13] are reduced to wave equations.
The hyperbolicity itself has a serious weak point to describe sand piles, because any hyperbolic
equation cannot contain the boundary condition in ’future’, i.e. the model does not include
the effect of the plate to support piles. It is obvious that the boundary effect is important, in
~ particular, in granular materials. Actually, Janssen’s law is caused by the boundary effects[18].
If we adopt Mohr-Coulomb condition it is not difficult to show the bent of MAPA and MIPA
as a result of the boundary. ,

In addition, there is a gap between granular mechanics based on a set of hyperbolic equation
and conventional theory of elasticity which can be described by a set of elliptic equations. Thus,
e.g. Cantelaube et al.[19] assume that granular matter is at critical stress state which satisfies
Mohr-Coulomb condition in the outer region but obeys the conventional theory of elasticity
in the inner region. Quite recently, with the aid of the master equation of the probability of
finding an oriented force chain of intensity in a direction around a point, Bouchaud et al.[20]
shows that hyperbolic feature is unstable for the chain splitting mechanism, and pseudo-elastic
behavior is recovered. ‘

Thus, we do not have to insist on the hyperbolicity of granular continuum mechanics. Here,
. however, we keep to assume the hyperbolicity because (i) the most of conventional approaches
assume it, (ii) we can draw MAPA and MIPA[8, 9], which means that the diagonalization of
the stress tensor in eq.(2) is possible, and (iii) to summarize what we can conclude from the
conventional view point is important.

3 anew OSL model

3.1 General Framework

As introduced in the previous section, there are many objections to the oriented stress linearity
(OSL) ansatz which is generalization of FPA model. Nevertheless, the simplest choice is the
OSL ansatz, because the problem is reduced to a linear PDE. In this section, through our new
OSL model we summarize the current understanding on the OSL closure.

In an OSL model, the functional form of # between MAPA and the plate is assumed to be
given. As a result, egs.(3) and (4) become a closed set of equation for o,, and ¥ = o,,, sin ¢ as

0z0m + 02(¥ cos 26) + 9,(¥sin26) =0,
82 (¥ sin26) + 8,0 — 8,(¥ cos29) = 1. 9

Here we note that 6 is not always a constant as in FPA model even in a generalized OSL model
but can be a function of position. Thus, it is possible to create a lot of variations from FPA.
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Here, we introduce a simple OSL model which does not have any singularity inside the
sandpile. Of course, if there is an arch structure, it is easy to get the dip and there remains
the singularity along z axis. While the arch structure is not stable for spherical (or circular)
particles, where the distinct dip may disappear. Through the construction of the solution of
this problem we may be able to clarify what the point is.

Let us consider a two-dimensional sand pile whose surface is flat and its top is located at the
origin. To describe such the pile it is convenient to introduce the polar coordinate (r, ), where
r is.the distance from the top (the origin) and ¢ is the angle variable. Note that ¢ satisfies

™

where 6 is again the angle between MAPA and z axis. Now, we assume that the surface of
the sand pile satisfies the Mohr-Coulomb condition. In this case, the slope is equivalent to the
maximal friction angle ¢o or the angle of repose. As a result, it is easy to show that the angle
between the surface and MAPA should be ¢g = 7/4 — ¢o/2[15]. If we adopt an OSL model,
tvhu.s, MAPA is assumed to keep the angle 0y = 7/4 + ¢o / 2 with the horizontal axis. Such the
situation is the same as that in FPA model. The variables ¥ and o, are thus governed by

Og0m — 8in g0, ¥ + cos ¢, ¥ = 0,
c0s ¢o0p ¥ + 8,0, + sin ¢, ¥ = 0. (11)

However, inside the cone ¢ < g = 7/4— ¢g/2, the line with the angle 6y cannot hit the surface.
So if the angle 4 is assumed to be a constant, z axis must be the singular source of MAPA. This
model is nothing but FPA model. '

- To remove the singularity along the axis of symmetry (or z axis in our set up) we adopt the
following model. We ‘assume that the MAPA is emitted from the origin-in a radial manner if
|} is-less than ¢g. Thus; eqs.{3) and (4) are reduced to

Oz0m — 0z(¥ cos 2¢p) + 3;(‘? sin Zp) =0
0: (¥ sin2¢) + 0,0, + 0,(¥ cos2p) =1 (12)

where @ satisfies
tangp = —. LT T (13
| np=- (13)
Note that this ‘choice is not unique but the simplest if we do not have any singularities in the
sand -pile: : : S ' LT . Lo L

3.2 Inner so:lut,iogxil ) '

“In this subsection we Construct the inner solutior for || < ¢o'= 7/4— ¢o/2. - We adopt
the polar coordinate to describe the .system, because r and ¢ satisfy the equation for the
characteristic coordinate

Oz A0 =0,  Oir+-Ap0,r =0. BT o (14)
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Then, eliminating oy, from (12) we obtain a regularized equation for V(r, o) as

1 . ,
0, (0, ¥ + ;&p\I/) = 0. (15)
It is easy to obtain the general solution of eq.(15) as
g .
W(r,p) = fr) + 242, (16)

where f and g are arbitrary functions at present. ‘
Substituting (16) into (12) and with the simple modification, we obtain

1 g'(¢) :
=0,0m — = —sing (17)
and 5
Orom + fl('r) + ;f('r) + %(fg’;) = Cos p. (18)
Thus, we obtain the solution of (17) and(18) as
om(r, ) = h(r) + rcosp + _QL;’L),~ (19)
where h is an undetermined function, which satisfies
2
Wo)==f) =250 (20)

We note the followings about the inner solution. (i) ¥ ~ 1/r is the most natural r dependence
of ¥ but ¥ = f(r) can be the solution. (ii) There are no equations to determine g(¢).

3.3 Outer solution

Now, let us discuss the outer solution for |p| > ¢g. The characteristic coordinates should

satisfy e n
3za+u—3za =0, 5x/3+#+3z/3 =0, (21)
o pe=ttan(T2 2 T Ty
. T

On the other hand, « a.nd B are given by the rotational transform of T and z, where the
‘totational angle is 6y = 7/4+ ¢o/ 2. Thus, ‘we obtain . '

a = sinfj(cotboz+2), . v
ﬂ = c0s00( tan00x+z) ) (23)

Wlth the help of the characterlstlc coordmates we obtaln the standard form of PDE as
a%w_o S @@
It is easy to obtain the general solutlon of (24) | o |

¥(a, B) = f(a) + §(B), (25)
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where f and g are arbitrary functions.
With the help of (25) eq.(12) can be rewritten as

Bo0m + f(a) = % cos ¢ sec Oy (26)
and 1
dgom — 7' (B) = 5 €08 ¢ csc by. (27)

Thus, we can solve oy, along MAPA and MIPA separately.
In the outer region, MAPA and MIPA hit the surface. The boundary condition at the surface

is the force free condition as .
om(a, B) = 0. (28)

Note that the surface is represented by the line

B =—cotbpa, 6y = % + %—0—. 7 (29)
Thus, f and g can be determined as

fla) = Ssindo, (6) = & singosecty (30)

As a result, o, and ¥ are respectively given by

o+ tanyf

om(a, ) 20008 sy,
U(a,B) = gl;mMCSCBOSinqﬁo, (31)

which means that the outer region satisfies the Mohr-Coulomb condition everywhere.

3.4 Matching

The outer solution and the inner solution should be matched at the boundary. The boundary
is represented by § = 0 for the outer region and by ¢ = g = £7/4 — ¢o/2. Let the suffix
(+7/-) put the outer/inner solution. Thus, the outer solution should have

. ot (a,0) = %csc 0y, ¥ (a,0) = %csc 6o sin ¢yg. ‘ (32)
- On the other hand, the inner solution.is given by .
om(r,po) =cr+reospy, ¥ (r,p0) = ér, (33)

where ¢ and € are constants to be determined. Thus, to match the outer solution with the inner
solution, we should assume that f(r) and h(r) are linear functions of r.
From (32) and (33) with 7 = « on the boundary line ¢ and ¢ must satisfy

sin ¢0

Z= —c. 4
2sinfy’ ¢ ¢ (34)
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However, this problem is over-complete. In fact, from eq.(20) we must have

i = —%c. (35)

It is obvious that (34) is contradicted with (35).

We may guess that this mismatch is intrinsic, because the inner solution prefers 1/r behavior
but the outer solution should be proportional to the distance from the top. This contradiction
cannot be absorbed if we assume that the singular top is out of the sand pile. It is possible
to construct an OSL model when we assume that the boundary near the top is represented a
parabolic curve. In this case, however, analytic exact solutions cannot be constructed.

In any case, it is not difficult to show the following. If we adopt (35) we obtain

sin ¢y :
©T “6sindy . (36)
Both (34) and (36) lead to the negative c. With the aid of o,, = 0., + ¥ cos 2¢ it is easy to show
do,,/dz is proportional to ¢ and the positive definite function of z. In addition, do, /dz =0
at £ = 0 (the symmetric axis). Thus, this model without defects does not have any dip.

4 Discussion

In this paper, we introduce a try to construct a solvable model of sand piles. Unfortunately,
this try is not successful, and we encounter the contradiction about the solution. However, this
fault suggests that the dip may not be stable without defects of the stress field or the strong
boundary effects. ‘

Even when we can construct the exact solution of a toy model, the result may not be inter-
esting. To discuss how to produce defects of the stress field as a function of history and the
boundary is more important and exciting. In this sense, we may expect quite recent try by
Sasa[22] to emphasize the historical structure of sand piles. For this purpose, we may need to
construct a simplified model including effects of defects and history of the construction of the
sand pile.

The author thank S. Inagaki, S. Sasa, K. Ichiki, and H-G. Matuttis for valuable discussion.
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