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1 Introduction

The collision of particles with the internal degrees of freedom are inelastic in general. The

inelastic collisions are abundant in $\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}[1]$ . Examples can be seen in collisions of atoms, molecules,

elastic materials, balls in sports, and so on. In particular, recent extensive interest in granular

$\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{S}[2]$ makes physicists to recognize fundamental roles of inelastic collisions.

The impact of macroscopic materials is characterized by the coefficient of restitution (COR)

defined by

$e=-v_{r}/v_{i}$ , (1)

where $v_{i}$ and $v_{r}$ are the relative velocities of incoming and outgoing particles, respectively. COR

$e$ had been believed to be a material constant, since the classical experiment by $\mathrm{N}\mathrm{e}\mathrm{w}\mathrm{t}\mathrm{o}\mathrm{n}[3]$ . In

general, however., experiments show that COR for three dimensional materials is not a constant

even in approximate sense but depends strongly on the impact $\mathrm{V}\mathrm{e}1_{\mathrm{o}\mathrm{C}}\mathrm{i}\mathrm{t}\mathrm{y}[1,4,5]$ .

The origin of the dissipation in inelastic collisions is the transfer of the kinetic energy of the

center of mass into the internal degrees of freedom during the impacts. Systematic theoretical

investigations of the impact have begun with the paper by Kuwabara and $\mathrm{K}\mathrm{o}\mathrm{n}\mathrm{o}[6]$ . Taking into
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account the viscous motion among the internal degrees of freedom, they derived the equation of the

macroscopic deformation

$\ddot{h}=-kh^{3/2}-\gamma\sqrt{h}\dot{h}$ (2)

in a collision of two spheres, where the macroscopic deformation $h$ is given by $h=R_{1}+R_{2}-|\mathrm{r}_{1}-\Gamma_{2}|$

with the radius $R_{i}(i=1,2)$ and the position of the center of the mass $\mathrm{r}_{i}$ of $i$ th particle. $\dot{h}$ and

$\ddot{h}$ are respectively $dh/dt$ and $d^{2}h/dt^{2}$ . $k$ and $\gamma$ are unimportant constants. The first term of the

right hand side in $\mathrm{e}\mathrm{q}.(2)$ represents the Hertzian contact $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{C}\mathrm{e}[7,8,9,10]$ and the second term is the

dissipation due to the internal motion. Later, Brilliantov et $al.[11]$ and Morgado and $\mathrm{O}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{m}[12]$

derived the identical equation to $\mathrm{e}\mathrm{q}.(2)$ based on the different methods. Thus, $\mathrm{e}\mathrm{q}.(2)$ is plausible in

the quasi-static collisions of two spheres.

On the other hand, Gerl and $\mathrm{Z}\mathrm{i}_{\mathrm{P}\mathrm{P}^{\mathrm{e}}}1\mathrm{i}\mathrm{u}\mathrm{S}[13]$ performed tbe microscopic simulation of two-dimensional

collision of an elastic disk with a wall. Their simulation is mainly based on the mode expansion of

an elastic disk under the force free boundary condition. Then, they analyze Hamilton’s equation ;

$\dot{P}_{n,l}=-\frac{\partial H}{\partial Q_{n,l}}$ ; $\dot{Q}_{n,l}=\frac{\partial H}{\partial P_{n,l}}$ (3)

under the Hamiltonian

$H= \frac{p_{0}^{2}}{2M}+\sum_{n,l}(\frac{P_{n,l}^{2}}{2M}+N\frac{1}{2}M\omega^{2}n,\iota Q_{n}^{2},l)+V_{0}\int_{-\pi}\pi//22d\phi e-ay(\phi,t)$ . (4)

Here $Q_{n,l}$ and $P_{n,l}$ are respectively the expansion coefficient of the elastic deformation and the

canonical momentum, where $n$ and $l$ are the mode indices. $y(\phi, t)$ is the shape of the elastic disk

in the polar $\mathrm{c}\mathrm{o}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e}[13,14]$. $M$ is the mass of the disk, and $p_{0}$ satisfies $\dot{p}_{0}=M\ddot{y}_{0}=-(\partial H/\partial y_{0})$

with the position of the center of mass $y_{0}$ . $V_{0}$ and $a$ are parameters to express the strength of

the wall potential and $\omega_{n,l}$ is the angular frequency of the $(n, l)\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}[13]$ . Their results indicate

that COR decreases with the impact velocity, which strongly depends on Poisson’s ratio. Since the

relation between quasi-static theory of $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}[6,11,12]$ and their microscopic $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[13]$ is not

clear, we have to clarify the relation between two typical approaches.
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In this letter, we will perform the microscopic simulation of the impact of a two-dimensional

elastic disk with a wall. We introduce two methods of simulation; One is based on the lattice

model (model A) and another is continuum model (model B) which is identical to that by Gerl and

$\mathrm{Z}\mathrm{i}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{u}\mathrm{S}[13]$ . Through our simulation, we will demonstrate that (i) the effect of temperature (the

initial internal motion) is important, (ii) COR is suddenly dropped by the plastic deformation which

is enhanced by the initial temperature, and (iii) the continuum model (model B) does not recover

the quasi-static $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{S}[6,11,12]$ . Part of this letter can been seen as a conference report.[14]

2 Our models

Let us explain our model. In both models, the wall exists at $y=0$ , and the center of mass keeps

the position at $x=0$. The disk approaches from $y>0$ region and is rebounded by the wall. The

disk in model A consists of some mass points (with the mass $m$ ) on the triangular lattice. All the

mass points are combined with linear springs with the spring constant $\kappa[14]$ . In the limit of large

number of the mass points, this disk corresponds to the continuum circular disk with the Young’s

modulus $\mathrm{Y}=2\kappa/\sqrt{3}$ and Poisson’s ratio $1/3[15]$ . The position of each mass point of model A is

governed by the following equation:

$m \frac{d^{2}\mathrm{r}_{p}}{dt^{2}}=-\kappa\sum^{6}(d_{0}-|\mathrm{r}_{p}-i=1\mathrm{r}i|)\frac{\mathrm{r}_{p}-\mathrm{r}_{i}}{|\mathrm{r}_{p}-\mathrm{r}_{i}|}+yaV\wedge 0e^{-a}y_{p}$ (5)

where $d_{0}$ is the lattice constant, $\mathrm{r}_{i}$ is the position of the nearest neighbor mass points of $\mathrm{r}_{p},$ $m$ is the

mass of the mass points, $y_{p}$ is the $y$ coordinate of $\mathrm{r}_{p}$ , and $y\wedge$ is the unit vector of $y$ direction. As in

the simulation by Gerl and $\mathrm{Z}\mathrm{i}_{\mathrm{P}\mathrm{P}^{\mathrm{e}}}1\mathrm{i}\mathrm{u}\mathrm{S}[13]$ we introduce the wall whose potential is given by $V_{0}e^{-ay}$

in both models, where $V_{0}=a/2$ and $a=100/d_{0}$ for model A and $a=500/R$ with the radius of

the disk $R$ for model B. These choices of $a$ are aimed to simulate the collision between two identical

disks, though we have not extrapolated our results as $aarrow\infty$ . The number of the mass points is

fixed to 1459 in model $\mathrm{A}$ , since the rough evaluation of convergence of the results has been checked
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in this model. For the sake of simplicity and comparison between two different models, we only

simulate the case of Poisson’s ratio $\sigma=1/3$ . The numerical scheme of the integration of model A is

the classical fourth order Runge-Kutta method with $\triangle t=1.6\cross 10^{-3}\sqrt{m}/\kappa$ . For model $\mathrm{B}$ , we adopt

the fourth order symplectic integral method with $\triangle t=5.0\cross 10^{-3}R/c$ with $c=\sqrt{Y}/\rho$ for model $\mathrm{B}$

where $Y$ is Young’s modulus and $\rho$ is the density. In both models, we have checked the conservation

of the total energy.

The summary of differences between model A and $\mathrm{B}$ is as follows: (i) All of the mass points

in model A interact with the wall but, in model $\mathrm{B}$ , only exterior boundary has the influence of

the potential as in (4). (ii) Model A can have nonlinear deformations because of the directional

projection, but model $\mathrm{B}$ is based on the theory of linear elasticity. (iii) Model A can express some

plastic deformations, but model $\mathrm{B}$ cannot. (iv) Model A has the six folds symmetry but model $\mathrm{B}$

has the rotational symmetry.

3 Simulation

At first, we carry out the simulation of model A and model $\mathrm{B}$ with the initial condition at $T=0$

( $i.e$ . no internal motion). Figure 3 is the plot of the COR against the impact velocity for both

model A and model B. When the impact velocity $v_{i}$ is larger than 0. $1c$ with $c=\sqrt{Y}/\rho$ , the value

of COR of model A is almost identical to that of model B. Each line decreases smoothly as impact

velocity increases. At present, we do not know the reason why the significant difference between

two models exists at low impact velocity.

Second, we investigate the force acting on the center of mass of the disk caused by the interaction

with the wall in model B. In the limit of $v_{i}arrow 0$ we expect that the Hertzian contact theory can be

$\mathrm{u}\mathrm{s}\mathrm{e}\mathrm{d}[9,10,13]$ . The small amount of transfer from the translational motion to the internal motion

is the macroscopic dissipation. Thus, we can check the validity of quasi-static $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{a}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{s}[6,11,12]$

from our simulation by the difference between the observed force acting on the center of mass and
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Figure 1: Coefficient of restitution for normal collision of the Model A and Model $\mathrm{B}$ as

a function of impact velocity, where $c–\sqrt{Y}/\rho$ with the Young’s modulus $\mathrm{Y}$ and the

density $\rho$ .

the Hertzian contact force. The two dimensional Hertzian contact $\mathrm{l}\mathrm{a}\mathrm{w}[10,13]$ is given by the relation

between the macroscopic deformation of the center of mass $h$ and the elastic force $F_{el}$ as

$h \simeq-\frac{F_{el}}{\pi Y}\{\ln(\frac{4\pi YR}{F_{el}(1-\sigma^{2})})-1\}$ , (6)

where $Y,$ $\sigma$ and $R$ are the Young modulus, Poisson’s ratio and the radius of the disk without deforma-

tion, respectively. If $h$ is given, we can calculate the elastic force by solving $\mathrm{e}\mathrm{q}.(6)$ numerically. Since

in the limit of $v_{i}arrow 0$ we may replace $\mathrm{e}\mathrm{q}.(6)$ by $F_{el}\simeq-\pi \mathrm{Y}h/\ln(4R/h)[13]$ . Thus, the dissipative

force $F_{dis}$ in the two-dimensional quasi-static theory is expected to $F_{dis}\infty-\pi \mathrm{Y}\dot{h}/\ln(4R/h)$ .

Figure 2 is the comparison of our simulation in model $\mathrm{B}$ (1189 modes) with the Hertzian contact

theory (6). The result of our simulation at the impact velocity $v_{i}=$ O.Olc with $c=\sqrt{Y}/\rho$ shows

the beautiful hysteresis as suggested in the simulation at $v_{i}=0.1c$ in ref.[13]. This means the

compression and rebound are not symmetric. The hysteresis curve is still self-similar even at $v_{i}=$

$0.04c$ but the loop becomes noisy at $v_{i}=0.1c$ .

For the low impact velocity $v_{i}=$ O.OOlc, the hysteresis loop disappears but the total force
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Figure 2: The comparison of the Hertzian force in $\mathrm{e}\mathrm{q}.(6)$ with our simulation at $v_{i}=0.01c$

(a) and $v_{i}=0.001c(\mathrm{b})$ at $T=0$ in model B. at $v_{i}=0.001c$ and $T=0$ in model B.

observed in our simulation is almost a linear function of $h$ which is deviated from Hertzian contact

theory and quasi-static theory. In particular, the turning point at $\dot{F}=0$ is deviated from the

Hertzian curve. This deviation is clearly contrast to the quasi-static theory, because the dissipative

force in the quasi-static theory must be zero at the turning point at which $\dot{h}=0$ should satisfy.

This tendency is invariant even for the simulation of model $\mathrm{A}$ , though the data becomes noisy. The

linearity of the total repulsion force is not surprising, because $e^{-ay(\phi,t}$ ) in the potential term in

$\mathrm{e}\mathrm{q}.(4)$ can be expanded by series of $Q_{n,l}$ for very slow $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{C}\mathrm{t}[13,14]$. Although we cannot judge

whether the model itself is not appropriate for slow impact or the quasi-static theory is wrong, the

validity of the quasi-static theory cannot be supported by our microscopic simulation. However,

the contact time $\tau$ in the impact evaluated by the quasi-static theory [13] can be evaluated as

$\tau\simeq(\pi R/C)\sqrt{\ln(4c/v_{i})}$ is close to the results of our simulation of model $\mathrm{A}[14]$ . Thus, the relation

between dynamical impact theory and quasi-static elastic theory is not trivial.

We also investigate the impact with the finite temperature. The temperature is introduced as

follows: In model $\mathrm{A}$ , we prepare the Maxwellian for the initial velocity distribution of mass points,

while each position of the points is located at equilibrium. From the variance of the Maxwellian
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Figure 3: The relation between the coefficient of restitution and the impact velocity

rescaled by the critical velocity for each temperature. Curves are plotted in the log-log

scale. The temperature is scaled by $T_{0}=mc^{2}/k_{B}$ with the mass of the mass points

$m$ and Boltzmann constant $k_{B}$ . Note that the error bars are plotted only in the case

$T/T_{0}=0.03$ but is the same order even at other $T$ .
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we can introduce the temperature as a parameter. To perform the simulation, we prepare 10

independent samples obeying the Maxwellian with the aid of normal random number. In model $\mathrm{B}$ ,

we prepare samples in which the absolute value of each mode satisfies equipartition law correctly.

The sign of each mode is assumed to be at random. From the equipartition law we can introduce

the temperature as a parameter of simulation.

0.2
$\mathrm{x}$

0.18
0.16 $\mathrm{a}(\mathrm{T}\pi_{0})+\mathrm{b}$ $—-$

$0.14$ $—-$ .
$\mathrm{v}_{\mathrm{c}\mathrm{r}}/_{\mathrm{C}}0.12$

$\mathrm{a}=-].58$
$-$ . x-

0.1 $\sim\sim-\cdot \mathrm{x}_{-}-$ $\mathrm{b}=0.1422$

0.08 $-\mathrm{x}_{\backslash }$

$–\mathrm{x}_{-}$
$\mathrm{x}$

0.06 $\sim.-$

$\backslash$

0.04
0.02 0.01 0.02 0.03 0.04 0.05 0.06

$\mathrm{T}\pi_{0}$

Figure 4: The plot of the initial temperature and the critical velocity causing the plastic

deformation. $v_{cr}/c=a(T/T_{0})+b$ is the fitting curve line from the data between $T/T_{0}=$

$0.02$ and 0.05.

In this letter, we focus on the case of large impact velocity, though the results of the low impact

cases are $\mathrm{s}\mathrm{u}\mathrm{g}\mathrm{g}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}[14]$. For large impact velocity, we do not observe any definite temperature

effect in model $\mathrm{B}$ but we find drastic decreases of COR in model A. It seems that COR can be

on a universal curve when the impact velocity is scaled by the critical velocity above which COR

drops abruptly (Fig.3). The relation between the critical velocity and the initial temperature at the

intermediate impact velocities is shown in the Fig.3. The critical velocity seems to obey a linear

function of $T$ at the intermediate $T$ .
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(a)

(b)

Figure 5: (a) Plastic deformation of model A with $v_{i}=0.22$ at $T=0.03$ . The solid

circle represents the initial circle. The points are positions of the mass points after the

collision. (b) Two configurations are energetically equivalent.
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We investigate what happens in the disk above the critical velocity and find the existence of

plastic deformation of the disk (Fig. $3(\mathrm{a})$ ). Actually, there is no energy differences between two

configurations in Fig. $3(\mathrm{b})$ in model A which can occur after the strong compression during the

impact but cannot be released after the impact is over. It is known that the plastic deformation

causes the drop of $\mathrm{C}\mathrm{O}\mathrm{R}[10]$ , but our finding is something new, because (i) this process is excited by

the temperature and (ii) COR decreases more rapidly like $e\sim v_{i}^{-1.2}$ than that for the conventional

plastic deformation $e\sim v_{i}^{-1/3}[14]$ . The mechanism how to occur the plastic deformation is not clear

at present including the linear law in Fig.3.

4 Conclusion

We have numerically studied the impact of a two dimensional elastic disk with the wall with

the aid of model A and model B. The result can be summarized as (i) The coefficient of restitution

(COR) decreases with the impact velocity. (ii) The result of our simulation is not consistent with

the result of the two-dimensional quasi-static theory. For large impact velocity, there is hysteresis in

the deformation of the center of mass. For small velocity, there remains the inelastic force even at

$\dot{h}=0$ . $(\mathrm{i}\mathrm{i}\mathrm{i})$ There are drastic effects of temperature in both small and large impact velocity. (iv) In

particular, for large impact velocity of model $\mathrm{A}$ , we have found the abrupt drop of COR above the

critical impact velocity by the plastic deformation. The critical velocity of the plastic deformation

seems to obey a simple linear function of temperature.
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