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Abstract: We present a deterministic, oblivious, permutation-routing algorithm on the
two-dimensional, $n\cross n$ mesh of constant queue-size. It runs in $(2.334+\in)n$ steps for any
$\in>0$ . The best previous oblivious algorithm for permutation required roughly 2. $954n$ steps
as shown in SPAA2000.
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1 Introduction

The problem of routing packets, pieces of in-
formation generated by each processor, through
a network of processors is fundamental to the
study of parallel and distributed computation
since a number of applications require packets
to be routed to their correct destinations within
a reasonable amount of time. However, when a
packet move along its path, it is common that the
packet is delayed by other packets it encounters.
Occasionally, a severe delay comes from heavy
path-congestion of the critical region, which is
mostly due to the lack of the sophisticated path
design of a routing algorithm. Thus it has
been a common perception that oblivious rout-
ing schemes can only provide us with poorer per-
formance than adaptive routing schemes. Oblivi-
ous routing requires that the entire path of each
packet has to be completely determined only by
its source and destination before routing starts,
whereas adaptive routing allows contention res-
olution at each processor by changing the mov-
ing direction of packets dynamically. Actually,
several inefficiencies of oblivious routing are re-
ported [BH85, Kri91, BRSU93].

Nevertheless, oblivious routing has received a
large amount of support in practice because of
its simplicity and recent research in the area of
packet routing gave a significant progress: Iwama

and Miyano [IM2000] presented a $(2.954+\in_{1})n$

oblivious routing algorithm which can route any
permutation on the standard, two-dimensional
mesh including $n\cross n$ processors with a constant
$\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\dot{\mathrm{r}}$ of queue spaces for any $\in_{1}$ . Permuta-
tion routing, where each processor is a source and
destination of precisely one packet, is a standard
benchmark for routing algorithms. In this pa-
per we show that the $(2.954+\in_{1})n$ bound can be
further reduced to $(2.334+\in_{2})n$ for any positive
constant $\mathcal{E}_{2}$ and the queue space of every pro-
cessor remains bounded above by some constant,
i.e., a function of $\mathcal{E}_{2}$ . Thus our current bound
is some 16.7% above the optimal $(=2n-2)$ de-
termined by the network diameter. Most basic
differences compared to the previous paper are
in the way of dividing the whole mesh into sub-
meshes. Also, we need more refined $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ sim-
plified application of design-tools such as the bit-
reversal permutation ( $\mathrm{b}\mathrm{r}_{\mathrm{P}\mathrm{I}}$ , parallel construction
of the $\mathrm{b}\mathrm{r}\mathrm{p}$ , and priority movements of important
packets (where the important packets move be-
tween opposite-end regions of the mesh, which are
often called critical packets [LMT95, SCK97].

Thus our present result is obviously incremen-
tal and the apparent question is whether or not
some natural modification of the current routing
scheme can put the upper bound closer to the
absolutely optimal $2n$ bound. An important ob-
jective of this paper is to give a negative conjec-
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ture to this question. It should be noted that our
main technique, the $\mathrm{b}\mathrm{r}\mathrm{p}$ , causes an intrinsic delay
of packets. So, our improvements of performances
so far are simply due to how to minimize this un-
avoidable delay. In this paper we shall observe
a simple but worst example for the brp scheme,
which suggests that this approach is approaching
to its best possible.

The permutation routing is a rather classic
problem and research on more contemporary
routing such as wormhole routing and circuit-
switching (e.g., [Ak197, Lei92]) are apparently
more popular. However we believe that this
highly theoretical model is still important since
it gives us several fundamental insights on effi-
cient routing. For example, the sequence of our
research reveals that the control of timing for
packet movement is as important as the control
of path which has long been the main target of
this research community. In this sense, the result
of [Kri91] showing that oblivious routing suffers
from a very bad $\Omega(n^{2})$ lower bound if one does
not consider this timing problem or lets packets
always go if possible, is also a great contribution.

So far a great deal of effort has been devoted to
seeking the optimal time bound for adaptive rout-
ing: Leighton, Makedon, and Tollis [LMT95] gave
a deterministic algorithm with running time $2n-$
$2$ , matching the distance bound, and constant
queue-size. Rajasekaran and Overholt [RO92]
and Sibeyn, Chlebus, and Kauinann [SCK97]
decreased the queue-size later. However, all of
these algorithms involve a flavor of mesh-sorting
algorithms and may be too complicated to imple-
ment on existing computers. Thus, there exist a
lot of endeavors to simplify the routing schemes:
For example, under the adaptive setting, Chinn,
Leighton, and Tompa [CLT96] provided a mini-
mal (i.e., shortest-path), nonsorting-based, adap-
tive routing algorithm which achieves $O(n)$ steps
with constant size queue. Unfortunately, how-
ever, the best leading constant of the running
time shown is at least 500 according to the pa-
per. Apparently, an algorithm with a simpler
path-selection and a smaller queue-size might be
of more practical interest, even if its running time
is slightly larger than $2n$ . From this point of view.
our algorithm with obliviousness does have more
practical merits.

In what follows, after giving a review of the

previous techniques in Section 3, we show a ba-
sic algorithm which runs in $(2.5 +\in)n$ steps
in Section 4, which itself is an improvement
over [IM2000]. Our main result, the $(2.334+\in)n$

algorithm, is given in Section 5.

2 Models and Problems

Our model in this paper is the standard, two-
dimensional (2D) $n\cross n$ mesh. Each processor
is connected to its four neighbors via point-to-
point communication links and at any given step
it can communicate with all neighboring proces-
sors. Packet routing requires that each packet
must be routed correctly to its destination. In
$permutat\dot{i}on$ routing, every processor is a sour.ce
and destination of precisely one packet.

Each processor has four input and four output
queues. Each queue can hold $.\mathrm{u}\mathrm{p}$ to $K$ packets at
the same time. The one-step computation con-
sists of the following two stages: (i) Suppose that
there remain $\ell(0\leq\ell\leq K)$ packets, or there are
$K-\ell$ spaces, in an output queue $Q$ of processor
$P_{i}$ . Then $P_{i}$ selects at most $K-\ell$ packets from its
input queues, and moves them to Q. (ii) Let $P_{i}$

and $P_{i+1}$ be neighboring processors, for instance,
$P_{i}’ \mathrm{s}$ right output queue $Q_{i}$ be connected to $P_{i+1}’ \mathrm{s}$

left input queue $Q_{i+1}$ . Then if the input queue
$Q_{i+1}$ has a space, then $P_{i}$ selects at most one
packet (at most one packet can flow on each link
in each time-step) from $Q_{i}$ and send it to $Q_{i+1}$ .
Note that $P_{i}$ can perform arbitrarily complex op-
erations on the queues in each step (although it
performs only very elementary operations in our
algorithms), and $P_{i}$ makes several decisions due
to a specific algorithm in both (i) and (ii). When
making these decisions, $P_{i}$ can use in general any
information such as the information of the pack-
ets now held in its queues.

Roughly speaking, routing is to determine each
packet’s path through the network by using var-
ious information, such as source addresses, des-
tination addresses, and the configuration of the
network. A routing algorithm, $A$ , is said to be
oblivious if the path of each packet is completely
determined by its source and destination posi-
tions, not depending on other packets. The most
popular, and simplest oblivious way for permuta-
tion routing on meshes is to route all the pack-
ets along their dimension-order paths, i.e., every

91



packet first moves along its row until it reaches
its column destination, and then move along its
column until it reaches its row destination. Obliv-
ious routing generally makes algorithms simpler
and have been considered to be more practical.
However, it is hard to avoid path-congestion in
the worst case since the path of each packet is
completely determined before routing starts and
it often takes much more time than it looks. For
example, Krizanc proves [Kri91] that any oblivi-
ous algorithm on $k$-dimensional, constant queue-
size, $n^{2}$ processor mesh networks requires $\Omega(n^{2})$

steps in the worst case if the algorithm is pure,
i.e., if packets must move whenever their next
positions are empty, where $k$ may be any con-
stant. In order to obtain linear-time algorithms,
therefore, we have to pay our great attention to
the queue-scheduling and have to develop some
mechanism which forces some packets “to wait”
even if they can advance.

3 Previous Results

3.1 Basic Ideas

As shown in [Lei92, IM99], the dimension-order
path algorithm must require $(n^{2})$ steps in the
worst case because heavy path-congestion may
occur in the critical positions, where each packet
changes its direction and enters its correct col-
umn. However, it is also well known that the
dimension-order path algorithm performs very
well on average: Due to Leighton [Lei90], if each
packet has a random destination, then it can
route all packets in $2n+O(\log n)$ steps with
high probability only by using the most greedy
queue scheduling, i.e., every packet is served in
the first-in first-out (FFOO) fashion, and none of
the queues contains more than four packets. Al-
though this routing model is not necessarily per-
mutation, this fact leads us to observe that if we
can change an arbitrary sequence of packets on
every row into such a sequence that packets of
the same destination are almost uniformly dis-
tributed on the row, then we may obtain an al-
gorithm with the same performance as the algo-
rithm for random destinations. The bit-reversal
permutation ( $\mathrm{b}\mathrm{r}_{\mathrm{P})}$ algorithm proposed in [IM99]
can control the movement of each packet with-
out destroying the oblivious condition, and can

remove heavy path-congestion from the critical
positions.

We first define the following two notations on
sequences of packets on linear arrays:

Definition 1 Let $\dot{i}_{1^{\dot{i}}2\ell}\ldots\dot{i}$ denote the binary
representation of an integer $\dot{i}$ . Then $\dot{i}R$ de-
notes the integer whose binary representation is
$i\ell\dot{i}\ell_{-}1\ldots\dot{i}_{1}$ . The bit-reversal permutation $(BRP)$

$\pi$ is a permutation from $[0,2^{p}-1]$ onto $[0,2^{\ell_{-}}1]$

such that $\pi(\dot{i})=\dot{i}R$ . Let $x=x_{0}X_{1}\cdots x_{2-1}l$ be
a sequence of packets. Then the bit-reversal per-
mutation of $x$ , denoted by $BRP(x)$ , is defined as
$BRP(x)=X_{\pi(0)\pi(}x1)\ldots X\pi(2^{\ell}-1)$ .

When $\ell=$ $3$ , i.e., when $x$ $=x_{0}x_{1}\cdots X_{7}$ ,
$BRP(x)=x0x_{4^{XxxX}}2615x_{3}X_{7}$ . Namely, $x_{j}$ is
placed at the $\pi(j)\mathrm{t}\mathrm{h}$ position in $BRP(x)$ (the left-
most position is the 0th position).

Definition 2. For a sequence $x$ of $n$ pack-
ets, SORT$(x)=x_{s}x_{S}\cdots x_{S_{n}}01-1$ denotes a sorted
sequence according to the destination column.
Namely, SORT$(x)$ is the sequence such that the
destination column of $x_{s_{i}}$ is farther than or the
same as the destination column of $x_{s_{j}}$ if $i>j$ .

The following lemma shows a key property of
brp sequences [IM2000]:

Lemma 1. Let $x=x_{011}X\cdots X_{n-}$ be a se-
quence of length $n$ where $n=2^{\ell}$ for some integer
$\ell$ and $z=z_{0}Z_{1}\cdots z_{k-}1$ be its any subsequence of
length $k$ . Also let $d=2^{2\ell_{1}}$ for some integer $\ell_{1}$

and suppose that $k\geq d+8\sqrt{d}+8$ . Then if $w$

is any subsequence in $BRP(x)$ of length $\mathrm{r}\frac{dn}{k}\rceil,$ $w$

includes at most $d+8\sqrt{d}+8$ packets in $z$ .
Suppose that $x$ is a sequence of $n$ packets,

and among those $n$ packets, $a_{k_{1}},$ $\cdots,$ $a_{2},$ $a_{1}$ are
$k_{1}\geq d+8\sqrt{d}+8$ packets which have the same
column destination. One can see that if $k_{1}$

packets of the same destination are truly even-
distributed in the $n$ packets, then any two neigh-
boring packets among $a_{k_{1}},$ $\cdots,$ $a_{2},$ $a_{1}$ should be
$\frac{n}{k_{1}}$ positions apart. Lemma 1 says that if, by
inserting spaces uniformly into the original brp
sequence $BRP(SOR\tau(x))$ , the length of the se-
quence is extended to

$\frac{d+8\sqrt{d}+8}{d}=1+O(\frac{1}{\sqrt{d}})$

times larger, then the distance of any two neigh-
boring packets among $a_{k_{1}},$ $\cdots,$ $a_{2},$ $a_{1}$ is to be as
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much as the $\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{a}^{\sigma}\Leftrightarrow \mathrm{e}\frac{n}{k}$ . Namely, by using the
operation based on the bit-reversal permutation
(and with the supplementary spacing operation),
we can change the order of packets from any
scrambled order into the pseudo-random order
which will guarantee no delay at the critical po-
sitions.

Now our basic idea may be clear: (i) Be-
fore routing packets toward their destination, any
scrambled order of the packets in their flow is
changed into the $\mathrm{b}\mathrm{r}\mathrm{p}$-order to control the inject-
ing ratio of packets into the critical positions
where serious delays can occur. (ii) Each packet
moves to its final destination along its dimension-
order path. More precisely, however, since the
simple implementation of the “true” brp sequence
construction must requires long time, we con-
struct, what we call, a quasi-brp sequence, which
is enough for our purpose as shown in the next
section.

3.2 Parallel brp Construction

Let $A=a_{1}a_{2}\cdots a_{m}$ and $B=b_{1}b_{2}\cdots b_{m}$ be se-
quences of $m$ packets. The MERGE$(A, B)$ is a
sequence of $2m$ packets defined by

MERGE$(A, B)=a_{1}b_{1}a_{2}b2\ldots a_{m}b_{m}$ .

Lemma 2 [IM2000]. Suppose that a linear ar-
ray of $n$ processors, $P_{0}$ through $P_{n-1}$ , is available.
Also suppose that a sequence $X=x0x1\ldots X_{n}-1$

of $n$ packets is initially placed on the $n$ processors,
one on one. Then $QBRP_{C}(x)$ can be constructed
on the right-end $cn$-tube in time $n+2cn$ and with
queue-size $\frac{2}{c}$ for any positive constant $c<1$ .

Proof. The following operation, PARALLEL, has
$\frac{1}{c}$ sub-arrays in each row, where each sub-array
consists of $cn$ processors (see Figure 1 again) and
the $\dot{i}\mathrm{t}\mathrm{h}$ sub-array initially holds $X_{i}$ . Again, in
each row, we provide a special portion of length
$c^{2}n(c<1)$ , called $c^{2}n$ -tube, at the right-end of
each sub-array. PARALLEL consists of the follow-
ing two stages:

Operation PARALLEL

(Stage 1) Within the $\dot{i}\mathrm{t}\mathrm{h}$ sub-array, $X_{i}$ is
changed to its brp sequence of $cn$ packets: For
every $\dot{i}$ in parallel, (i) $X_{i}$ is first changed in sorted
order within the leftmost $cn$ -c2$n$ processors and
then (ii) its brp sequence of the $cn$ packets is
eventually placed in the right-end $c^{2}n$-tube of the
sub-array, i.e., the rightmost processor holds the
head $\frac{1}{c}$ packets of the short brp of the $cn$ packets,
the second rightmost processor holds the next $\frac{1}{c}$

packets, and so on.

MERCE$(A, B, c)$ is defined similarly and is ex-
tended to any number of sequences. For example,
let $C=c_{1}c_{2}\ldots$ c and $D=d_{1}d_{2}\cdots d_{m}$ be se-
quences of $m$ packets. The MERGE$(A, B, C, D)$

is a sequence of $4m$ packets defined by

MERGE$(A, B, C, D)$

$=$ $a_{1}b_{1}c_{1}d1a_{2}b_{2}c_{2}d_{2}\cdots a_{m}bmCmd_{m}$ .

For some positive constant $c<$ 1, let $X=$
$X_{0}X_{1}\cdots x_{\frac{1}{\mathrm{c}}-}1$ be a sequence of $n$ packets where
each $X_{i}$ has length $cn$ . Then $QBRP_{C}(x)$ is de-
fined as

$QBRP_{C}(x)$

$=MERcE(BRP(SOR\tau(X_{0})), BRP(soR\tau(x1))$ ,
$BRP(soR\tau(X2)),$

$\ldots,$ $BRP(soRT(X \frac{1}{c}-1)))$ .

Consider some row of $n$ processors. Then we
provide a special portion of length $cn$ for some
fixed constant $c<1$ , called a $cn$ -tube, at the right-
end (see Figure 1). We can obtain $QBRP_{C}(x)$

from $X$ of $n$ packets using the linear array:

(Stage 2) $cn$ packets of $X_{i}$ now placed on the
$\dot{i}\mathrm{t}\mathrm{h}C^{2}n$-tube are squeezed out to the right to be
$X_{i}’ \mathrm{s}$ brp sequence of $cn$ packets. There are $1/c$

short brp sequences, each of which derives from
each $X_{i}$ . The $1/c$ sequences are all shifted to
the right in parallel until all the sequences fit
the rightmost sub-array of $cn$ processors (i.e., the
right-end $cn$-tube). Finally, each processor in the
$\mathrm{r}\mathrm{i}_{b}^{\sigma}\mathrm{h}\mathrm{t}$-end sub-array receives one packet from each
sub-array or it holds $\frac{1}{c}$ packets of the quasi-brp
sequence.

Since the length of the sub-array is $cn$ , Stage 1
requires at most 2$cn$ steps with queue-size $2/c$ .
Stage 2 takes $n$ steps since the neighboring se-
quences do not overlap in this process, i.e., no
delays occur in this stage. Also, the queue-size is
at most $\frac{2}{c}$ . $\square$

3.3 Routing Scheme 1 $\cross 2$

In the following, for simplicity, we assume that
the side-length $n$ of the mesh is $2^{\ell}$ for some integer
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$\ell$ . An extension to a more general case needs de-
tails but is not hard. To shorten the path length,
it is a natural idea to split the whole mesh into
two sub-meshes, the left mesh and the right mesh.
Figure 2 illustrates how each packet moves from
its source to destination. $\mathrm{R}\mathrm{o}\mathrm{u}_{\mathrm{o}}^{\sigma}\mathrm{h}\mathrm{l}\mathrm{y}$ speaking, a
packet whose source is in the left half and whose
destination in the right half, denoted by a LR-
packets, moves on the so-called simple path. The
path of an $\mathrm{L}\mathrm{L}$-packet is a bit more complicated;
it first goes to the left end of the row, changes
its direction 180 degrees, returns to its correct
column position and then goes to its final posi-
tion. Similarly for $\mathrm{R}\mathrm{L}$-packets and RR-packets.
Note that the $1\mathrm{e}\mathrm{n}_{\mathrm{o}}\sigma \mathrm{t}\mathrm{h}$ of the path itself is at most
$2n-2$ , which does not lose any optimality. Also,
the path of each packet is not affected. by other
packets, i.e., the algorithm is oblivious.

However, how each packet moves on the path
is $\dot{\mathrm{n}}$ot so simple. Figure 2 $\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\dot{\mathrm{a}}\mathrm{t}\mathrm{e}\mathrm{S}\grave{\mathrm{t}}$he left
half of the single row (the right half is similar).
$\mathrm{L}\mathrm{R}$-packets $\dot{\mathrm{o}}\mathrm{n}$ this row are once “packed” into
their $cn$-tube located at the right-end of the left
mesh, and $\mathrm{L}\mathrm{L}$-packets are once packed into the
left-end $cn$-tube by performing PARALLEL in ev-
ery $\mathrm{d}\tilde{\mathrm{i}}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ (everything is the same for RL and
RR packets, but executed within the right half
mesh). Packing those packets into the cn-tubes
can be done in parallel. Our first goal is to move
those packets so that their original sequence $X$

of 0. $5n$ packets will be changed into $QBRP_{C}(x)$

in the $cn$-tubes. The packet movement till this
moment is called Phase 1, which can be executed
in $0.5n+2cn$ steps by replacing $n$ in Lemma 2
with 0. $5n$ .

In Phase 2, each packet comes out of the cn-
tube and moves to its correct column position. As
described below we need to insert one space be-
tween any two neighboring packets. In Phase 3,
the packet moves on the correct column and fi-
nally reaches its destination.

As for Phase 2, from Lemma 2, we need to
insert one space per $\lfloor\frac{d}{8\sqrt{d}+8}\rfloor$ packets of the
brp sequence in order not to cause severe path-
congestion in the critical positions. Furthermore,
a 0. $5n$ overhead must be charged for the second
phase, which comes from the spacing operation
again: Recall that, for example, at most $\frac{n}{2}$ LR
packets on each row are packed into their cn-
tube in Phase 1 and the (quasi-)brp sequence

of those $\frac{n}{2}$ packets are constructed there. If the
whole length of the brp sequence of packets is re-
duced from $n$ to $\frac{n}{2}$ , then the distance of any two
neighboring packets which have the same destina-
tion column is also reduced to a half length from
Lemma 1. Hence one has to extend the length
of the brp sequence to be 1. $0n$ again by insert-
ing one space between any two packets, which
imposes 0. $5n$ overhead, called space-overhead.

Theorem 1 [IM2000]. There is an oblivi-
ous algorithm on $2\mathrm{D}$ meshes which can correctly
routes all packets within $(3.0+ \frac{8\sqrt{d}+8}{d}+2c)n$ steps
using queues of size $d+8 \sqrt{d}+8+\frac{1}{c}$ for some con-
stants $c$ and $d$ such that $c< \frac{1}{2}$ and $d=2^{2\ell}$ for
some integer $\ell$ .

Proof. Phase 1 requires 0. $5n+2cn$ steps.

$\mathrm{P}\mathrm{h}\mathrm{a}\mathrm{s}8\sqrt{d}+8\mathrm{e}2$

requires $1.0n+ \frac{8\sqrt{d}+8}{d}$ steps, where $0.5n+$

$\overline{d}$ comes from the spacing. Phase 3 takes
1. $5n$ steps, 0. $5n$ steps for row routing and 1. $0n$

steps for final column routing (see [IM2000] for
more details). $\square$

4 A $(2.5+\epsilon)n$ Algorithm

4.1 Routing Scheme $2\cross 2$

In the previous $(3+\in)n$ algorithm, called $\mathrm{R}\mathrm{S}2$ , we
had to pay the 0. $5n$ space-overhead in the second
phase. In this section, it is shown that our new
algorithm, denoted by $\mathrm{R}\mathrm{S}4$ , can eliminate almost
all the space-overhead. In the following, for sim-
plicity, we may omit the description of the delay
caused by constructing short brp sequences (de-
noted by $cn$ previously).

Recall that RS2 has to insert 0. $5n$ spaces into
every brp sequence constructed in Phase 2 since
its length is 0. $5n$ while 1. $0n$ packets move through
each column in Phase 3, i.e., RS2 has to extend
the length of the brp sequence to be 1. $0n$ by spac-
ing in order to avoid heavy path-congestion at
the critical positions. However, alternatively, it
is also true that if the number of packets flow-
ing on each column can be decreased, then we
only need to insert fewer spaces. Here is our ba-
sic idea.: The whole $n\cross n$ mesh is divided into
four $\frac{n}{2}\cross\frac{n}{2}$ sub-meshes, the top-left $\mathrm{T}\mathrm{L}$ , the top-
right $\mathrm{T}\mathrm{R}$ , the bottom-left $\mathrm{B}\mathrm{L}$ , and the bottom-
right BR sub-meshes as illustrated in Figure 3.
(i) All packets whose sources and destinations are
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both within the upper half mesh (the lower lower
half mesh), called $h$-packets, move along the same
paths as the paths of $\mathrm{R}\mathrm{S}2$ . For example, by us-
ing the first 0. $5n$ steps, all LR $\mathrm{h}$-packets which
move from TL to TR are once packed into their
$cn$-tubes located at the right-end of the left mesh,
and then the packets go out of the $cn$-tubes in the
brp order without inserting spaces by using the
second 0. $5n$ steps. Finally, those packets move
horizontally and then vertically towards their cor-
rect positions in TR in the next $n$ steps as before.
On the other hand, (ii) all packets which move
from the upper half mesh to the lower half mesh
(from the lower half to the upper half), called v-
packets, once move vertically into the lower (up-
per) half mesh, then move horizontally to their
correct columns, and finally move vertically again
to their final goal positions (see Figure 3). For ex-
ample, all LR $\mathrm{v}$-packets which move from TL to
BR first move downward into the sub-mesh BL
by using the first 0. $5n$ steps and then move to
the final goals in BR along the same paths as (i)
in the next 2. $0n$ steps. Note that the first hori-
zontal action of (i) and the first vertical action of
(ii) can be initiated at the same time and can be
performed completely in parallel. Also, note that
the final column movements within the upper half
mesh and ones within the lower half mesh are in-
dependently executed, i.e., the number of packets
flowing on each column can be regarded as 0. $5n$ .
Thus, it would be possible for the four sub-mesh
strategy to provide us an algorithm which runs
in $(2.5+\in)n$ steps for small positive $\in$ . Unfortu-
nately, however, a simple implementation of the
strategy does not work efficiently.

Take a look at a $cn$-tube, for example, at the
right-end of TR in more detail. If we follow
the stages as described above, then RR v-packets
originally placed in BR start to enter into the
$cn$-tube at the 0. $5n\mathrm{t}\mathrm{h}$ step (i.e., right after their
vertical movements), and the last packet of their
brp sequence stays in the $cn$-tube until the 1. $5n\mathrm{t}\mathrm{h}$

step in the worst case. Recall that, in parallel, LR
$\mathrm{h}$-packets originally placed in TL are coming from
the left. As a worst example, if almost all the
destinations of the LR $\mathrm{h}$-packets are positions in
the same $cn$-tube, then they arrive at the cn-tube
roughly at the $n\mathrm{t}\mathrm{h}$ step, which causes heavy path-
congestion there since the some RR $\mathrm{v}$-packets are
still moving within the $cn$-tube. Thus, the fol-

lowing special treatment is required only for the
$\mathrm{h}$-packets whose destinations are in the cn-tubes,
called tube-packets: All the tube-packets are once
moved to their intermediate positions which are
placed on the same rows as their final destination
rows but outside the cn-tub.e$\mathrm{S}$ , and then move
horizontally to their final positions. Those in-
termediate positions are scattered evenly in the
whole mesh except for the $cn$-tubes. Here is the
rule (see Figure 4): The intermediate positions
for $cn$ tube-packets in the right-end on the top
row are placed in the $( \frac{3n}{4}+1)\mathrm{t}\mathrm{h}$ column, the
$( \frac{3n}{4}+\frac{025-c}{c}+1)\mathrm{t}\mathrm{h}$ column, $( \frac{3n}{4}+2\frac{0.25-c}{c}+1)\mathrm{t}\mathrm{h}$ col-
umn, and so on. The intermediate positions for
$cn$ tube-packets on the second top row are shifted
(cyclically) one position to the right.

,
$\mathrm{S}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{l}\mathrm{y}$ for

the other intermediate positions.
Note that the number of packets flowing on

each column increases from the previous 0. $5n$ to
$0.5n+ \frac{2cn}{1-4c}$ . Thus, our main algorithm RS4 has
to insert a $\mathrm{s}\mathrm{m}$. all number of spaces between the
brp sequences again.

Algorithm RS4
The algorithm consists of the following five

phases, in each of which two tasks are performed
at the same time. (i) One task is to move the h-
packets which move within the upper half mesh
(within the lower half mesh). (ii) The other is to
move the $\mathrm{v}$-packets which move from the upper
(lower) half mesh to the lower (upper) half mesh:

Phase 1 ( $(0.5+2c)n$ steps). (i) Everything is
the same as Phase 1 in RS2 for $\mathrm{h}$-packets. (ii) All
the $\mathrm{v}$-packets moving from the upper (lower) half
mesh to the lower (upper) half mesh are shifted
downward (upward) $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{l}\mathrm{y}$

. $0.5n$ positions by us-
ing exactly 0. $5n-1$ steps.

Phase 2
$( \max\{0.5n(1+O(\frac{1}{\sqrt{d}}))(\frac{1}{1-4c}),$ $(0.5+2c)n\}$

steps). (i) $\mathrm{h}$-packets start to get out of cn-
tubes. Here one space is inserted per $\frac{1-4c}{4c}$ packets
and furthermore, one space per $\lfloor\frac{d}{8\sqrt{d}+8}\rfloor$ packets.
(ii) As for the $\mathrm{v}$-packets, the same operation as
Phase $1-(\mathrm{i})$ is performed.

Phase 3 (0. $5n(1+O( \frac{1}{\sqrt{d}}))(\frac{1}{1-4c})$ steps). (i) The
same operation as Phase 3 in RS2 is performed for
the $\mathrm{h}$-packets but tube-packets are shifted hori-
zontally and temporally enter into their interme-
diate columns defined by the above rule. (ii) Ev-
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erything is the same as Phase $2-(\mathrm{i})$ for the v-
packets.

Phase 4 (0. $5n$ steps). (i) All $\mathrm{h}$-packets ex-
cept for tube-packets move vertically to their fi-
nal positions, and tube-packets move vertically
to their intermediate positions. (ii) All v-packets
are moved into their critical positions.

Phase 5 (0. $5n$ steps). (i) All tube-packets
currently placed on their intermediate positions
move horizontally to their final positions. (ii) All
$\mathrm{v}$-packets move vertically to their final positions.

Theorem 2. RS4 correctly routes all packets
within $(2.5+ \max\{6c, \frac{8\sqrt{d}+8+4cd}{d-4cd}\})n$ steps using
queues of size $d+8 \sqrt{d}+8+\frac{1}{c}$ for some constants
$c$ and $d$ such that $c< \frac{1}{4}$ and $d=2^{2l}$ for some
integer $\ell$ .

Proof. Although we shall omit to prove why
RS4 works in those time-steps, making just a
change of parameters in the proof of Theorem 1
in [IM2000] leads us to this theorem. $\square$

4.2 Worst Case

As mentioned before, the basic idea of this algo-
rithm is to reduce the delay due to the brp by
decreasing the number of processors into which a
sequence of $\mathrm{b}\mathrm{r}\mathrm{p}$-ordered packets enter. To do so,
however, we had to divide the whole mesh into
four sub-meshes. Now take a look at some row,
$R$, and a position, $P$ , on $R$ that is close to the
right end (say, a distance of 0. $1n$ from the right-
end) in the upper-right sub-mesh. Then one can
see that the number of packets which flow from
left to right on this point $P$ can be as large as ap-
proximately $2n(0.5n$ ones originally on this row
at the right-hand side which are to move in this
sub-mesh, 0. $5n$ ones at the left-hand side which
are to move some columns to the right of $P$ , and
the same number of packets which come from the
lower half). This means that we need at least $2n$

steps for those packets to go through this point
and another 0. $5n$ steps for the last packet to go
to its vertical position. In other words, the 2. $5n$

bound cannot be broken essentially.
To overcome this difficulty, one possible way

is to further reduce the delay due to the brp by
further decreasing the number of the target pro-
cessors described above. This can be done, for

example, by dividing the mesh into a larger num-
ber of sub-meshes of say $3\cross 3$ . However, one can
easily see that this will also increase the number
of packets who share some single row as men-
tioned above. A simple extension of the current
algorithm, for instance, will make the number of
such packets $3n$ , which is much worse than before.
Thus the sub-mesh structure does not appear to
continue to give us merits or $2\cross 2$ is probably the
optimal. So, what we should do is, if possible, to
reduce the brp delay without further subdivid-
ing the mesh. The next algorithm (which might
seem to be more subdivided, but actually not) is
probably the best we can do towards this goal.

5 A $(2.334+\epsilon)n$ Algorithm

In this section we shall show that the upper
bound for oblivious routing is further reduced
down to roughly 2. $334n$ . We provide several spe-
cial portions in the mesh (see Figure 5). The
whole $n\cross n$ mesh is divided into three zones,
called the top-zone, the mid-zone, and the bottom-
zone, whose widths are all $\frac{n}{3}$ . Furthermore, each
zone is sliced vertically into three $\frac{n}{3}\cross\frac{n}{3}$ sub-
meshes. Again, we prepare special portions for
the packing operation, but in this case we pro-
vide six $cn$-tubes on each row, i.e., each sub-array
of length $\frac{n}{3}$ has two $cn$-tubes at both ends. Fur-
thermore, each row is divided into $\frac{1}{c}$ sub-arrays
of length $cn$ , each of which has two $cn^{2}$-tubes at
both ends. A packet is said to be critical if it is
originally placed in the top-zone (bottom-zone)
and its destination is in the bottom-zone (top-
zone). The other packets are said to be noncriti-
cal.

Here is an outline of the path design: (i) All
important packets in the top-zone (bottom-zone)
first move exactly $\frac{2n}{3}$ positions vertically, and en-
ter into the bottom-zone (top-zone). Then they
move horizontally to their correct columns, and
finally move vertically again to their final des-
tinations. Note that the path length of each
critical packet is at most 2. $0n$ , and more impor-
tantly, the length of the vertical sub-path of final
movement is bounded by $\frac{n}{3}$ . This shorter sub-
path plays an important role in decreasing the
delay by the brp construction in our main algo-
rithm. (ii) Each noncritical packet first moves
horizontally and then vertically. However, as de-
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scribed below, the present brp construction is a
little bit different from the previous one. Loosely
speaking, every short brp sequence of length $cn$

marches independently without merging into its
quasi-brp sequence. Recall that the path-length
of every noncritical packet is at most $(1 + \frac{2}{3})n$

from the definition:

Algorithm RS
The algorithm executes two tasks at the same

time: (1) One task is to move the noncritical
packets, and (2) the other is to move the criti-
cal packets.

(1) All noncritical packets first move horizon-
tally and then vertically. (1-1) The following is
executed on every row in parallel: In each sub-
array of length $cn$ , the short brp of the $cn$ packets
is constructed and eventually placed in the right-
end (or left-end according to the moving direction
of packets) $cn^{2}$-tube of the sub-array in $2cn$ steps.
Then the $cn$ packets are squeezed out to the right
to be its brp sequence. There are $\frac{1}{c}$ short brp
sequences which should move to the right. The

$\frac{1}{c}$ sequences are all shifted to the right in paral-
lel. Recall that in the previous algorithm $RS\mathit{4}$ ,
the left half $\frac{1}{2c}$ brp sequences (i.e., $cn \cross\frac{1}{2c}=\frac{n}{2}$

packets) are packed at the right-end $cn$-tube of
the left half mesh. However, in the present algo-
rithm, each packet in its short brp goes rightward
nearer to its destination column with keeping the
relative position in the brp sequence. Suppose
for example that a packet $x$ heads for a position
in some column in the $i\mathrm{t}\mathrm{h}$ sub-array $X_{i}$ from the
left and also suppose that $x$ is the $j\mathrm{t}\mathrm{h}$ packet
in its short $\mathrm{b}\mathrm{r}\mathrm{p}$ . Then the packet $x$ moves to
the right-end $cn^{2}$-tube of the $(i-1)\mathrm{t}\mathrm{h}$ sub-array
$X_{i-1}$ with keeping the $j\mathrm{t}\mathrm{h}$ position in its brp (see
Figure 6). If another packet in the same $\mathrm{b}\mathrm{r}\mathrm{p}$ ,
say, $y$ , heads for the different $cn^{2}$-tube, then the
brp sequence must include one space instead of
$y$ . $(1- 2)$ The short brp now placed on the correct
$cn^{2}$-tube starts to get out of the $cn^{2}$-tube. Here
a lot of spaces are inserted into the brp since the
length of the short brp is at most $cn$ , but it is
enough that the length of the brp is extended to
be $\frac{2n}{3}$ . The reason is as follows: Take a look at
a position $P$ in the bottom-zone. Then the num-
ber of packets which move downward from $P$ is
obviously at most $\frac{n}{3}$ , furthermore, the number of
packets which move upward from $P$ is at most

$\frac{2n}{3}$ since the bottom-zone does include no criti-
cal packets. The distance between any position
in the mid-zone and the top row or the bottom
row is also at most $\frac{2n}{3}$ . As a result, if we extend
the length of the brp to be $\frac{2n}{3}$ , then we can avoid
heavy path-congestion at the critical positions.

(2) As for critical packets, we only look at criti-
cal packets originally placed in the top-zone since
critical packets from the bottom-zone to the top-
zone move in the similar way but the vertical di-
rection as the following description. (2-1) In the
first phase each critical packet in the top-zone
shifts downward exactly 0. $5n$ positions in 0. $5n$

steps. (2-2) In the second phase the following
is executed on every row of the bottom-zone in
parallel: Packets from the leftmost sub-array of
length $\frac{n}{3}$ to the other two sub-arrays are once
packed into the $cn$-tube located at the right-end
of the leftmost sub-array, and in parallel pack-
ets moving from the center sub-array of length $\frac{n}{3}$

to the rightmost sub-array of length $\frac{n}{3}$ are once
packed into the right-end $cn$-tube of the center
sub-array by simulating PARALLEL. Everything
but the moving direction is the same for packets
from the rightmost sub-array to the center one,
and packets from the center sub-array to the left-
most one. However, packets moving within the
leftmost sub-array and packets moving within the
rightmost sub-array postpone starting the same
actions for $\frac{n}{3}$ steps, since during those steps non-
critical packets originally placed in the leftmost
sub-array of the bottom-zone may go though the
rightmost sub-array. This $\frac{n}{3}$ overhead is not so
bad since the path of the critical packet moving
within the leftmost sub-array is pretty shorter
than the others. (2-3) In the third phase, ev-
ery critical packet starts to get out of cn-tubes.
Here one space per $\lfloor\frac{d}{8\sqrt{d}+8}\rfloor$ packets is inserted.
(2-4) The critical packets are shifted horizontally
and eventually enter into their correct columns.
(2-5) Finally the packets move vertically to their
final positions.

Theorem 3. RS correctly routes all packets
within $(2.334+ \frac{8\sqrt{d}+8}{d}+4c)n$ steps using queues
of size $2+16 \sqrt{d}+16+\frac{4}{c^{2}}$ for some constants $c$ and
$d$ such that $c< \frac{1}{2}$ and $d=2^{2p}$ for some integer $\ell$ .

Proof. We shall give only a time analysis any
bad collision of packets do not occur. The path-
length of every noncritical packet is at most $\frac{5n}{3}$
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and there is roughly $\frac{2n}{3}$ overhead which comes
from the brp construction. In total, the packet
can travel in $\frac{7n}{3}$ steps.

Take a look at a critical packet which starts
from the leftmost sub-array in the top-zone to
the leftmost sub-array in the bottom-zone. The
packet first goes downward vertically and then ar-
rives at the intermediate position of the bottom-
zone in $\frac{2n}{3}$ steps. In the next $\frac{n}{3}$ steps, it does
nothing and stays there. One can see that the
packet has to move $\frac{2n}{3}$ positions further, $\frac{n}{3}$ posi-
tions horizontally and $\frac{n}{3}$ positions vertically, and

$\frac{n}{3}$ is used for constructing brp sequence. As a re-
sult. we need $\frac{5n}{3}$ steps in total for routing the crit-
ical packet. Each critical packet moving from the
leftmost sub-array in the top-zone to the $\mathrm{r}\mathrm{i}_{\mathrm{e}^{\sigma_{\supset}}}\mathrm{h}\mathrm{t}-$

most sub-array in the bottom-zone moves along
its path of at most length 2. $0n$ and gets $\frac{n}{3}$ over-
head for the brp construction. Thus we requires
$\frac{7n}{3}$ steps. $\square$

References
[Ak197] S.G. Akl, Parallel Computation: Models

and Methods, Prentice Hall (1997).

[BH85] A. Borodin and J.E. Hopcroft, $(‘ \mathrm{R}_{\mathrm{o}\mathrm{u}\mathrm{t}}\mathrm{i}\mathrm{n}\mathrm{g}$,
merging, and sorting on parallel models of
computation,” J. Computer and System Sci-
ences 30 (1985) 130-145.

[BRSU93] A. Borodin, P. Raghavan, B. Schieber
and E. Upfal, “How much can hardware
help routing?,” In Proc. ACM Symposium on
Theow of Computing (1993) 573-582.

[CLT96] D.D. Chinn, T. Leighton and M.
Tompa, “Minimal adaptive routing on the
mesh with bounded queue size,” Journal
of Parallel and Distributed Computing 34
(1996) 154-170.

[IM99] K. Iwama and E. Miyano, “An $O(\sqrt{N})$

oblivious routing algorithms for 2-D meshes
of constant queue-size,” In Proc. 10th ACM-
SIAM Symposium on Discrete Algorithms
(1999) 466-475.

[IM2000] K. Iwama and E. Miyano, “ $(2.954+\in)n$

Oblivious Routing Algorithm on 2D Meshes”
In Proc. Symposium on Parallel Algorithms
and Architectures (2000) to appear.

[Kri91] D. Krizanc, “Oblivious routing with lim-
ited buffer capacity,” J. Computer and Sys-
tem Sciences 43 (1991) 317-327.

[Lei90] F.T. Leighton, “Average case analysis of
greedy routing algorithms on arrays,” In
Proc. ACM Symposium on Parallel Algo-
rithms and Architectures (1990) 2-10.

[Lei92] F.T. Leighton, Introduction to Par-
allel Algorithms and Architectures: Ar-
rays, Trees, Hypercubes, Morgan Kaufmann
(1992).

[LMT95] F.T. Leighton, F. Makedon and I. Tol-
lis, “A 2n–2 step algorithm for routing in
an $n\cross n$ array with constant queue sizes,”
Algorithmica 14 (1995) 291-304.

[RO92] S. Rajasekaran and R. Overholt, “Con-
stant queue routing on a mesh,” J. Parallel
and Distributed Computing 15 (1992) 160-
166.

[SCK97] J.F. Sibeyn, B.S. Chlebus and M. Kauf-
mann, “Deterministic permutation routing
on meshes,” J. Algorithms 22 (1997) 111-
141.

98



Figure 1: $\frac{1}{c}$ sub-arrays

Figure 2: LL packets, LR packets, RL packets,
RR packets

Figure 3: $\frac{n}{2}\cross\frac{n}{2}$ sub-meshes, TL, TR, BL, and
BR
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Figure 4: Intermediate positions for tube-packets
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Figure 5: Top-zone, mid-zone, bottom-zone

Figure 6: (1-1) in RS
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