goooboooobgon
11850 2001 0 130-139

130

Transformatlons on Regular Non-Dominated Coteries
and Their Application

- Kazuhisa Makino® and Tiko Kameda?

! Division of Systems Science,
Graduate School of Engineering Science,
Osaka University,

Toyonaka, Osaka, 560-8531, Japan
makino@sys.es.osaka-u.ac.jp

2 School of Computing Science,
Faculty of Applied Sciences,
Simon Fraser University,

Burnaby, British Columbia, V5A 1S6 Canada

tiko@cs.sfu.ca

Abstract: A coterie under an underlying set U is a family of subsets of U such that every
pair of subsets has at least one element in common but neither is a subset of the other. A
coterie C' under U is said to be non-dominated (ND) if there is no other coterie D under U
such that, for VQ € C, there exists Q' € D satisfying Q" C Q.

We introduce the operation o which transforms a ND coterie to another ND coterie. A
regular coterie is a natural generalization of a vote-assignable coterie. We show that any
regular ND coterie C can be transformed to any other regular ND coterie D by judiciously
applying the o operation to C at most |C| + |D| — 2 times.

As .another application of the o operation, we present an incrementally polynomial-time

. algorithm for generating all regular ND coteries. We then introduce the concept of g-reqular
functional, as a generalization of availability. We show how to construct an optimum coterie
C with respect to a g-regular function in O(n3|C|) time, where n = |U|. Finally, we discuss
the structures of optimum coteries with respect to a g-regular functional.

Keywords: Coteries, Non-dominated coteries, Regular coteries, Availability, Mutual-
exclusion, Positive self-dual Boolean functions, Regular self-dual Boolean functions, g-regular

functionals.

1 Introduction

A coterie C under an underlying set U =
{1,2,...,n} is a family of subsets (called quo-
rums) of U satisfying the intersection property
(i.e., for any pair S,R € C, SN R # § holds),
and minimality (i.e., no quorum in C contains
any other quorum in C) [8, 11]. The concept of a
coterie has applications in diverse areas (see e.g.,
[6, 8, 11, 15]).

For example, to achieve mutual exclusion in a
distributed system, let the elements in U repre-
sent the sites in the distributed system. A task
is allowed to enter a critical section only if it can
get permissions from all the members of a quo-
rum @) € C, where each site is allowed to issue at
most one permission at a time. By the intersec-
tion property, it is guaranteed that at most one
task can enter the critical section at any time.

A coterie D is said to dominate another co-
terie C if, for VQ € C, there exists a quorum
Q' € D satisfying Q' C Q [8]. A coterie C is non-
dominated (ND) if no other coterie dominates it.
ND coteries are important in practical applica-
tions, since they have maximal “efficiency” in
some sense [3, 8].

Given a family C of subsets of U, which is
not necessarily a coterie, we define a positive
(i.e., monotone) Boolean function fc such that
fe(x) = 1 if the Boolean vector z € {0,1}" is
greater than or equal to the characteristic vec-
tor of some subset! in C, and 0 otherwise. It
was shown in [10] that C is a coterie (resp., ND
coterie) if and only if fo is dual-minor (resp.,
self-dual) [14]. Based on this characterization,
Boolean algebra can be exploited to derive var-

! “The ith component of the characteristic vector is 1 (0)
if i € U is (not) contained in the subset.

ious properties of (ND) coteries.

A coterie C is said to be wote-assignable if
there exist a vote assignment w : U — Rt
and a threshold t € RT such that w(S) > tif
and only if § O @ for some Q € C [8, 9, 18],
where R™ is the set of nonnegative real num-
bers and w(S) = Y ;cqw(i). It is easy to see
that there is a one-to-one correspondence be-
tween vote-assignable coteries (resp., ND coter-
ies) C and dual-minor (resp., self-dual) threshold
Boolean functions f¢ (see Section 2). The vote-
assignable coteries are important and have been
used in many practical applications, since they
can be handled efficiently (see e.g., 8, 9, 18, 19]).
We assume in this paper that a vote assignment w
satisfies w(¢) > w(j) for all 7 < 7, since we are in-
terested in coteries which are non-equivalent un-
der permutation on U. A coterie C is equivalent
to a coterie C' under permutation, if C can be
transformed into C' by permuting the elements
of U. A coterie C is said to be regular if, for ev-
ery @ € C and every pair (,7) € U x U with
1< j,t € Q and j € Q, there exists quorum
Q' € C such that Q' C (Q\ {j}H) U {i}.2 By
definition, a vote-assignable coterie C' is always
regular, though the converse is not true in gen-
eral. It is known that most regular coteries are
vote-assignable [14], in particular, all regular ND
coteries for n < 9 are vote-assignable.

Among the important problems regarding co-
teries are: '

(i) construct “optimal” ND coteries according
to a certain criterion, such as availability
and load (equivalently, construct an “opti-
mal” positive self-dual function), and

(ii) generate all ND coteries (equivalently, all
positive self-dual functions) systematically.

As for (i), let us consider the availability of a
coterie. Assume that element 7 is operational with
probability p;, where the probabilities for differ-
ent components are independent. Given the oper-
ational probabilities p;, i € U, where we assume
without loss of generality that 1 > p; > py >
... 2 pp 2> 0, the availability of a coterie C is the
probability that the set of operational elements
contains at least one quorum in C. Availability

2 This definition was motivated by the definition of reg-
ular Boolean functions. See Section 2.3.

131

is clearly an important concept in practical appli-
cations, and it is desirable to construct a coterie
with the maximum availability.

The availability of coteries has been studied ex-
tensively. It is known [1, 17] that the elements
i € U with p; < 1/2 can be ignored, i.e., there
exists a maximume-availability coterie C such that
no quorum in C contains 7. (In the case where
p; < 1/2 holds for all i, C = {{1}} has the max-
imum availability [1, 7, 16]). Thus, we shall as-
sume that

p1 = p2 = ... 2> py > 1/2.

It is also known that, if either p; = 1 or p; < 1/2,
then C' = {{1}} has the maximum availability. If
1 # p1 > 1/2, on the other hand, it is demon-
strated in [17, 19] that the coterie Cpyqz, given
below, maximizes availability. First define the
weight for ¢ € U by
w*(i) = logy(pi/(1 - pi)),

and introduce the notation w*(S) = Y ;.5 w*(3)
for S CU. Now, Q € Cpuz if

(a) w*(Q) (=w*(U\Q)) =w*(U)/2and 1 € Q
(1 is an element of U), or

(b) Q is a minimal subset of U with w*(Q) >
w*(U)/2, and @ does not contain any quo-
rum of type (a).

Since this coterie Cpq; is. vote-assignable, [1,
17, 19] proposed algorithms to compute a vote
assignment w from w*, called tie-breaking, in or-
der to remove case (a). An exponential algo-
rithm is proposed in [19] to find the “optimal” tie-
breaking rule, while [1, 17] present polynomial-
time approximation algorithms for it. The main
problem with the above definition of .C,,; is
that there may exist a subset S C U such that
w*(S) = w*(U \ S) (case (a)), because of which
a simple vote assignment w (showing that Ci,e,
is vote-assignable) is not easily obtainable, and
that the weight w*(7) is, in general, not a ratio-
nal number, hence we cannot compute w*(S) =
> ics w*(¢) in polynomial time. For the above
reasons, no polynomial algorithm for construct-
ing a maximum-availability coterie was known.
In this paper, we present a polynomial-time al-
gorithm for it. More precisely, we define a “g-
regular” functional as a generalization of avail-
ability (see Section 5), and then show that, given

a g-regular functional ®, we can compute a co-
terie C which maximizes ® in O(n3|C|) time,
where |C| is the number of quorums in C.

Problem (ii) is known to be useful to solve (i)
[5, 8]: To solve (i), one might first enumerate all
(or some) ND coteries efficiently, and select the
best one under a certain criterion, which may not
be easily computable. This procedure is useful
when n is small, or when we have enough time to
compute it.

The generation of all ND coteries in a certain
subclass of vote-assignable ND coteries was dis-
cussed in [14], which isused to give a lower bound
on the number of all vote-assignable ND coteries.
However, the procedure is not polynomial and
computes a proper subclass of vote-assignable ND
coteries. H. Garcia-Molina and D. Barbara [8]
proposed an algorithm to generate all ND coter-
ies in a certain superclass of regular ND coteries.
However, it is also not polynomial. J. C. Bioch
and T. Ibaraki [5] later came up with a polyno-
mial time algorithm to generate all ND coteries,
and compiled a list containing all ND coteries un-
der up to 7 elements, which are non-equivalent
under permutation. We remark here that their
algorithm is not polynomial, if equivalent dupli-
cates are to be deleted from the output. In fact,
they compiled a list of all ND coteries under up
to 7 elements by first running their algorithm
and then selecting non-equivalent representatives
from among them. In this paper, we present a
polynomial algorithm to generate all regular ND
coteries. Since no regular ND coterie C is equiv-
alent to any other regular ND coterie C' (# C)
under permutation, our algorithm does not out-
put ND: coteries which are equivalent under per-
mutation. Although our algorithm outputs only
regular ND coteries, it is practically useful, be-
cause all ND coteries under. up to n = 5 elements
are all regular (if we consider their representa-
tives), and when n is relatively is small, a large
fraction of ND coteries are regular [14]. More-
over, if the objective function of problem (i) is
g-regular (e.g:, the availability of a coterie), then
we can restrict our attention to regular coteries.

After defining necessary terminologies in Sec-
tion 2 we discuss in Section 3 two operations,
called p and o, which transform a positive self-
dual function f (representing a ND coterie) into
another positive self-dual function (representing

132

another ND coterie), by making a minimal change
in the set of minimal true vectors of f.

Section 4 shows that any regular self-dual func-
tion f (representing a regular ND coterie) can be
transformed into any other regular self-dual func-
tion g (representing any other regular ND coterie)
by judiciously applying o operations to f at most
| minT'(f)| + | minT'(g)| — 2 times. In Sections 5
and 6, we consider the problems of computing
an optimal self-dual function with respect to a
g-regular functional ® and generating all regular
self-dual functions, as applications of the above
transformation.

In addition to the theory of coteries, the con-
cepts of self-duality and regularity play important
roles in diverse areas such as learning theory, op-
erations research and set theory. The results of
this paper are relevant to all these areas.

Due to the space limitation, the proofs of some
results are omitted (see [12, 13]).

2 Preliminaries

A Boolean function (a function in short) is a map-
ping f : {0,1}" — {0,1}, where v € {0,1}"
is called a Boolean vector (a wvector in short).
If f(v) = 1 (resp., 0), then v is called a true
(resp., false) vector of f. The set of all true vec-
tors (resp., false vectors) of f is denoted by T'(f)
(resp., F(f)). For any two functions f and g,
we say that f is covered by g (written f < g) if
T(f) C T(g). For a vector v = (v1,vs,...,V),
we define ON(v) = {j | v; = 1} and OFF(v) =

{] ' Uj = 0} .
The argument z of function f is represented
as a vector z = (z1,%9,...,Z,), where each z; is

a Boolean variable. A variable z; is said to be
relevant if there exist two vectors v and w such
that f(v) # f(w), v; # w;, and v; = w; for all
J # i; otherwise, it is said to be irrelevant. The
set of all relevant variables of a function f is de-
noted by Vy C V = {z1,29,...,2,}. A literal
is either a variable z; or its complement Z;. A
term t is a conjunction A;ep(y) i A Ajen(r) Tj of
literals such that P(t), N(t) C {1,2,...,n} and
P(t)NN(t) = 0; E.g., t; = £124T57¢ is a term,
while to = z924%7 is not. A disjunctive normal
form (DNF) is a disjunction of distinct terms. It
is easy to see that any function f can be repre-
sented in DNF, whose variable set is V.

We sometimes do not distinguish a formula
(e.g., DNF) from the function it represents, if no
confusion arises.

2.1 Positive functions

For a pair of vectors v,w € {0,1}", we write
v < w if v; < w; holds for all j € V, and
v < wifv < wand v # w. For a set of vec-
tors § C {0,1}", min> S (resp., max> S) denotes
the set of all minimal (resp., maximal) vectors in
S with respect to >; For example, for a func-
tion f, min> T(f) (resp., max> F(f)) denotes
the set of all minimal true vectors (resp., max-
imal false vectors) of f. We sometimes use min S
(resp., max §) instead of miny> S (resp., maxs> S),
if no confusion arises. A function f is said to
be positive or monotone if v < w always implies
f() < f(w). A prime implicant of a function f
is a term ¢ that implies f but no proper subterm
of t implies f. There is a one-to-one correspon-
dence between min7'(f) and the set of all prime
implicants of f, such that a vector v corresponds
to the term t, defined by t, = z;,z;, -+ x4, if
v; = 1,7 = 1,2,...,k and v; = 0 otherwise.
For example, the vector v = (1010) corresponds
to the term ¢, = z1x3. We also use the nota-
tion t7 to denote the term zj z;, ---x;,, where
{jlaj?a"'vjl} {1’2""7n} \ {il,i27"'7ik}'
For the above v = (1010), we have t7 = z2z4.

It is known that a positive function f has
the unique minimal disjunctive normal form
(MDNF), consisting of all the prime implicants of
f, where N(t) = 0 for each prime implicant ¢. In
this paper, we sometimes represent the MDNF of
a positive function such as f = z1zo+z9z3+ 311
by a simplified form f = 12423431, by using only
the subscripts of the literals. Coteries can be con-
veniently modeled by positive Boolean functions,
based on the fact that min7T(f) can represent a
family of subsets, none of which includes the other
[10].

2.2 Dual-comparable functions
The dual of a function f, denoted f¢, is defined
by :)

f d("”') =f (ZE)’
where f and T denote the complement of f and
z, respectively. As is well-known, f¢ is obtained

133

from f by interchanging + (OR) and - (AND),
as well as the constants 0 and 1. It is easy to
see that (f + g)? = fig?, (fg)? = f¢+ ¢ and
so on. A function is called dual-minor if f < f9,
dual-major if f > f¢ and self-dual if f = f°.
For example, f = 123 is dual-minor since f¢ =
1+ 2+ 3 satisfies f < f<.

If f is positive, then f¢ is also positive. In this
case, an alternative definition of f¢ is given by
the condition that v € T(f¢) if and only if v is a
transversal of minT'(f); i.e., it satisfies ON(v) N
ON (w) # 0 for all w € minT'(f).

Let Csp(n) (resp., Cpma(n) and Cppy(n)) de-
note the class of all positive self-dual (resp., dual-
major and dual-minor) functions of n variables.
Note that in these definitions functions may have
some irrelevant variables.

2.3 Regular, 2-monotonic and thresh-
old functions

A positive function f is said to be regular if, for
every v € {0,1}" and every pair (4,) with i < j,
v; = 0 and v; = 1, the following condition holds:

fw) < flv+e? —), (i)

where e(*) denotes the unit vector which has a 1
in its k-th position and 0’s in all other positions.

In order to define an important partial order on
{0,1}", we first define the concept of the proﬁle
of a vector v € {0,1}" as follows:

Z%

i<k

prof

where £k = 1,2,...,n. If v,w € {0,1}", where
v # w, satisfy prof (k) < prof , (k) for all k, then
we write v < w (or w > v), and we say that v
supports w. If v < w or v = w, then we write
v < w (or w = v). ‘

It is clear from the above definition that v <
w if and only if ¥ > W, since profy(k) = k —
prof ,(k). Note that v < w implies v < w but
the converse is not always true. A function f
is said to be profile-monotone if v < w implies
f(v) < f(w). The following lemma is proved in
[14].

Lemma 1 ([14]) A function f is reqular zf and
only if f is profile-monotone.

For a set of vectors S C {0,1}", min,S (resp.,
maxy S) denotes the set of all minimal (resp.,
maximal) vectors in S with respect to >=. For
any set of vectors S C {0,1}", we have min, S C
minS (= min> S) and max, S C maxS(=
max> S), since v > w implies v = w. It fol-
lows from Lemma 1 that a regular function f is
uniquely determined by min,T'(f).

A positive function f is called 2-monotonic if
there exists a linear ordering on V, for which
f is regular. - The 2-monotonicity was originally
introduced in conjunction with threshold func-
tions (e.g., [14]), where a positive function f is
a threshold function if there exist n nonnegative
real numbers (weights) w,ws,...,w, and a non-
negative real number (threshold) ¢ such that:

fl) =

As this f satisfies (1) by permuting variables so
that w; > w; implies ¢ < j, a threshold function
is always 2-monotonic, although the converse is
not true [14].

1 if and only if Zwimi >t (2)

3 The operators p and o

Let f be a positive function of n variables.
Throughout this paper, we assume that f is non-
trivial in the sense that f # 0,1 andn > 1. Given
a vector v € minT(f), the operation p, applied
to f removes v from T'(f) and then adds ¥ to T'(f)
[5]. More precisely, while adding 7, all the vectors
larger than ¥ are also added to T'(f). Therefore,

T(eo(f)) = (TN \{vHUT:>(@), (3)

where T (7) = {w € {0,1}" | w > 7}. An equiv-
alent definition is :

pu(f)

where f\, denotes the function defined by all the
prime implicants of f except t,, and ¢ denotes
the dual of 7. We note that, if ¢, = z;, z;, - - T,
and t7 = z;, 7, - -+ T, then

f\'u- +iz+ tvt%a (4)

ol = Tiy Tiy =« * Ty, (Tjy, + Tjp + -+ + T5)

represents all the vectors larger than v. The ex-
pression (4) is not necessarily in MDNF, even if
f\v 18 represented by its MDNF, because some of

134

the prime implicants in t7+ tvt% may cover or may
be covered by some prime implicants of f\v.

Given a vector v € minT'(f) and a variable set
I with V; C I CV, we define the operation O (v;I)
by

O (v;I) (f) f\v + tqﬁ + tv[l]t,l%a (5)
where v[I] denotes the projection of v on I; e.g.,
if v = (1100), I = {1,2,3} and I, = {2,3}, then
v[[1] = (110) and v[[;] = (10). By definition,
O(s;v) = Py holds. This operation oy, is implic-
itly used in [8].

Let f be a function on the variable set V =
{1,2,...,n}. For a variable set I C V, the pro-
jection of f on I, denoted by Proj;(f), is the
function on I obtained from f by fixing z; = 0
forallz; e V'\ I.

For a variable set J D V, the ezpansion of f
to J, denoted by Ezp;(f), is the function on J
obtained from f by adding irrelevant variables
z; € J\V. By definition, f and its expansion can
be represented by the same MDNF. Since I D Vs,
we have

O(v;I) (f) = E:L‘pv(pv[I](P’f‘Oj[(f)))- (6)

Thus o has properties similar to those of p.

Now, for a specified class C(n) of positive func-
tions of n variables, we say that p (resp., o) pre-
serves C(n) if p,(f) € C(n) holds for all f € C(n)
and v € minT(f) (resp., oy (f) € C(n) holds
for all f € C(n), v € minT(f) and I C Vj).

Theorem 1 The operations p and o defined
above preserve the classes Csp(n), Cpya(n) and

CDM[(TL).

Let us further note that, if f is self-dual, then
pu(f), v € minT(f), is specified simply by

T(os(f)) = @O \{Hufs}, (1)

i.e., by interchanging v with ¥ in T'(f) [5]. To see
the effect of o(,,;) on T'(f), where Vy C T C V,
define '

o[l = {u € {0,1}" | u[I] = v[I]}.
It is easy to see that

Tlown(f) = (T(F)\vlllx)U olllx. (8)

Now consider a sequence of transformations
from a positive self-dual function f to another
positive self-dual function g,

fo(=1)
90 (= f)

where fir1 = p,o(fi), v € minT(fi), giy1 =
i,y (90), W € minT(g;), and I; 2 V. We
can see that m;,ma > |minT'(f) \ min7(g)| and
m1 > |T(f) \ T(g)|- The latter implies that m,
might be exponential in n and min T'(f), while my
might be small. In the next section, we consider
p and o operations on regular self-dual functions,
and give a transformation algorithm between two
regular self-dual functions f and g, which satisfies

—
—

— f
—r g1

— fml (: g))
— gmz (:g),

my < |minT(f)|+|minT(g)] - 2.

4 Transformation of
self-dual functions

regular

The goal of this section is to present an efficient
algorithm, TRANS-REG-SD, which transforms
a given regular self-dual function f to the one-
variable regular self-dual function g = z;. It ap-
plies a sequence of o operations to f, generating a
sequence of regular self-dual functions in the pro-
cess. As we will show, this algorithm can be used
to transform a given regular self-dual function of
n variables to any other regular self-dual function
of n variables, some of which may be irrelevant.
We need to prove a number of lemmas to achieve
this goal.

We start with the following lemma, which
shows that p, preserves regularity if v satisfies a
certain condition. (We have already seen that p,
preserves self-duality.) Recall that p,(f) is spec-
ified by (7), and therefore, we concentrate on the
vectors v and T. '

Lemma 2 Let f be a regular self—dual' function,
and let v € minT(f). py(f) is regular if and only
if v € minyT(f) and T A v.

The following lemma shows how to choose v
to be used in p,(f) to guarantee that p,(f) is
regular.

Lemma 3 Let f be a reqular self-dual function of
n (> 2) variables. If v € min,T(f) and v, = 1,
then py(f) is regular.

135

Interestingly, the existence of v satisfying the
condition in Lemma 3 is equivalent the relevance
of z,, to f, as proved in the following Lemma 4.

Lemma 4 For a regular function f, z, is rel-
evant to f if and only if there ezists a vector
v € min,T(f) such that v, = 1.

Lemma 3 deals with the case where z,, is rele-
vant to f. To deal with the case where z,, is ir-
relevant to f, note that for any 4, j € V such that
1 < j, if z; is relevant to a regular function f then
so is x;. This implies that z; is relevant to f if
and only if V¢ D {1,2,...,i}, in particular, z, is
relevant to f ifand only if Vy = {1,2,...,n} = V.
Corollary 1 below generalizes Lemma 3 to the
case where z,, may be irrelevant to f.

Corollary 1 Let f be a reqular self-dual function
such that |V§| =i (> 2). Ifv € m1n>T(f) and
i =1, then o(y,v;)(f) is regular.

We now have the theoretical foundation for
TRANS-REG-SD. By Lemma 3 and Corollary 1,
if z,, is relevant to a given f, we can use trans-
formation p,(f), with some v, to generate a new
regular self-dual function, and repeat this proce-
dure as long as z, is relevant. Once z, becomes
irrelevant to the newly generated function, f’, we
use ¢ transformations with respect to Vg, and so
forth. ' ,

What remains is the discussion of data we need
to keep track of in implementing a sequence of
o transformations. To represent the sequence
of regular self-dual functions {f'} that TRANS-
REG-SD generates, we represent each such:func-
tion f' in terms of minT(f’) and min,T(f').
For a vector v, let us introduce the notation,
T. (v) ={w | w > v} andT<(v)={w|w—<v}
Lemma 5 Let f be a regular self-dual functzon

ofn(> 2) variables, and let v € m1n>T(f) with
= 1. Then we have

minT(py(f)) = minT(f)\ ({v} U {v+ e | max
OFF(v) < j <n})U {7} 9)
miny T(py(f)) = minsT(f)\ ({v} Uminy T (@) U
{7} U {ue mi.n‘tTg('v) |uy z forall z €
(minyT'(f) \ {v}) U {7}}. (10)
From the proof of Lemma 5 (case (9)(i)), we
can see that 7+e(® ¢ min T(f): Since v, = 1 im-

plies n > max OFF(v), {7+ V). | max OFF (v) <
J < n} is non-empty, and (9) implies Lemma 6.

Lemma 6 Let f be a regular self-dual function
of n(> 2) variables, and let v € min, T'(f) with
vp, = 1. Then

|minT'(p,(f))| < [minT(f)| -1 (11)
minT(py(f)n U {v,7+e™} = minT(f)n, (12)

where Sy, denotes the set {v € S | v, =1}.

We are now ready to describe the transforma-
tion algorithm. If we repeatedly apply p, oper-
ations (with different v’s, of course) to a regu-
lar self-dual function f, until there is no vector
v € minyT'(f) with v, = 1, then by Lemmas 3,
4 and 6, we have a regular self-dual function f’,
to which z, is irrelevant. Note that f’ may not
be unique, i.e., it in general depends on the se-
quence of vectors v € miny,T'(f) with v, = 1 that
are used in p,.

Now Vy = {1,2,...,51} holds for some j; <
n—1. If j; = 1, we have f' = z; and we are done.
If j1 # 1, on the other hand, we apply oy, 7D
operatlons to f' instead of O(w;vp) (= pu), until
there is no vector v € min,T'(fS with v;; = 1.
Since all the lemmas presented in this section are

still vahd for oy, V) and v;, = 1 in place of
O(v; Vf)(py) and v, = 1, we obtain a regular
self- dual function f”, whose relevant variable set
is Vpr = {1,2,...,72} with j» < j;. By repeat-
ing th’is'a,rgument we reach the 1-variable regular
self-dual function ;. Formally, this sequence of
transformatlons can be stated as follows.

Algorxthm -TRANS-REG-SD

Input: minT(f), where f is a regular self-dual
function.- :

Output Regular self-dual functxons fo(), fl,
fay--o5 fm (= 21).

Step 0: Let i =0 and f = f()

Step 1: Output fi. If fi = x1, then halt.

Step 2: fi1 = o(v(,-);vh)(fi , where v ¢
miny-T(f;) and ol = 1.-i:= ¢+ 1. Return

max sz‘

to Step 1. . : S m|

By (11), the number m in the output from
TRANS-REG-SD satisfies m < |minT(f)| —
1. Since every self-dual function f satisfies
p(ou(f)) = f (see (7)), we can transform z; into
any regular self-dual function g by repeatedly ap-
plying o operations to z; at most |minT'(g)| — 1
times. Thus we have the following theorem.

136

Theorem 2 Let f and g be any two regular self-
dual functions. Then f can be transformed into g
by repeatedly applying o operations to f at most
|minT(f)| + | minT(g)| — 2 times.

In the subsequent sections, we study some ap-
plications of algorithm TRANS-REG-SD.

5 Optimum self-dual function
for regular functional &

Let ¢ be a pseudo Boolean function, i.e., ¢ is
a mapping from {0,1}" to the set of real num-
bers R. ¢ is said to be g-regular if it is profile-
monotone, i.e., p(v) > ¢(w) holds for all pairs of
vectors v and w with v > w. Define a functional
®() of Boolean functions f as follows:

(f) = D o),

veT(f)

(13)

where ¢ is a pseudo Boolean function. @ is also
said to be g-regular if ¢ is g-regular. As an ex-
ample of a g-regular pseudo Boolean functional of
interest, we cite the availability A(f) of a Boolean
function f. Assume that each element i € V has
the operational probability p; (0 < p; < 1), i.e
the i-th element is operational with probability p;.
We also assume that the probabilities for different
elements are independent. Then the availability
of a Boolean function f is defined by

Ay = ST »]I

veT(f) i€ON(v) i€OFF(v)

(1 - p))14)

If we interpret T'(f) as the set of states in which
the n-element system defined by the Boolean
function f is working, then A(f) represents the
probability that the system represented by f
is working. Availability has been studied ex-
tensively, especially, in the case where f repre-
sents a ND coterie (i.e., f is.positive self-dual)
(1,4, 7,16, 17, 19]. As commented in the Intro-
duction, we can assume without loss of generality
that
P12 p2 2 ... 2 pp > 1/2.

Now, let ¢(v) = Hz’eON('u) pi HieOFF(v)(l - pi)-
Then we have ®(f) = A(f). It follows from
the assumption on the order of probabilities that
A(f) is g-regular.

In this section, we consider the functions f that
maximize g-regular functional ® among all self-
dual functions.

Lemma 7 Given a g-regular function @, let ® be
a g-regular functional defined by (13). Then the
following statements regarding f are equivalent.

(1) ®(f) is mazimum among all self-dual func-
tions.

(if) All vectors v € T(f) satisfy p(v) > (7).

(iii) All vectors v € min,T(f) satisfy (v) >
©(D).

Theorem 3 Let ®(f) be a g-regular functional
defined by (13). Then there ezists a regular self-
dual function f which mazimizes ®(f) among all
self-dual functions.

Proof. Let f be a regular self-dual function that
maximizes ® among all regular self-dual func-
tions. We claim that f in fact maximizes ®
among all self-dual functions. If not, by Lemma
7, there exists a vector v € min,T(f) such that
¢(v) < p(v). Note that v ¥ 7 holds, since, oth-
erwise (i.e., v = 1), ¢(v) > ¢(7), a contradiction.
Thus; it follows from Lemma 2 that p,(f) is reg-
ular and self-dual. Moreover, by Eq. (7), we have
®(py(f)) > ®(f), which contradicts the assump-
tion. ‘ |

However, there may be non-regular functions f
that also maximize ®(f).

Based on Theorem 3, the following algorithm
computes an optimum regular self-dual function.

Algorithm OPT-REG-SD

Input: A membership oracle of g-regular function
.

Output: A regular self-dual function f that max-
imizes ®(f) among all self-dual functions.

Step 0: Let ¢:=1 and f := z;.

Step 1: While 3v € min,T'(f) such that v;
0, v[V;] ¥ ©[Vi] and ¢(@') < (') for v =
v+ i e, do f = o(v;)(f), where V; =
{1,2,...,3}. . . '
Step 2: If i = n, output f and halt. Otherwise,
let i := 4+ 1 and return to Step 1. o

- Note that the set miny-T'(f) in the while state-
ment of Step 2 is updated as a result of applying

137

the o transformation to f in Step 2.

Let f;, « = 1,2,...,n, be the function f af-
ter the i-th iteration of Step 1 of OPT-REG-SD
has been completed. Then clearly Vi, C V;(=
{1,2,...,4}) holds. Moreover, we have the fol-
lowing lemma:

Lemma 8 Let f;, i = 1,2,...,n, be as defined
above. For each i = 1,2,...,n, all vectors v €
miny T'(f;) with v[V;] ¥ 9[Vj] satisfy

e(v') = o), (15)

where v' = v + 37, e,

Lemma 9 Let f, be as defined above. Then f,
mazimizes ® among all self-dual functions.

Therefore, OPT-REG-SD computes an opti-
mum function f (= f,). Moreover, it requires
polynomial time in n and the size of f. (Due to
the space limitation, we omit the proof. See [12]).

Theorem 4 Algorithm OPT-REG-SD correctly
outputs a regular self-dual function f that
mazimizes ® among all self-dual functions in

“O(n3| minT(f)|) time.

6 Generation of all regular ND
coteries

Let Cr.sp(n) denote the class of all regular self-
dual functions of n variables. We present in this
section an algorithm to generate all functions in
Cgr-sp(n) by applying the operator o. The al-
gorithm is incrementally polynomial in the sense
that the i-th function ¢; € Cr.sp(n) is output in
polynomial time in n and Z;;}) | min T'(¢;)|, for
1=1,2,..., lcR—SD|'

To visualize the algorithm, we first define an
undirected graph G, = (Cgr.sp(n),E), where
(g, f) € E, if there exists a vector v € min-T(g)
such that o(,;5)(g) = f for some I 2 V;. Figure 1
shows the graph G5. (Ignore the arrows on some
edges). o :

Theorem 2 implies that G, is connected. More-
over, the condition (g, f) € E holds if and only
if (f,9) € E, i.e., G, is undirected. Let fo = x;

be the designated function in Cg.sp(n), and con-

sider the problem of transforming an arbitrary

f3=12+13+ 14+ 15+ 2345

fi=12+13+23 fo=124+13+ 144234

fa=12413+145+4 2344235

) f5 = 12 4 134 + 135 + 145 + 234
+235 + 245

fe =123 + 124 + 125 4+ 134 + 135
+145 + 234 + 235 +- 245 + 345

Figure 1: The graph Gs.

function g € Cr.sp(n) to fo by repeatedly apply-
ing operation ¢ in Algorithm TRANS-REG-SD.
Note that the transformation path from a given
g to fo is not unique. Thus, to make the path
unique, we choose for each o operation the lexi-
cographically smallest vector ¥ € miny7T'(g) such
that maxv, = 1.3 Let u be such an operation,
ie.,

pe) = owy,(9)- (16)

In this way, we define a directed spanning tree
of G, RT = (Cgr-sp(n), Arr), such that (g, f)
is a directed arc in Agr if and only if u(g) = f.
Clearly, this RT is an in-tree rooted at fo = z;.
In Figure 1, Agr is indicated by the thick arcs.

Our algorithm will traverse RT from f; in a
depth-first manner, outputting each regular func-
tion f when it first visits f. This type of enumer-
ation is called reverse search in [2]. When RT
is traversed from fy, for each arc (g, f) € AgT,
the end node f is visited first, i.e., before g. Un-
fortunately, at f we cannot distinguish between
the arcs in Arr and the edges in E of G,. In
other words, knowing f, we cannot find g such
that (g,f) € Agpr. Note that (16) computes f
given g, not the other way around. In Lemma
10 below, we find the “inverse” of (16) in the
sense that we find the conditions on the choice
of w € min,T'(f) such that g = o(y,v,)(f)-

For a vector v € {0,1}" and I C V, let
v[I]0 denote the vector u defined by ON(u) =

% For example, the lexicographic order of all vectors in

{0,1}® is (000), (001), (010), (011), (100), (101), (110),
(111).

138

OFF(v) N I, i.e., u[I] = v[I] and the remaining
components of u, if any, are all set to 0’s.

Lemma 10 Let f € Crsp(n) and g = o(y,y,)(f)
for w € min,T(f) such that wW[V,] £ w[V,] and
Vo 2 Vi. Then f = pu(g) (= opv,)(9) if and
only if

(a) WmaxV, = 0,
(b) wy =1, and

(c) W[V,]0 is lexicographically smaller than any
vector u € minyT'(f) with umaxy, = 1.

Note that, if Vg # V; (i.e., V; D V}), Lemma 10
implies that f = u(g) if and only if w; = 1, since
V4 D V5 and w € min,T(f) imply (a). Thus, for
an index set I D Vy, every vector w € minyT'(f)
which satisfies w; = 1 and @W[I] £ w[I] always
produces g = 0(y,1)(f) such that f = u(g).

Let

Maym = Z | minT'(f)|,
f€Cr-sp(n)

Mpax = max inT(f)|.

2 f€ECR-sp(n) |minT(f)]

Although the details are omitted due to the space
limitation, we have the following results [12].

Theorem 5 All functions in Cg.sp(n) can be
generated in incrementally polynomial time. It
requires O(n*|Cr.sp(n)| + nMm) time and
O(nMpayx) space.

Corollary 2 All functions in Cp.sp(n) can be
scanned in O(n3|Cr.gp(n)|) time.

We reiterate here that regular functions are all
representatives of a permutation class, i.e., no reg-
ular function f is equivalent to another regular
function g (# f) under permutation. Therefore,
our algorithm generates non-equivalent functions.
Let us remark that the algorithms in [5, 8] are
not polynomial, if we try to output only non-
equivalent functions.

It is known that the positive self-dual functions
of up to n = 5 variables are all threshold functions
(and hence regular, if we consider the representa-
tives), but there are many non-regular self-dual
functions for n > 6, even if we consider the rep-
resentatives. Moreover, it is known [14] that all
regular self-dual functions for n < 9 are threshold
functions. '

7 Conclusion

We have introduced a new operator o, which
is similar to the p operator used by Bioch and
Ibaraki [5]. It transforms a non-dominated (ND)
coterie to another ND coterie. We showed that
any regular ND coterie can be transformed to
any other regular ND by a sequence of o op-
erations, and tried to find the shortest such se-
quence. As another application of the o opera-
tion, we presented an incrementally-polynomial-
time algorithm for generating all regular ND co-
teries, and showed that we can construct an op-
timum coterie C' with respect to a “g-regular”
function in polynomial time.

The challenging problem of deciding whether a
given coterie is ND is still open.

References

[1] Y. Amir and A. Wool, Optimal availability
quorum systems: theory and practice, In-
formation Processing Letters, 65 (1998) 223-
228.

[2] D. Avis and K. Fukuda, Reverse search for
enumeration, Discrete Applied Mathemat-
ics, 65 (1996) 21-46.

[3] D. Barbara and H. Garcia-Molina, The vul-
nerability of vote assignment, ACM Trans.
on Computer Systems, 4 (1986) 187-213.

[4] D. Barbara and H. Garcia-Molina, The re-
liability of voting mechanisms, IEEE Trans.
on Computers, 36 (1987) 1197-1208.

[5] J. C. Bioch and T. Ibaraki, Generating and
approximating positive non-dominated co-
teries, IEEE Transactions on Parallel and
Distributed Systems, 6 (1995) 905-914.

[6] S.B. Davidson, Replicated data and parti-
tion failures, in: S. Mullender (ed.), Dis-
tributed Systems, Ch.13, Addison Wesley,
1989.

[7} K. Diks, E. Kranakis, K. Krizanc, B. Mans
and A. Pelc, Optimal coteries and voting
schemes, Information Processing Letters, 51
(1994) 1-6.

139

[8] H. Garcia-Molina and D. Barbara, How to
assign votes in a distributed system, J. of
the ACM, 32 (1985) 841-860.

[9] D.K. Gifford, Weighted voting for replicated
data, Proc. the 7th Symposium on Operating

System Princiles, Pacific Grove, Calif., Dec.
1979, 150-162, ACM, New York.

[10] T. Ibaraki and T. Kameda, Theory of co-
teries: Mutual exclusion in distributed sys-
tems, IEEE Trans. on Parallel and Dis-
tributed Syst., 4 (1993) 779-794.

[11] L. Lamport, Time, clocks, and the ordering
of events in a distributed system, Comm. of
the ACM, 21 (1978) 558-565.

[12] K. Makino and T. Kameda, Transforma-
tion of Regular Non-Dominated Coteries,
DIMACS Technical Reports 99-41, 1999.

[13] K. Makino and T. Kameda, Efficient gen-
eration of all regular non-dominated coter-
ies, Proc. Nineteenth ACM Symposium on
Principles of Distributed Computing (PODC
2000), Portland, July 16-19, pp.279-288,
2000.

[14] S. Muroga, Threshold Logic and Its Applica-
tions, Wiley-Interscience, 1971.

[15] M. Naor and A. Wool, Access control and
signatures via quorum secret sharing, IEEE
Trans. on Parallel and Distributed Syst., 9
(1998) 909-922.

(16] D. Peleg and A. Wool, The availability of
quorum systems, Information and Compu-
tation 123 (1995) 210-223.

[17] M. Spasojevic and P. Berman, Voting as the
optimal static pessimistic scheme for manag-
ing replicated data, IEEE Trans. on Parallel
and Distributed Syst. 5 (1994) 64-73.

[18] R.H. Thomas, A majority conéensus ap-
proach to concurrency control, ACM Trans.
on Database Syst., 4 (1979) 180-209.

[19] Z. Tong and R.Y. Kain, Vote assignments
in weighted voting mechanisms, Proc. 7th
Symp. on Reliable Distributed Systems, Oct.
1988, 138-143.

