
Distributed Motion Generation for Carrying a Ladder
by Two Omni-Directional Robots

Yuichi Asahiro1 , Eric Chung-Hui Chang2, Amol Mali2 , Syunsuke Nagafuji1 , Ichiro $\mathrm{S}\mathrm{u}\mathrm{z}\mathrm{u}\mathrm{k}\mathrm{i}2$ ,
and Masafumi YAMASHITA1

1Dept. of Computer Science and Communication Engineering, Kyushu University
6-10-1 Hakozaki, Higashi-ku Fukuoka, 812-8581, Japan

{as $\mathrm{a}\mathrm{h}\mathrm{i}$ro@, nagafuj i@tcslab. , mak@} $\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{e}$ . kyushu-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}$

2 Dept. of Electrical Engineering and Computer Science
University of Wisconsin-Milwaukee, Milwaukee, WI 53201, $\mathrm{U}.\mathrm{S}$ .A.

{ecchang, mali, $\mathrm{s}\mathrm{u}\mathrm{z}\mathrm{u}\mathrm{k}\mathrm{i}$ } $@\mathrm{C}\mathrm{s}.\mathrm{u}\mathrm{w}\mathrm{m}.\mathrm{e}\mathrm{d}\mathrm{u}$

Abstract: The problem of moving a pair of omni-directional robots carrying a ladder using
distributed control is discussed. We first consider the case in which two robots that may
differ only in their maximum speeds are situated in an obstacle-free workspace, and present
two distributed algorithms. Next, a distributed algorithm is presented for the case in which
the workspace is a narrow corridor with a 90 degree corner and two robots are.chosen from
a large pool of robots having different characteristics in terms of the maximum speed, path
generation strategy, sensitivity to the motion of the other robot, etc. The effectiveness of the
algorithms is evaluated using computer simulation.
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1 Introduction

There are two general approaches for control-
ling multiple robots transporting an object. One
is the centralized approach in which the motion
of the robots is generated by an outside entity
that can observe the global state of the system
$[7, 12]$ . The other is the distributed approach,
where every individual robot has to decide its mo-
tion based on the local information available to it
$[8, 9]$ . This paper discusses the problem of trans-
porting a ladder, or any long object such as a
rocket and a bridge, using two omni-directional
robots under distributed control.

Within the framework of the centralized ap-
proach, it is possible to compute a time-optimal
motion of two such robots in an obstacle-free
workspace using optimal control theory, under
the assumption that the speed of the robots is
either $0$ or a given constant at any moment dur-
ing a motion $[5, 10]$ . Fig. 1 shows a instance of
this problem in which robots located at $A$ and $B$

must move to $A’$ and $B’$ , respectively, and a time-
optimal motion for this instance obtained by this
method is shown in Fig. 2. Unfortunately, the

applicability of this method for actually moving
physical robots in optimal time is somewhat lim-
ited, because (i) the method uses complex calcu-
lation involving elliptic integral, and (ii) physical
robots cannot always execute a computed mo-
tion precisely –they can neither accelerate to
the maximum speed instantaneously, nor move
along a given trajectory precisely due to mechan-
ical imprecision and the unpredictability of the
environment (such as a slight incline of the floor).

In contrast, in the distributed approach the
robots can cope with unexpected perturbation by
continuously monitoring their progress and dy-
namically adjusting their trajectories. The over-
all motion resulting from such a distributed strat-
egy can be $\mathrm{n}\mathrm{e}\dot{\mathrm{a}}$rly as efficient as an optimal mo-
tion $[1, 2]$ . One should also keep in mind, how-
ever, that good distributed algorithms are usu-
ally much harder to design than centralized algo-
rithms. For instance, the fact that the path of
neither robot is straight in the optimal motion
of Fig. 2 indicates that efficient motion may not
be attainable distributively if either robot sim-
ply attempts to reach its destination as quickly
as possible.
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“adherence” to stay on the intended path,
and reaction to the other robot’s motion.

Figure 1: An instance of the ladder carrying prob-
lem.

Figure 2: Time-optimal motion for the instance
shown in Fig. 1.

A number of distributed algorithms for carry-
ing a ladder using two identical omni-directional
robots (hence having the same maximum speed)
have been reported for the case in which there
are no obstacles in the workspace $[1, 2]$ . The goal
of this paper is to consider the problem under
the assumption that the robots are not necessar-
ily identical and the workspace is not necessarily
obstacle-free. Specifically:

1. We present two distributed algorithms for
the case in which two robots possibly having
different maximum speeds are situated in an
obstacle-free workspace. The first algorithm,
ALGI, assumes that each robot knows the
maximum speeds of both robots, while the
second algorithm, ALG2, is for the case this
information is not available. The algorithms
are evaluated using computer simulation.

2. We then present and evaluate an algorithm
called ALG3 for the case in which two robots
must transport a ladder through a corridor
with a 90 degree corner. We assume that
the two robots can have different charac-
teristics in terms of the selection of a path
through the corner, the maximum speed,

Due to space limitation we are not able to
present some of the details. The missing details
may be found in the references, or will be reported
in forthcoming papers.

2 The Model

The model of the robots we use is based on the
omni-directional robots developed at RIKEN [3].

We represent each robot $R$ as a disk. One end
of the ladder is attached to a force sensor that
we model as an ideal spring located at the center
of $R$ . At any time during a motion the vector
from the center of $R$ to the tip of the ladder at-
tached to its force sensor is called the offset vec-
$tor$ , and is denoted $\mathit{0}arrow$. The term offset refers to
$|\mathit{0}\neg=|(D-\ell)/2|$ , where $D$ is the distance between
(the centers of) the two robots and $\ell$ is the length
of the ladder.

An algorithm for robot $R$ with maximum speed
$V$ is any procedure that computes a velocity vec-
$torvarrow \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}|v\neg\leq V$ , using available informa-
tion such as the robots’ current and final posi-
tions, the offset vector $\mathit{0}arrow$, and the geometry of the
workspace. We assume that $R$ repeatedly com-
putes $v\mathrm{a}\mathrm{n}\mathrm{d}arrow$ moves to a new position with velocity
$v\mathrm{f}arrow \mathrm{o}\mathrm{r}$ unit time.

We evaluate our algorithms by computer sim-
ulation. For simplicity we use discrete time and
assume that both robots compute their respective
velocity vectors and move to their new positions
at time instants $0,1,$ $\ldots$ .

3 Obstacle-Free Workspace

Consider two robots $A$ and $B$ in an obstacle-
free workspace with respective goal positions $A’$

and $B’.$ $A$ and $B$ may have different maximum
speeds. For convenience of discussion we set
up a Cartesian coordinate system as shown in
Fig. 3, where $A$ and $A’$ are at the origin $(0,0)$

and $(L, 0)$ , respectively, and $\alpha$ and $\beta$ are the an-
gles that $AB$ and $A’B’$ make with the $x$-axis, re-
spectively. In this section, we assume $L’\leq L$

and $0\leq\alpha,\beta\leq 180^{\mathrm{O}}$ , where $L=|AA’|$ and
$L’=|BB’|$ . Minor changes are needed in the
following discussion for other cases.

12



counterclockwise, whose directions are $\alpha+$

$\pi/2$ and $\alpha-\pi/2$ , respectively.

Figure 3: The setup for ALGI and ALG2.

3.1 Distributed algorithms ALGI and
ALG2

In this section we introduce two distributed al-
gorithms ALGI and ALG2. ALGI is for the
case where the two robots’ maximum speeds are
known to both robots, while ALG2 is for the case
where neither robot knows the other robot’s max-
imum speed. In either algorithm we assume that
the robots’ current and goal positions are known
to both robots. (This assumption can be expen-
sive to realize in practice.)

Both algorithms are memoryless in the sense
that their output is a function of the current state
(and is independent of the motions in the past).
It is therefore sufficient to view $A$ and $B$ of Fig. 3
as the robots’ current positions and specify how
the velocity vector is computed from $A,$ $B,$ $A’$

and $B’$ .

Algorithm ALGI
Both robots know the maximum speeds $v_{A}$ and
$v_{B}$ of both, as well as the positions $A,$ $B,$ $A’,$ $B’$ ,
and hence angles $\alpha,$

$\beta$ and their offset vectors $\vec{\mathrm{O}}_{A}$

and $0_{B}arrow$ . $c_{1},$ $c_{2}$ , and $s\geq 0$ are some constants.
Since both robots have the same information we
explicitly describe the procedure for both.

Step 1: Let $e_{A}=L/v_{A}$ and $e_{B}=L’/v_{B}$ . Let $t_{A}arrow$

and $t_{B}arrow$ be vectors directed from $A$ to $A’$ and
from $B$ to $B’$ , respectively, such that

$\bullet$ $|t_{A}^{\sim}|=1$ and $|t_{B}|arrow=(e_{B}/e_{A})^{c_{1}}$ if $e_{A}\geq$

$e_{B}$ , and
$\bullet$ $|t_{A}|arrow=(e_{A}/e_{B})^{c_{1}}$ and $|t_{B}^{\sim}|=1$ if $e_{A}<$

$e_{B}$ .
Step 2: Let $r_{A}arrow$ and $r_{B}arrow$ be “rotational vectors”

of length $c_{2}(\beta-\alpha)$ that rotate the ladder

$\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{p}3:arrow$ Scale the offset vectors as $\vec{h}_{A}=SO_{A}arrow$ and
$h_{B}=so_{B}arrow$ .

Step 4: $\vec{T}_{A}=t_{A}+rA+\vec{h}arrowarrow A$ and $\vec{T}_{B}=t_{B}+r_{B}arrowarrow+\vec{h}_{B}$ .

Step 5: Output velocity vector

$\bullet$ $\overline{v}_{A}=v_{A}\vec{T}_{A/\max\{1\vec{T}|}A,$ $|\vec{T}_{B}|$ } for robot
$A$ , and

$\bullet$ $v_{B} arrow=v_{B}\vec{T}_{B}/\max\{|\vec{T}A|, |\vec{T}_{B}|\}$ for robot
$B$ .

In Step 1 ALGI tries to slow the robot that
would otherwise reach its goal sooner than the
other according to the estimates $e_{A}$ and $e_{B}$ . The
constant $s$ used in Step 3 is a parameter indicat-
ing how a robot reacts to the offset.

Algorithm ALG2
The robots have all the information available in
ALGI, except robot $A$ does not know $v_{B}$ and
robot $B$ does not know $v_{A}$ . We use additional
constants $v_{A}’$ and $v_{B}’$ .

Step 1: Robot $A$ runs ALGI using $v_{A}$ and $v_{B}’$

in place of $v_{A}$ and $v_{B}$ , respectively. Likewise
robot $B$ runs ALGI using $v_{A}’$ and $v_{B}$ . Let
$\overline{v}_{A}^{f}$ and $\overline{v}_{B}^{\mathrm{v}}$ the velocity vectors obtained.

Step 2: Output velocity vector

$\bullet$ $v_{A}arrow=\overline{v}_{A}’$ if $|\overline{v}_{A}’|$ $\leq v_{A}$ , and $v_{A}arrow=$

$v_{A}v_{A}\neg/|v_{A}|\neg$ otherwise, for robot $A$ .
$\bullet$ $\vec{v}_{B}=v_{B}^{\neg}$ if $|\vec{v}_{B}’|\leq v_{B}$ , and $v_{B}arrow=$

$v_{B}v_{B}arrow/|\overline{v}_{B}^{l}|$ otherwise, for robot $B$ .

In ALG2 we use $v_{A}’$ and $v_{B}’$ as an estimate of un-
known $v_{A}$ and $v_{B}$ , and the output of ALG2 coin-
cides with that of ALGI if $v_{A}’\leq v_{A}$ and $v_{B}’\leq v_{B}$ .
We assume that $v_{A}’$ and $v_{B}’$ are constants sup-
plied to ALG2, since it is one of our basic goals
to keep the algorithms memoryless (memoryless
algorithms can tolerate a finite number of tran-
sient errors). It would be interesting, however, to
modify ALG2 so that the robots will choose suit-
able values for $v_{A}’$ and $v_{B}’$ based on their recent
history.
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Figure 4: ALGI for $k=1,$ $\alpha=30^{\mathrm{o}},$ $L=200$ .

Figure 5: ALGI for $k=1,$ $\alpha=30^{\mathrm{o}},$ $L=400$ .

3.2 Experimental results by computer
simulation

Using the setup of Fig. 3 we evaluate the per-
formance of the algorithms in terms of the time
necessary for the robots to reach their goals. The
length $\ell$ of the ladder is 100, and the radius of
the disks representing the robots is 10. We use
$v_{A}=1$ and $v_{B}=k$ (so $k$ is the ratio of $v_{B}$ to $v_{A}$ ),
and in the following discuss mainly the results for
the case $k\geq 1$ . The parameters $c_{1},$ $c_{2}$ and $s$ of
ALGI are set to 3, 0.5, and 0.1, respectively, that
have been found to work well when $v_{A}=v_{B}[1]$ .
To reduce the number of instances to examine, we
experiment with only two values of $L,$ $L=200$
$(=2\ell)$ and 400 $(=4\ell)$ , while changing $\alpha$ in the
range from $0^{\mathrm{o}}$ to $90^{\mathrm{o}}$ and setting $\beta=180^{0}-\alpha$ .

Fig. 4 and Fig. 5 show the motions generated
by ALGI for $k=1$ and $\alpha=30^{\mathrm{O}}$ , for $L=200$
and $L=400$ , respectively. Fig. 6 and Fig. $7\mathrm{s}\mathrm{h}_{0}\mathrm{w}$

the same, for $k=3$ instead of 1. The finish times
for $L=200$ are 205 $(k=1)$ and 201 $(k=3)$ ,
and for $L=400$ they are 404 $(k=1)$ and 401
$(k=3)$ . Note that in Fig. 6 and Fig. 7 robot $B$

initially slows down considerably, allowing robot
$A$ to rotate more quickly than in Fig. 4 and Fig. 5.

Fig. 8 and Fig. 9 show the finish times for $k=$

$1,2,3,4$ and 5, for $L=200$ and 400, respectively.

Figure 6: ALGI for $k=3,$ $\alpha=30^{\mathrm{o}},$ $L=200$ .

Figure 7: ALGI for $k=3,$ $\alpha=30^{\mathrm{o}},$ $L=400$ .

Figure 8: Finish times of ALGI for $k=1,2,3,4$
and 5, for $L=200$ .
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Figure 11: ALGI with $k=1/3,$ $\alpha=30^{\mathrm{o}},$ $L=200$ .

Figure 9: Finish times of ALGI for $k=1,2,3,4$
and 5, for $L=400$ .

Figure 10: ALG2 using an estimate $k^{*}=3$ in
place of $k=1/3$ .

We observe that the time decreases as $k$ increases
when $\alpha\leq 60^{\mathrm{o}}$ . This phenomenon is quite natural,
since smaller $\alpha$ implies more necessary rotation,
and larger $k$ causes $B$ to slow down, thus allowing
$A$ to rotate more quickly.

Fig. 10 shows a motion generated by ALG2 for
$k=1/3,$ $\alpha=30^{\mathrm{o}}$ and $L=200$ , where (for sim-
plicity) both robots use an estimate of $k^{*}=3$ in
place of the unknown $k$ . (The estimates of $k$ by
$A$ and $B$ may differ in real situations.) Note that
the robots successfully complete the task even
though their estimate $k^{*}$ is not at all close to ac-
tual $k$ . However, the large discrepancy between
$k^{*}$ and $k$ has resulted in a noticeable decline in
the performance in terms of the finish time –

the finish time of ALG2 in Fig. 10 is almost 28%
larger than that of ALGI in Fig. 11 for the same
instance.

4 Corridor with a Corner

The distributed approach works well also for the
case in which the robots must go through a 90
degree corner in a corridor avoiding both robot-
to-wall and $1\mathrm{a}\mathrm{d}\mathrm{d}\mathrm{e}\mathrm{r}- \mathrm{t}_{0^{-\mathrm{W}}}\mathrm{a}\mathrm{l}1$ collision. The motion
shown in Fig. 12 has been obtained by an algo-
rithm that is similar in spirit to the ones pre-
sented in the preceding section, with an addi-
tional step in which each robot computes a target
path through the corner before starting the mo-
tion. During the motion each robot attempts to
move along the path while adjusting its positions
based on both the $\mathrm{m}\mathrm{o}\mathrm{t}!\mathrm{o}\mathrm{n}$ of the other robot ob-
served through the force sensor and the need to
prevent collision. We assume that the robots can
detect how close they and the ladder are to the
walls, from their positions and the geometry of
the workspace.

While the robots in the preceding section are
assumed to be identical in all aspects other than
their maximum speed, in this section we assume
that they may differ in a number of other charac-
teristics as well –(i) selection of a path through
the corner (in, middle or out), (ii) the maximum
speed (high or low), (iii) adherence to the in-
tended path (high or low), and (iv) reaction to
the motion of the other robot (high, low, or nonlin-
ear). These variations result in a total of 36 differ-
ent types of robots from which two are chosen to
carry out the task. We assume that the robots do
not know the characteristics of the other robot.

First, robot $R$ generates a path $P$ through the
corner as a Kochanek-Bartels spline [6] that trav-
els either close to the inner walls of the corner
(in), close to the outer walls of the corner (out),
or somewhere in between the two (middle).

The remaining characteristics of $R$ are deter-
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Figure 12: Motion through a corner generated by
ALG3. The robots start at the bottom of the fig-
ure and makes a right turn. The intended paths
of the robots are shown in small circles.

mined by the following algorithm ALG3 that $R$

uses to compute its velocity vector. It is assumed
that the offset $|\mathit{0}\urcorner$ can be as large as the the radius
10 of the disk representing $R$ .

Algorithm ALG3

Step 1: $\vec{u}=(1/10)(\tilde{g}+f(\overline{o})+c\gamma$ , where

$\bullet$ $\vec{g}$ is a vector of size 10 directed from the
center of $R$ toward the “current target
position”,

$\bullet$
$o\mathrm{i}arrow \mathrm{s}$ the offset vector and $f$ is a function
that converts $\vec{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{o}$ another vector such
that $|f(\vec{O})|\leq 10$ (see details bel $o\mathrm{w}$), and

$\bullet$
$carrow$ is a suitable “correction vector”
needed to prevent collision. (We omit
the details of $c$ )$\sim$.

The factor 1/10 effectively reduces the sizes
of $\vec{g}$ and $f(\vec{o})$ to within 1.

Step 2: $\tilde{w}=\vec{u}$ if $|\tilde{u}|\leq 1$ , and $\vec{w}=\vec{u}/|\vec{u}|$ if $|\vec{u}|>$

$1$ . That is, $\vec{w}$ is the result of “clamping”
vector $\vec{u}$ at length 1 so that $|\vec{w}|\leq 1$ .

Step 3: Output the velocity vector $\vec{v}=V\vec{w}$,
where $V$ is the maximum speed of $R$ .

In our experiments the maximum speed $V$ of
$R$ can be either 2 (high) or 1 (low).

A robot with high adherence attempts to re-
turn to $P$ more quickly than one with low ad-
herence when it deviates from $P$ . We control the
adherence of $R$ by choosing vector $\vec{g}$ in Step 1 ap-
propriately: If adherence is high then the “current
target position” (at which $\vec{g}$ is aimed) is chosen
to be a point on $P$ relatively close to the robot’s
current location. If adherence is low then $\tilde{g}$ is di-
rected toward a point on $P$ that is farther away.
(We omit the details of how such points are ac-
tually chosen in our experiments.)

Function $f$ of Step 1 determines how $R$ reacts
to the motion of the other robot observed through

$\tilde{o}$. We use the following three variations.

1. high: $f(\vec{o})=\tilde{o}$. The robot is highly sensitive
to $\mathit{0}arrow$.

2. low: $f(\mathit{0})arrow=0.5\tilde{o}$. The robot’s sensitivity is
low.

3. nonlinear: $f(\vec{o})$ equals the zero vector $0arrow \mathrm{i}\mathrm{f}$

$|\mathit{0}\neg\leq 5$ , and $2_{\mathit{0}^{\wedge}-}\tilde{O}/|\mathit{0}\neg$ if $|\mathit{0}\neg>5$ . The robot
reacts to $o\mathrm{o}\mathrm{n}\mathrm{l}arrow \mathrm{y}$ after its magnitude exceeds
5.

Note that $|f(\vec{O})|\leq|\mathit{0}\neg\leq 10$ holds in all three
cases.

The motion shown in Fig. 12 is obtained by
ALG3 where both robots use the same out path
and has the same low adherence. The robot in
front has high maximum speed and high reac-
tion $(f)$ , while the other robot has low maximum
speed and nonlinear reaction.

To evaluate ALG3 we randomly generate 100
pairs of robots from the pool of 36 robots and ex-
amine the probability that the task is completed
successfully (a motion is considered unsuccessful
if the offset exceeds 10). The width of the corridor
is 200 and the ladder length $\ell$ varies between 400
and 480. (The robots always fail when $\ell=490.$ )
The success rate decreases from 100% for $\ell=400$

to 75% for $\ell=480$ if both robots are allowed
to choose a path that is either in, middle or out,
while the rate increases to 100% for $\ell=480$ if nei-
ther is allowed to choose an in path. However, if
we allow the robots’ adherence to be even higher
(than high), then the rate drops again to 57% for
$\ell=480$ even without in paths. The reader is re-
ferred to [4] for additional results and a detailed
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analysis of the effect of these parameters to the
overali perfOrmanC.$\mathrm{e}$ .

5 Concluding Remarks

We have presented three distributed algorithms
for two robots carrying a ladder under various
conditions, and evaluated their performance us-
ing computer simulation. We are currently work-
ing on a detailed analysis of ALG3.
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