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Abstract: In this paper, we consider the complexity of recognizing ordered tree-shellable
Boolean functions when Boolean functions are given as OBDDs. An ordered tree-shellable
function is a positive Boolean function such that the number of prime implicants equals
the number of paths from the root node to a 1-node in its ordered binary decision tree
representation. We show that given an OBDD, it is $\mathrm{p}_{\mathrm{o}\mathrm{S}\mathrm{S}\mathrm{i}}\mathrm{b}\mathrm{i}\mathrm{e}$ to check within polynomial time
if the function $\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{r}- \mathrm{d}\mathrm{e}\Gamma \mathrm{e}\mathrm{d}$ tree-shellable with respect to the variabie.ordering of the OBDD.
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1 Introduction

It is important to clarify the properties of Boolean
functions in various fields of computer science.
Prime implicant is a very important concept on
the theory of Boolean functions. Every positive
Boolean function is uniquely represented by an
irredundant DNF.

A tree-shellable function is a positive Boolean
function defined by the relation between its prime
implicants and binary decision tree (BDT) repre-
sentation: there exists a BDT representation such
that the number of prime implicants equals the
number of paths from the root to a leaf labeled 1
in the BDT [20]. An ordered tree-shellable func-
tion is a special case of a tree-shellable function
such that the BDT must be an ordered BDT. In
this paper, we deal with the complexity of recog-
nizing ordered tree-shellable functions.

An ordered tree-shellable function is a kind of
shellable function. Shellable Boolean functions
play an important role in many fields. The notion
of shellability was originally used in the theory of
simplicial complexes and polytopes (for example,
in $[9, 12])$ . More recently, it is studied for its
importance on reliability theory (for example, in
[2, 3, 19] $)$ .

If a shellable function $f$ is given with the order
of terms to make it shellable, it has the following
good properties. First, one can easily solve the
following problem.

[Union of Product Problem] ([3])
Input: $Pr[x_{i}=1](1\leq i\leq n),$ $f(x_{1,\ldots,n}x)$

Output: $Pr[f(x_{1,\ldots,n}X)=1]$

$Pr[A]$ represents the probability of event $A$ . This
is the problem of computing the reliability of
some kind of systems. Each variable represents
the state of a subsystem. A subsystem is oper-
ative if the variable has value 1. If a Boolean
function $f$ is shellable, one can easily compute
the exact value of $Pr[f=1]$ using the orthogonal
DNF representation of $f$ .

Second, it is easy to compute the dual of
the function. The dual of a $\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{l}\mathrm{e}\mathrm{a}\dot{\mathrm{n}}\mathrm{f}\mathrm{u}\dot{\mathrm{n}}$ction
$f(x_{1}, \ldots,x_{n})$ is defined by $f^{d}$ $=\overline{f(\overline{x_{1}},\ldots,\overline{x_{n}})}$ .
Thus, if the BDT representation of a Boolean
function $f$ is given, it is possible to coinpute
the BDT representation of $f^{d}$ only by exchang-
ing a 1-edge and a $0$-edge for every variable node
and exchangi.ng label 1. and label $0$ for every leaf
node. It is not known if the DNF representa-
tion of the dual $f^{d}$ can be computed from the
DNF representation $0\dot{\mathrm{f}}f$

. in time polynomial to

th. $\mathrm{e}$ input and output $\mathrm{s}\dot{\mathrm{i}}\mathrm{z}\mathrm{e}.$

. So the problem is still
interested in by many researches (for example,
in [5, 13, 15] $)$ . The classes of Boolean functions
$\mathrm{w}\mathrm{h}$.ich can be dualized in polynomial time inc.lude
2-monotonic functions (which include threshold
functions) [11, 8, 18], aligned functions [6], posi-
tive $k$ -DNFs [14], matroid functions [17] etc.

Ordered tree-shellability has been studied un-
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der the name of lexico-exchange property in
[3, 7, 19]. It is proved in [20] that these two
properties are equivalent. This property is in-
terested in because a function with this prop-
erty is a shellable function such that the function
is shellable by the lexicographic order of terms.
In addition to the above properties of shellable
functions, as described in the definition, an or-
dered tree-shellable function has an intersting re-
lation between its ordered BDT representation
and prime implicants.

In this paper, we consider the complexity of
checking if a given function is ordered tree-
shellab.l.e,or.not. When a Boolean function is
given as its DNF representation, it is known to be
$\mathrm{N}\mathrm{P}$ -complete [7]. $\cdot$ The complexity of this problem
depends on the maximum number $m$ of literals in
a term. For $m\leq 2$ , it is polynomial time com-
putable [4] and the class of ordered tree-shellable
functions and that of shellable functions coincide.
In this case, the order of terms is also found in
polynomial time. If we $\mathrm{a}\dot{\mathrm{l}}\mathrm{s}\mathrm{o}$ give a variable or-
$\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}_{1}\pi$ as a part of the input, it is possible to
check if the function is ordered tree-shellable with
respect to $\pi$ within polynomial time. .

In this paper, we consider the case when a
Boolean function is given as its Ordered Binary
Decision Diagram (OBDD) representation. An
OBDD $[1, 10]$ is a directed acyclic graph that rep-
resents a Boolean function. As OBDDs are widely
used in many applications due to their good prop-
erties, it is worth considering the case when an
OBDD is given as an input of recognition prob-
lems [16]. If a function is given as an OBDD,
Union of Product Problem can be solved in poly-
nomial time and dualization can also be executed
in a similar way as the case of BDTs. However,
this problem is still worth consideration due to
the relation between an OBDD representation of
a $\mathrm{f}\dot{\mathrm{u}}$nction and its prime implicants. This prob-
lem is interesting because it is considered difficult
to find the prime implicants of the function. given
as an OBDD in general.

We show that it is possible to check if the func-
tion is ordered tree-shellable with respect to the
variable ordering of the given OBDD within poly-
nomial time. It should be noted that the result
does not follow from the similar result for the case
when a function is given in DNF. When the vari-
able ordering is fixed, it is easily seen that the

class of functions represented by polynomial size
OBDDs and that represented by polynomial size
DNFs are incomparable.

This paper is organized as follows. In sections 2
and 3, we define basic concepts and graph repre-
sentations of a Boolean function. In section 4,
we give the definition of an ordered tree-shellable
function and show its basic properties. In sec-
tion 5, we study the complexity of checking or-
dered tree-shellability of a function given as an
OBDD. Conclusions and future works are noted
in section 6.

2 Basic Definitions

Let $B=\{0,1\},$ $n$ be a natural number, and
$[n]=\{1,2, \ldots, n\}$ . Especially, $[0]=\emptyset$ . Let $\pi$ be a
permutation on $[n]$ . $\pi \mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$. a to‘ $\mathrm{t}.$ al. orrder of
integers in $[n]$ .

Let $f(x_{1\cdots,n},x)$ be a Boolean function. We
denote $f\geq g$ if $f(x)=1$ for any assignment
$x\in\{0,1\}^{n}$ which makes $g(x)=1$ . An implicant
of $f$ is a

$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}.\mathrm{c}\mathrm{t}$

term
$\bigwedge_{i\in I}x_{i}\bigwedge_{\in jJ}\overline{xj}$

which satisfies

$\wedge x_{i}\wedge\overline{x_{j}}\leq f$ , where $I,$ $J\subseteq[n]$ . An implicant
$i\in I$ $j\in J$

which satisfies $\wedge$ $x_{i}\wedge\overline{x_{j}}\not\leq f$ for any $s\in I$

$i\in I-\{S\}$ $j\in J$
’ $l$

and $\wedge x_{i}$ $\wedge$ $\overline{x_{j}}\not\leq f$ for any $t\in J$ is called a
$i\in I$ $j\in J-\{t\}$

prime implicant of $f$ .
An expression of the form

$f$ $=$ $k_{=}^{\vee}1m( \bigwedge_{i\in Ik}^{1}x_{i}\wedge\overline{xi}’)i\in Jk$ is called
$\mathrm{a}.di_{Sj}unc-$

tive normal form Boolean formula (DNF), where
$I_{k},$ $J_{k}\subseteq[n]$ and $I_{k}\cap J_{k}=\emptyset$ for $k=1,$ $\ldots,$

$m$ .
A positive DNF (PDNF) is a DNF such that
$J_{k}=\emptyset$ for all $k$ . If $f$ can be represented as a
PDNF, it is called a positive Boolean function.
For simplicity, we call that $I_{k}$ is an implicant or a
term of a positive function. A PDNF is called
irredundant if $I_{k}\subseteq I_{l}$ is not satisfied for any
$k,$ $l(1\leq k, l\leq m, k\neq l)$ . For an irredundant
PDNF, let $PI(f)$ be the set of all $I_{k}$ . $PI(f)$ rep-
resents the prime implicants of $f$ . In the following
of this paper, we consider only positive functions
and we assume that a function is given as an ir-

redundant PDNF $f=k=1i\in I_{k}\vee\wedge x_{i}m$ .
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3 Graph Representations of
Boolean Functions

3.1 Binary Decision Tree

Shannon’s expansion :

$f_{v}=$
A Binary Decision Tree (BDT) is a labeled tree
that represents a Boolean function. A leaf node
of a BDT is labeled by $0$ or 1 and called a value
node. Any other node is labeled by a variable and
called a variable node. Let label $(v)$ be the label
of node $v$ . Each node except leaf nodes has two
outgoing edges, which are called a $\mathit{0}$-edge and a
1-edge. Let $edge_{0}(v),$ edgel (v) denote the nodes
pointed to by the $0$-edge and the 1-edge of node
$v$ respectively. The value of the function is given
by traversing from the root node to a leaf node.
At a node, one of the outgoing edges is selected
according to the value of the variable. The value
of the function is $0$ if the label of the leaf is $0$ ,
and 1 if the label is 1.

A path from the root node to a leaf node la-
beled 1 is called a 1-path. On every 1-path, each
variable appears at most once. A path $P$ of a
BDT is represented by a sequence of literals. If
the k-th edge on a 1-path $P$ is the 1-edge (O-edge,
resp.) from the node labeled by $x_{i}$ , positive literal
$x_{i}$ (negative literal $\overline{x_{i}}$ , resp.) is the k-th element
of $P$ . For simplicity, we denote $\tilde{x}_{i}\in P$ when $\tilde{x}_{i}$

is included in the sequence $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{l}P$, where
$\tilde{x}_{i}$ is either $x_{i}$ or $\overline{X_{i}}$ . Let $pos(P_{k})$ ( $neg(P_{k})$ , resp.)

be the set of indices of variables whose positive
(negative, resp.) literals are in $P_{k}$ .

When the $0$-edge ahd the 1-edge of node $v$ point
to the nodes representing the salne function, $v$ is
called to be a redundant node. A BDT which has
no redundant node is called a reduced $BDT$. In the
following of this paper, a BDT means a reduced
BDT.

A BDT is called an ordered BDT $(\mathrm{O}\mathrm{B}\dot{\mathrm{D}}\mathrm{T})$ if
there is a to. $\mathrm{t}\mathrm{a}1\backslash$ order of variables $\mathrm{w}.\mathrm{h}\mathrm{i}_{\mathrm{C}}\mathrm{h}$ is con-
sistent with the order that variables appear on
any path from the root to a leaf. The total order
of variables for an $\dot{\mathrm{O}}$ BDT is called the variable
ordering. If label $(v)$ is the k-th element of the
variable ordering, we say that $k$ is the level of $v$

and denote level$(v)=k$ . Let the level of value
nodes be $n+1$ .

The Boolean function that is represented by
node $v$ , denoted by $f_{v}$ , is defined as foltows by

An OBDT $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}.\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$ the function represented by
the source.

3.2 Ordered Binary Decision Diagram

An Ordered Binary Decision Diagram (OBDD)
$[1, 10]$ is a directed acyclic graph that represents
a Boolean function. Intuitively, an OBDD is ob-
tained by merging the nodes of an OBDT that
represent the same function into a single node.
The nodes of an OBDD consist of variable nodes
and two value nodes. One of the variable nodes
is the source and the value nodes are sinks. Most
of the terminologies defined for OBDTs can be
defined similarly for OBDDs.

When two nodes $i$ and $j$ have the same label
and represent the same function, they are called
equivalent nodes. When $edge_{1}(i)--edgeo(i\mathrm{I}$ ,
node $i$ is called a redundant node. An OBDD
which has no equivalent nodes and no redundant
nodes is called a reduced OBDD. It is known that
a Boolean function is uniquely represented by a
reduced OBDD, provided that the variable or-
dering is fixed. In the following of this paper, we
assume w.l.o.g. that an OBDD means a reduced
OBDD. The size of an OBDD is the total number
of nodes.

4 Ordered Tree-Shellable
Boolean Function

We first give the definition of tree-shellable and
ordered tree-shellable functions.
Definition : A positive Boolean function $f$ is
tree-shellable when it can be represented by a
BDT with exactly $|PI(f)|$ l-paths.

If a BDT $T$ represents $f=k=1\vee\wedge x_{i}mi\in I_{k}..\mathrm{a}\mathrm{n}\mathrm{d}$ has

exactly $m$ paths: we sa.$\mathrm{y}\backslash \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}..T$ witnesses that $f$

is tree-shellable.
Definition : A positive Boolean function $f$ is
ordered tree-shellable with respect to $\pi$ if it can be
represented by an OBDT with variable ordering
$\pi$ which has exactly $|PI(f)|1$-paths. $f$ is ordered
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$\pi_{T}$ be an order of terms of $f$ . $f$ is shellable with
respect to $\pi_{T}$ if there exist $J_{1},$

$\ldots,$
$J_{m}(\subseteq[n])$ which

satisfy the following conditions.

(a) $\acute{\mathrm{r}}=\mathrm{x}_{1}\mathrm{x}_{2^{++\mathrm{X}_{4}}}\mathrm{X}_{1}\mathrm{x}3\mathrm{X}3$ (b) $\mathrm{g}=\mathrm{x}_{121}\mathrm{x}+3\mathrm{C}\mathrm{x}_{3}+\mathrm{X}3\mathrm{X}4+\mathrm{X}_{4}\mathrm{X}_{5}$

Figure 1: An example of an ordered tree-shellable
function.

tree-shetlable if there exists $\pi$ such that $f$ is or-
dered tree-shellable with respect to $\pi$ . We call $\pi$

to be the shelling variable ordering of $f$ .

Proposition 1 $[2\dot{0}]$ If $f=k^{\bigvee_{1i\in I_{k}}}m \bigwedge_{=}x_{i}$ is tree-

shellable, there exists a $BDTT$ representing $f$

which satisfies the following conditions.

. . $T$ has $m\mathit{1}$ -paths $P_{1},$
$\ldots,$

$P_{m}$ .. Each $P_{k}$ corresponds to a term $I_{k}$ by the rule
that $i$

. $\in I_{k}$ iff $x_{i}\in$
.

$P_{k}.\cdot$

Figure 1 (a) is an example of an ordered tree-
shellable function. Note that the leaf nodes with
label $0$ and the edges that point to them are omit-
ted in this figure. $f$ is ordered tree-shellable with
respect to variable ordering $x_{1}x_{2}x_{3}x_{4}$ . Fig-
ure 1 (b) is an example of a function which is
not ordered tree-shellable. With variable order-
ing $x_{1}x_{2}x_{3}x_{4}x_{5}$ , the BDT representing $g$ has
five 1-paths, which does not equal the number of
prime implicants. It is not difficult to check that
$g$ is not ordered tree-shellable with respect to any
other variable ordering.

The following proposition shows that tree-
shellability is a kind of shellability as its name
shows.
Definition : Let $f$ be a positive Boolean func-

tion represented by a PDNF $f=k=1i\in I_{k}\vee\wedge x_{i}m$ and

1. For any $l(1\leq l\leq m)$ ,

$k=1i \in\wedge X_{i}lI_{\pi_{T^{(k}}})=\vee^{l}(\wedge X_{i}\bigwedge_{)\pi T^{(}k)\tau^{(}k}\overline{xj})k=1i\in Ij\in J_{\pi}^{\cdot}$

2. For any $s,$ $t$ such that $1\leq s<t\leq m$ ,
$(I_{S^{\cap}}Jt)\cup(It^{\cap}Js)\neq\emptyset$ .

$f$ is shellable if there exists $\pi_{T}$ such that $f$ is
shellable with respect to $\pi_{T}$ . $\pi_{T}$ is called the term
order of $f$ . For tree-shellable functions, the term
order is determined from the BDT that witnesses
that $f$ is tree-shellable. If a 1-edge is always a
right edge as in Figure 1, the term order is ob-
tained by $\mathrm{o}\mathrm{r}\dot{\mathrm{d}}\mathrm{e}\Gamma \mathrm{i}\mathrm{n}\mathrm{g}$ the 1-paths in a BDT from the
right one to the left one.

Proposition 2 [20] Let a positive Boolean func-
tion $f=k=1i \vee\bigwedge_{\in I_{k}}x_{i}m$ be tree-shellable with respect

to $\pi_{T}$ , and $P_{k}$ be the 1-path of the $BDT$ repre-
senting $f$ that corresponds to $I_{k}$ . Then

$k_{=}^{\vee^{l}}1i \in I_{\pi(}\bigwedge_{Tk)}X_{i}$

$=$ $_{k=1}^{l}(\wedge i\in p\circ S(P)\pi\tau^{(k})Xi^{\bigwedge_{j})}\in ne\mathit{9}(P_{\pi}k\rangle)^{\overline{X}}T(j$

for any $l(1\leq l\leq m)$ .

This proposition is obvious from properties of
a BDT.

As an ordered tree-shellable function is tree-
shellable, Proposition 1 and 2 also hold for or-
dered tree-shellable functions.

The next corollary is clear from the proof of
Theorem 4 of [20].

Corollary 1 Let $T$ be an OBDT with variable
ordering $\pi$ that represents a Boolean function $f$ .
$f$ is ordered tree-shellable with respect to $\pi$ iff
there exists $I_{t}$ which satisfies $I_{t}\subset\wedge pos(P_{i})\cup\{l\}$

and $l\in I_{t}$ for any 1-path $P_{i}$ of $T$ and any $\overline{x_{l}}\in P_{i}$ ,

5 Checking Ordered Ree-
Shellability Based on OBDDs

In this section, we consider the complexity of
checking ordered tree-shellability of a Boolean
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function given as an OBDD. We consider only
the ordered tree-shellability with respect to the
variable ordering $\pi$ of the given OBDD. If a pos-
itive Boolean function is given in DNF, it is pos-
sible to check whether it is ordered tree-shellable
with respect to given $\pi$ within polynomial time.
However, it does not imply that the similar re-
sult holds when a Boolean function is given as its
OBDD representation.

Theorem 1 Given an OBDD with variable or-
dering $\pi$ , it is possible to check if the Boolean
function represented by the OBDD is ordered tree-
shellable with respect to $\pi$ or not within polyno-
mial time.

We should note that if there exist several vari-
able orderings which are consistent with the given
OBDD, either all of them are the shelling variable
ordering or none of them is the shelling variable
ordering.

We prove Theorem 1 in the rest of this section.
We first give the polynomial time algorithm to
check ordered tree-shellability. Let $lev(u, v)=$
$\min\{level(u), level(v\mathrm{I}\}$ . In this algorithm, $0$ rep-
resents the value node labeled $0$ .

[Algorithm CheckOTS]

1. Check if the OBDD represents a positive func-
tion. If not, it is not ordered tree-shellable.
Else, $A_{i}=\emptyset$ for all $i(2\leq\dot{i}\leq n+1)$ .

2. For $i=1$ to $n$ , repeat (a) and (b).

(a) For any node $v$ in level $i$ do:
if $edge_{0}(v)\neq 0$

$A_{l\mathrm{e}v\mathrm{t}g\mathrm{e}(v}ed0),edge1(v))$

$=A_{lev\{\mathrm{t}}edge0v),6dge_{1(v))}\cup\{(edge\mathrm{o}(v), edge_{1}(v))\}$

(b) For any pair $(u, v)\in A_{i}$ do:
if level$(u)>i$

$A_{lev}(u,\mathrm{e}dge_{0}(v))$

$=A_{lev(\mathrm{e}dg_{0}}u,e(v))\cup\{(u, edge\mathrm{o}(v))\}$

else if level$(v)>i$
if edge0 $(u)\neq 0$

$A_{lev(\mathrm{e}de(u}g0),v)$

$=A_{lev(e}edg\mathrm{o}(u),v)\cup\{(edge_{0}(u), v)\}$

else do:
$A_{l\mathrm{e}v(edg1}\mathrm{e}(u),edge1(v))$

$=A_{(\mathrm{e}dg1(),edg1}eue(v))\cup\{(edge_{1}(u), edge_{1}(v))\}$

if edgeo $(u)\neq 0$

Figure 2: An example of input for Algorithm
CheckOTS.

$A_{lev(\mathrm{e}_{0}(),de}edgueg_{0(v))}$

$=A_{(g(}ede0u),edge0(v))\cup\{(edge_{0}(u), edge0(v))\}$

3. The given OBDD represents an ordered tree-
shellable function iff no pair of the form $(u, u)$ is
generated in step 2.

In this algorithm, $A_{i}(2\leq i\leq n+1)$ is a set of
pairs of nodes.

Here we give an example of how this algorithm
works. The OBDD in Figure 2 is an example of
the input. In this figure, the left edge from each
node is a $0$-edge and the right one is a l-edge.
The alphabet beside each variable node is the
name of the node. We can check that the OBDD
represents a positive Boolean function. In fact,
it represents $x_{1}x_{2}+x_{1}x_{3}+x_{2}x_{4}+x_{3}x_{5}+x_{4}x_{5}$ .
In step2, for $i=1$ , a pair $(b, c)$ is generated in
$\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{a}$. Thus, $A_{2}=\{(b,C)\}$ . For $i–2,$ $(d, e)$

and $(f, 1)$ are generated in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{a}$, and $(d, f)$

and $(e, 1)$ are generated from $(b, c)$ in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{b}$ .
Thus, $A_{3}=\{(d, e), (d, f), (e, 1), (f, 1)\}$ . Simi-
larly, after $i=3,$ $A_{4}=\{(g,g),$ $(g, h),$ $(g,j),$ $(g, 1)$ ,
$(h, i),$ $(h, 1),$ $(j,\dot{\iota})\}$ and $A_{5}=\{(j, 1)\}$ . After $i=4$ ,
$A_{5}=\{(j,j), (j, 1)\}$ and $A_{6}=\{(1,1)\}$ . After
$i=5,$ $A_{6}=\{(1,1)\}$ . Here, we find three pairs
of the form $(u, u)$ . Therefore, the function is not
ordered tree-shellable with respect to variable or-
dering $x_{1}x_{2}x_{3}x_{4}x_{5}$ .
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We consider the time complexity of the above
algorithm. Let $m$ be the size of the given OBDD.
As shown in [16], step 1 can be executed in $m^{2}$

time. In step $2\mathrm{a}$ , throughout $n$ iterations, each
variable node appear exactly once. Thus, it takes
$O(m)$ time. In step $2\mathrm{b}$ , throughout $n$ iterations,
the same pair may be generated many times.
However, as the number of different generated
pairs of nodes is less than $m^{2}$ , the total num-
ber of generated pairs is less than $2m^{2}$ . Thus,
Algorithm CheckOTS runs in $O(m^{2})$ time.

Now we should prove that Algorithm Check-
OTS correctly checks the ordered tree-shellability
of the given Boolean $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{C}^{-}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$. This proof con-
sists of two stages. We first show in Lemma 1
that there exists a pair of 1-paths $P_{i},$ $P_{j}$ that sat-
isfies some condition iff the function is not or-
dered tree-shellable with respect to the variable
ordering. Then we show in Lemma 2 that the
algorithm correctly detects such pair of l-paths.

We give some basic facts on a Boolean function
$f$ and the OBDD representing $f$ . Note that $f$

may not be ordered tree-shellable. We call a 1-
path $P_{j}$ which satisfies $pos(P_{j})=I_{i}$ the main
path of $I_{i}$ . If $P_{j}$ is a main path of some prime
implicant, we call $P_{j}$ a main path. If an OBDT
$T$ witnesses that $f$ is ordered tree-shellable, any
1-path of $T$ is a main path. We call a 1-path $P_{j}$

which satisfy $I_{i}\subseteq pos(P_{j})$ a corresponding path
$\mathrm{o}\mathrm{f}I_{i}$ .

Proposition 3 1. For any prime implicant $I_{i}$ ,
there exists a main path of $I_{i}$ .
2. Any path is a corresponding path of some prime
implicant.

Proof 1. As $I_{i}$ is a prime implicant, there ex-
ists no 1-path $P_{s}$ which satisfies $pos(P_{S})\subset\wedge I_{i}$ . To
make the value of the function 1 for an assign-
ment such that $x=1$ iff $x\in I_{i}$ , there must be a
1-path $P_{s}$ which satisfies $([n]\backslash I_{i})\cap pos(P_{s})=\emptyset$ .
To satisfy both of them, there must be a l-path
$P_{s}$ satisfying $pos(Ps)=I_{i}$ .
2. A 1-path $P_{j}$ makes the value of the function
1 for the assignment such that $x=1$ iff $x\in P_{j}$ .
However, it should be $0$ if there is no $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\backslash$ im-
plicant $I_{i}$ which satisfies $I_{i}\subset parrow os(P_{j})$ . $\square$

From Proposition 3 and the definition of or-
dered tree-shellable functions, we can see that
there exists a pair of 1-paths both of which are

corresponding paths of the same prime impli-
cant iff $f$ is not ordered tree-shellable. The next
lemma shows that we have only to detect special
ones among such pairs of 1-paths. The number of
generated pairs is decreased by using this lemma.

Lemma 1 Let $T$ be an OBDD representing $f$

with variable ordering $\pi$ . $f$ is not ordered tree-
shellable with respect to $\pi$ iff there exists a pair

of 1-paths $P_{i},$ $P_{j}$ in $T$ which satisfies $pos(Pi)\subseteq$

$pos(P_{j})$ and $|poS(Pj)\backslash pos(P_{i})|=1$ .

Proof [if] If there exists a pair of 1-paths $P_{i},$ $P_{j}$

satisfying $pos(P_{i})\subseteq pos(P_{j}),$ $P_{i}$ and $P_{j}$ are cor-
responding paths of the same prime implicant.
That is, at least one of them is not a main path.
[only if] Assume $f$ is not ordered tree-shellable.
Then from Corollary 1, for some 1-path $P_{i}$ and
$\overline{x_{l}}\in P_{i}$ , there does not exist $I_{t}$ that satisfies $I_{t}\subseteq$

$pos(Pi)\cup\{l\}$ and $I_{t}\not\in pos(Pi)$ . For such $P_{i}$ and
$x_{l}$ , let $P_{j}$ be the path traversed by the assignment
such that $x_{k}=1$ iff $k=l$ or $x_{k}\in P_{i}$ . If $P_{i}$ is a
corresponding path of $I_{i’},$ $P_{j}$ is also a correspond,
ing path of $I_{i’}$ because it cannot be a $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}^{\mathrm{O}}}\mathrm{n}\mathrm{d}-$ .
ing path of any other prime implicant. There-
fore, $P_{j}$ satisfies $pos(P_{i})=pos(P_{i})\cup\{l\}$ . That is,
$pos(P_{i})\underline{\subset}pos(P_{j})$ and $|pos(Pj)\backslash pos(P_{i})|=1$ are
satisfied. $\square$

In the example of Figure 2, $(g,g)$ detects the
existence of paths $P_{i}=\overline{x_{1}}\overline{x_{2}}\overline{X3}X_{4}x_{5}$ and $P_{j}=$

$x_{1}\overline{x_{2}}\overline{X_{3^{X_{4}}}}x_{5}$ that join at node $g$ .
In the second step, we have to show that Al-

gorithm CheckOTS correctly detects such a pair
of paths. In other words, we have to prove the
following lemma.

Lemma 2 Algorithm $Checko\tau s$ finds a pair of
nodes $(u, u)$ iff there exists a pair of 1-paths $P_{i},$ $P_{j}$

as described in Lemma 1.

Proof [if] For simplicity, we assume w.l.o.g.
that the variable ordering is $x_{1}x_{2}\cdots x_{n}$ . Let $e_{i}^{s}$

be the first node in $P_{i}$ that belongs to a level
larger than $s$ . Let $P_{i}$ and $P_{j}$ first diverge at a
node in level $t$ . We prove that for any $s\geq t$ , the
pair $(e_{i}^{sS}, e_{i})$ is generated in the algorithm.

We prove it by induction on $s$ . A pair $(e_{i}^{t}, e_{j}^{l})$ is
generated in $\mathrm{s}\mathrm{t}\mathrm{e}_{\mathrm{P}^{2\mathrm{a}}}$. Because $x_{t}\in P_{j}$ and $x_{t}\not\in P_{i}$

hold, for $x_{k}(k>t)$ , either
i) $x_{k}\in P_{i},$ $x_{k}\in P_{j}$ ,
ii) $\overline{x_{k}}\in P_{i},\overline{x_{k}}\in P_{j}$ ,

196



iii) $\overline{x_{k}}\in P_{i},$ $x_{k}\not\in P_{j},\overline{x_{k}}\not\in P_{j}$ ,
iv) $\overline{Xk}\in P_{j},$ $x_{k}\not\in P_{i},\overline{x_{k}}\not\in P_{i}$ or
v) $x_{k}\not\in P_{i},\overline{x_{k}}\not\in P_{i},$ $x_{k}\not\in P_{j},\overline{x_{k}}\not\in P_{j}$

must hold. Note that i) and ii) can occur when
both $e_{i}^{k-1}$ and $e_{j}^{k-1}$ belong to level $k,$ $\mathrm{i}\mathrm{i}\mathrm{i}$ ) and iv)
occur when either of them belongs to level $k$ , and
v) occur when neither of them belongs to level $k$ .
Thus, if $(e_{i}^{s-1}, e_{i^{-1}}^{s})$ is generated, we can easily
see from the operations in $\mathrm{s}\mathrm{t}\mathrm{e}_{\mathrm{P}^{2\mathrm{b}}}$ that $(e_{i}^{ss}, e_{i})$ is
generated in any of the above cases.

If $P_{i}$ and $P_{j}$ join at node $u$ in level $r,$ $(u, u)=$

$(e_{i}^{r-1r-1}, e_{j})$ . Therefore, $(u, u)$ never fails to be
generated.
[only if] We prove that for any pair $(v, w)$ gener-
ated in the algorithm

$(*)$ there exist 1-paths $P_{v}$ and $P_{w}$ such that $P_{v}$

is a path from the source to $v,$ $P_{w}$ is a path
from the source to $w,$ $pos(P_{v})\subseteq pos(Pw)$ and
$|pos(P_{w})\backslash pos(P_{v})|=1$ .

If it holds, when there exists a pair $(u, u),$ $P_{i}$ and
$P_{j}$ of Lemma 1 are obtained by appending a path
from $u$ to the value node labeled 1 to both $P_{v}$ and
$P_{w}$ .

We prove it by induction on the number of it-
erations in step 2. In the first iteration, one pair
is generated in step $2\mathrm{a}$ and the pair satisfies $(*)$ .
We assume that all the pairs generated ill the i-th
iteration $(i<s)$ of step 2 satisfy condition $(*)$ .
In the s-th iteration,
a) any pair generated in step $2\mathrm{a}$ clearly satisfies
$(*)$ , and
b) any pair generated in step $2\mathrm{b}$ from a pair
$(v’, u)’)$ satisfies $(*)$ by appending literals corre-
sponding to the edges shown in the algorithm to
$P_{v’}$ and $P_{w’}$ because $(v’, u)’)$ satisfies $(*)$ . $\square$
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