goooboooobgon
11850 2001 O 199-208

199

Efficient Augmentation to Construct
(0 +1)-Edge-Connected Simple Graphs

Satoshi Taoka and Toshimasa Watanabe

Graduate School of Engineering, Hiroshima University
1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527 Japan

Phone : +81-824-24-7661(Takano), -7666 (Taoka), -7662 (Watanabe)
Facsimile : +81-824-22-7028
E-mail : {taoka, watanabe} Qinfonets.hiroshima-u.ac.jp

Abstract: The unweighted k-edge-connectivity augmentation problem (kECA for short) is de-
fined by ”Given a o-edge-connected graph G = (V, E), find an edge set E’ of minimum cardi-
nality such that G’ = (V, EU E’) is (0 + §)-edge-connected and o + § = k”, where E’ is called
a solution to the problem. Let kECA(S,SA) denote kECA such that both G and G’ are simple.

The subject of the present paper is (o + 1)ECA(S,SA) (or kECA(S,SA) with k = 0 +1). Let
M be any maximum matching of a certain graph R(G) whose vertex set V consists of vertices
representing all leaves of G. From M we obtain an edge set Ej, with |Eg| = |M]|, such that
each edge connects vertices in distinct leaves of G. Let £; be the set of lea.ves to be created by
adding Ej to G, and K; the set of remaining leaves of G.

The main result is to propose two O(c?|V|log(|V|/o) + |E| + |Vg|?) time algorithms for
finding the following solutions: (1) an optimum solution if G has at least 20 + 6 leaves or if
|£1] < |K1| and G has less than 20 + 6 leaves; (2) a %-approximate solution if |£4] > |K;| and
G has less than 20 + 6 leaves.

" Keywords: Edge-connectivity, minimum cuts, polynomlal time algonthms, augmentatlon ‘

problem, maximum matchings.

1 Introduction

The unweighted k-edge-connectivity augmenta-
tion problem (KECA for short) is described as
follows: "Given a o-edge-connected graph G =
(V, E), find an edge set E’ of minimum cardinal-
ity such that G' = (V,EU E') is (o + 6)-edge-
connected and o + 6 = k.” We often denote G’ as
G+E', and E' is called a solution to the problem.
Let kECA(*,**) denote kECA with the following
restriction (i) and (ii) on G and E’, respectively:
(i) * is set to S if G is required to be simple,
and * is left to mean that G may be a multi-
ple graph; (ii) ** is set to MA if creation of new
multiple edges in constructing G’ is allowed, and
is set to SA otherwise. In kECA(*,SA), if G is
simple then so is G', or if G has multiple edges
then any multiple edge of G’ exists in G. As for
KECA, kECA(*,MA) has mainly been discussed
so far. See [3,5,7,8,12,13,21-24] for the results.
It is natural for us to assume that |V| > o + 2

in (¢ + 1)ECA(S,SA): in (o + 1)ECA(*,SA), we
may have [V| <o+ 1. '

As related results, kECA(S,SA) for G having
no edges was first discussed in [6], where the
problem that is more general than kECA(S,SA)
is considered. An O(|V| + |E|) algorithm for
2ECA(S,SA) can be obtained by slightly modify-
ing the one given in [3] for 2ECA(*,MA). As for
3ECA(*,SA), [24] proposed an O(|V'| 4+ |E|) algo-
rithm for 3ECA(*,MA), and showed that if |[V| >
4 then this algorithm finds an optimum solution
to SECA(*,SA). Concerning (o + 1)ECA(S,SA)
with |V| > o + 2 for ¢ € {3,4}, [15] proposed
an O(|V|log|V| + |E|) algorithm. Other related
results have been reported in [14,16]. T. Jordédn
showed in [10] that kECA(S,SA) is NP-hard in
general, and [2] proposed an O(|V|*) algorithm
for kECA(S,SA) for any fixed k. ‘

The subject of the present paper i,s‘ (o +
1)ECA(S,SA), that is, kECA(S,SA) with k£ =
o + 1. Let M be any maximum matching of the

leaf-graph R(G) whose vertex set Vg consists of
vertices representing all leaves of G. (The defini-
tion of R(G) is going to be given later). From M
we obtain a certain edge set Ey, with |E§| = |M],
such that each edge connects vertices in distinct
leaves of G. Let L; be the set of leaves to be
created by adding E} to G, -and IC1 the set of
remaining leaves of G.

The main result of the paper is to propose
two O(c%|V|log(|V|/a) + |E| + |Vg|?) time al-
gorithms for finding the following solutions for
(o0 + l)ECA(S SA)

(1) an optimum solution 1f G has at least 20 + 6

leaves or if |[£1] < |K1| and G has less than

20 + 6 leaves;
(2) a 3-approximate solution if |£1| > |IC1| and G
has less than 20 + 6 leaves.

A central concept in solving kECA is a t-edge-
connected component of G: a maximal set of ver-
tices such that G has at least ¢ edge-disjoint
paths between any pair of vertices in the set
[23]. A t-edge-connected component whose de-
gree (the number of edges connecting vertices in
the set to those outside of it) is equal to the
edge-connectivity of G is called a leaf. Although
(0 +1)ECA(S,SA) can be solved almost similarly
to general kECA(* MA), the only difference is
that the augmenting step has to choose a pair of
leaves, each containing a vertex such that they are
not adjacent in G. (Such a pair of leaves is called a
nonadjacent pair.) This requires addition of some
other characteristics or processes in finding solu-
tions by means of structural graphs: a structural
graph is introduced in [11}, and is used as a use-
ful tool that reduces time complexity in finding a
solution to kECA(*,MA) in [7,13].

- This paper adopts the operation, called edge-
interchange, in finding a solution, where it was in-
troduced in [21, 22] in order to reduce time com-
plex1ty of [23]. A set of two nonadjacent pairs
of leaves is.called a D-combination if they are
disjoint. The augmenting step in solving (o +
1)ECA(S,SA) repeats both choosing a nonad-
jacent pair of leaves and enlarging a (o + 1)
edge-connected component by means of edge-
interchange (or an analogous operatlon) Hence
obtaining an optimum solution requires finding
a maximum set of nonadjacent pairs of leaves
such that any two members in the set form a
D-combination and, therefore, this is reduced to

200

finding a maximum matching of the leaf-graph
R(G) of G. The point of (o + 1)ECA(S,SA) is
that a solution E’ is closely related to a maxi-
mum matching M of R(G).

The paper is organized as follows. Basic def-
initions and several basic results on o-edge-
connected componets and leaf-graphs are given
in Section 2. In Section 3, results on maximum
matchings of leaf-graphs are briefly mentioned.
Edge-interchange operation is explained in Sec-
tion 4. Section 5 discusses (o + 1)ECA(S,SA)
when G has less than 20 + 6 leaves, and Section 6
considers (o + 1)ECA(S,SA) when G has at least
20 + 6 leaves.

All proofs are omitted becase of space limita-
tion. The early version appeared in [19)].

2 Preliminaries

2.1 Basic definitions

Technical terms not specified here can be iden-
tified in [1,4,9,20]. An undirected graph G =
(V(G), E(G)) consists of a finite and nonempty
set of vertices V(G) and a finite set of undirected
edges E(G), where V(G) and E(G) are often de-

-noted as V and E, respectively. An edge e inci-

dent upon two vertices u,v in G is denoted by
e = (u,v) unless any confusion arises. We de-
note V(e) = {u, v}, or generally V(K) = {u,v €
V|(u,v) € K} for a subset K C E. For disjoint
sets X, X' C V, we denote (X, X;G) = {(u,v) €
Elu € X and v € X'}, where it is often written as
(X, X") if G is clear from the context. We denote
da(X) = |(X, X; G)|. This is called the degree of
X (in G). Weset dg(S)=0if S =0. If X = {v}
then dg({v}) is denoted simply as dg(v) and is
the total number of edges (v, v), v’ # v, incident
upon v. We often denote dg(S) as d(S) if G is
clear from the context. A path between vertices
u and v is often called a (u,v)-path and denoted
by Pg(u,v), and is often written as P(u,v) if G
is clear from the context. For two vertices u, v
of G, let A(u,v; G), or simply A(u,v), denote the
maximum number of pairwise edge-disjoint paths
between ¥ and v.

~ For aset X C V, let G[X] denote the subgraph
having X as its vertex set and {(u,v) € El|u,v €
X} as its edge set. G[X] is called the subgraph of
G induced by X (or the induced subgraph of G by
X). Deletion of X C V from G is to construct
G|V — X], which is often denoted as G — X. If

X = {v} then we often denote G —v for simplicity.
Deletion of @ C F from G defines a spanning
subgraph of G, denoted by G — @, having £ — Q
as its edge set. If @ = {e} then we denote G —e.
For a set E’ of edges such that E' N E = §, let
G + E' denote the graph (V, EUE'). If E' = {e}
then we denote G + e. :

Let K C E be any minimal set such that
G — K has more components than G. K is
called a separator of G, or in particular a (X,Y)-
separator if any vertex of X and any one of
Y are disconnected in G — K. If X = {u} or
Y = {v} then it is denoted as a (u, Y')-separator
or a (X,v)-separator, respectively. A minimum
(X,Y)-separator K of G is a (X, Y)-separator of
minimum cardinality. Such K is often called an
(X, Y)-cut or an | K |-cut. It is known that a (u, v)-
cut K has |K| = A(u,v;G). A minimum separa-
tor K of G is a separator of minimum cardinal-
ity among all separators of G, and |K| is called
the edge-connectivity (denoted by o) of G; par-
ticularly we call such K C E a minimum cut (of
G). G is said to be k-edge-connected if \(G) > k.
A k-edge-connected component (k-component, for
short) of G is a subset S C V satisfying the fol-
lowing (a) and (b): (a) A(u, v; G) > k for any pair
u,v € S; (b) S is a maximal set that satisfies
(a). Let I'¢(k) denote the set of all k-components
of G. In a graph G with A(G) = o, a (6 + 1)-
component S with dg(S) = o is called a leaf
(o +1)-component of G (or a leaf of G, for short).
It is known that A(G) > k if and only if V is a k-
component. Note that distinct k-components .are
disjoint sets. Each 1-component is often called a
component.

Note that we assume that |V| > o +2in (o +
1)ECA(S,SA), the subject of the paper.

A cactus is an undirected connected graph in
which any pair of cycles share at most one vertex.
A structural graph F(G) of G with A(G) = o is
a representation of all minimum cuts of G and
is introduced in [11]. We use the term “nodes of
F(G)” to distinguish them from vertices of G.
F(G) is an edge-weighted cactus of O(|V/|) nodes
and edges such that each tree edge (an edge which
is a bridge in F(G)) has weight A(G) and each
cycle edge (an edge included in any cycle) has
weight A(G)/2. Let F(G) be a structural graph of
G. Particularly if o is odd then F(G) is a weighted
tree. {Examples of G and F(G) will be given in
Figs. 1 and 2.) Each vertex in G maps to exactly

201

one node in F(G), and F(G) may have some other
nodes, call empty nodes, to which no vertices of
G are mapped. Let ¢(G) C V(F(G)) denote the
set of all empty nodes of F(G). Note that any
minimum cut of G is represented as either a tree
edge or a pair of two cycle edges in the same cycle
of F(G), and vice versa. Let p: V — V(F(G)) —
€(G) denote this mapping. We use the following
notations: p(X) = {p(v)jv € X} for X C V, and
p 1Y) = {v e V|plv) € Y} for Y C V(F(G)).
p({v}) or p~1({v}) is written as p(v) or p~}(v),
respectively, for notational simplicity. For any cut
(X, V(F(G))—X; F(G)), if summation of weights
of all edges contained in the cut is equal to o then
(p~1(X),V — p7Y(X);G) is a o-cut of G. Note
that the cut of F(G) consists of either one tree
edge or a pair of two cycle edges in the same cycle
of F(G). Conversely, for any o-cut (X,V -X;G),
F(G) has at least one cut (Y, V(F(G)) -Y;G) in
which summation of weight of all edges contained
in the cut is equal to o, where Y is a node set of
F(G) such that p(X) = Y — ¢(G). Each (¢ +
1)-component S of G is represented as a vertex
p(S) € V(F(G)) — €¢(G) in F(G), and, for any
vertex v € V(F(G)) = €(G), p1(v) is a (o + 1)-
component of G. For v € V(F(QG)), if summation
of weights of all edges that are incident to v in
F(G) equals to o, then v is called a leaf node
(that is a degree-1 vertex in a tree or a degree-2
vertex in a cycle). Note that, for any leaf node v,
p~(v) is a leaf of G, conversely, for any leaf L of
G, p(L) is a leaf node of F(G). It is shown that
F(G) can be constructed in O(|V||E|) time [11]
or in O(c®|V]log(|V|/a) + |E|) time [7].

Two edges e, eo are said to be independent if
and only if V(e1)NV(ez) =0, and aset Q C E
is called an independent set or a matching of G if
and only if any pair of edges in @) are independent.
An independent set of maximum cardinality in G
is called a mazimum matching of G.

Proposition 1. [5] For distinct sets X, Y C V
of any graph G = (V, E), .
d(X)+dY)=dX -Y)+d(Y - X)+
2[(V-XUY,XnNnY)|,

d(X)+d(Y)=d(XNY)+dXUY)+"
(X -V, Y -X)|

Let [z] (|z], respectively) denote the minimum

integer no smaller (the maximum one no greater)
than x.

2.2 o-+Components and leaf-graphs

Let A(G) = o > 0. Let X7, X be distinct (o +1)-
components of G. The pair {X1, X2} are called
an adjacent pair (denoted as X1xX?2) if any two
vertices w € X1 and w’ € X3 are adjacent in G,

or called a nonadjacent pair (denoted as X1XX2)

otherwise. Let

Ve = {v|v represents an individual
(0 + 1)-component of G}

and let S(v) € Ig(0c + 1) denote the
one represented by v € V. Let C(G) =
(Vo,Ec) be defined by Vg and E¢ =
{(v,v")|v,v" € V¢ and S(v)xS(v')}, and it is
called the component graph of G. Let LF(G) =
{X € TIg(oc + 1)|X is aleaf of G} and Vi =
{v|v represents an individual leaf of G} C V.
Let Y (v) denote the leaf (o + 1)-component rep-
resented by v € Vg. Let R(G) = (Vgr, ER) be
the subgraph of C(G) defined by Er = {(v,v’) €
Eclv,v'" € Vg and Y (v)xY (v')}; and it is called
the leaf-graph of G. :

Property 1. R(G) is simple.

Let Y;, 1 = 1,2, 3,4, be distinct leaves of G. A
set of two nonadjacent pairs {Y7, Yo}, {Y3, Y4} is
called a D-combination if they are disjoint (that
is, {Y1,Ya} N{Y3,Ys} = 0). In general, for 2¢ dis-
tinct leaves Y;,1 = 1,...,2t,of G with t > 2, a set
of t nonadjacent pairs {Yy,Ya2},...,{Ya2:_1, Yoi}
is called a D-set of G if any two pairs of the
set form a D-combination. Let Yix{Ya, Y3} de-
note that both YixY2 and Y;xY3 hold. A D-
combination {{Y1, Y2}, {Ys,Ys}} is called an I-
combination (denoted as {Y1, Y2}/{Y3,Yy}) if ei-
ther Yix{Y3,Ya} or Yax{Y3,Ya} holds. If neither
{Y1,Y2}£{Y3,Ys} nor {V3,Y4}/{Y1,Y2} holds
then we denote {Y7, Y2} {Y3,Ya}.

We first show some basic results on R(G) and
leaves of G.

Proposition 2. Suppose that G is simple. Then
either |Y|=1or|Y| > o+2 foranyY € LF(G).

Since each leaf Y has dg(Y) = o, we obtain
the next proposition by Proposition 2.

Proposition 3. Suppose that G is simple. If
{%1,Y2} C LF(QG) is an adjacent pair then |Y1| =
Vol = 1.

Proposition 4. dpg)(v) > max{|Vg| — (o +
1),0} for any v € Vg.

202

Fig.1. A simple graph G with AG) = 3 and
|ILF(G)| = 4.

v2
U3

1

Us

Fig. 2. A structural graph F(G) of G in Fig. 1, where
all edge-weights are 3 and none of them are written.
In this case leaves Y; in LF(G) of the graph G shown
in Fig. 1 are represented as nodes v; of F(G) for i =

" 1,...,5: it may happen that G has a node to which no
corresponding leaf of LF(G) exists.

2.3 Examples

Let G = (V, E) with |[V]| > 0+2 and \(G) = o be
any given simple graph. Let OPT(M) or OPT(S)
denote the cardinality of an optimum solution to
(c+1)ECA(*,MA) or to (c+1)ECA(S,SA) for G,
respectively. For ¢ = 3, we give an example such
that OPT(S) = OPT(M) + 1. For the graph G
with |LF(G)| = 4 shown Fig. 1, R(G) is given
in Fig. 3. The set of edges {(u1,us), (ug,us)}
is an optimum solution to 4ECA(*,MA), while
{(u1,u3), (u2, us), (us, u7)} is an optimum solu-
tion to 4ECA(S,SA) and, therefore, OPT(S) =
3= OPT(M) + 1.

3 Maximum matchings of leaf-graphs

One of requirements in finding a solution to
(0 + 1)ECA(S,SA) or (o + 1)ECA(*,SA) with
o > 1 is to obtain a largest D-set. Hence, in this
section, the cardinality of a maximum D-set is in-
vestigated by considering a maximum matching

M of R(G).

&)
O us

U1

Fig. 3. The leaf-graph R(G) of G in Fig. 1.

Let M denote any fixed maximum matching of
R(G) in the following discussion unless otherwise
stated, where we assume that A(G) = o > 1.

Proposition 5. |M| satisfies one of the follow-
ing (1)-(3).
(1) If |Vr| > 20 +1 or if o is even and |Vg| = 20
then |M] = ||Vil/2].
(2) If o is odd and |Vg| = 20 then
LIVel/2l] — 1 < M| < [|VRI/2].
(3) If |Vr| < 20 — 1 then

max{0, min{|Vr| — o, [|V&|/2]}} < M|
< lIVal/2].

Corollary 1. Suppose that |Vg| = 20 and 0 =
2m + 1. If (M| = [|VR|/2] — 1 then G = (V, E)
is a complete bipartite graph with V = X UY,
XNY=0,|X|=|Y|=0 and E = {(z,y)|z €
X,yeY}.

The relationship among G, C(G) and R(G)
shows the following proposition concerning |Vg|,
M| and |E’| of any optimum solution E’ to

(0 +1)ECA(S,SA).

Proposition 6. Let E' be any solution to G in

(c+1)ECA(S,SA) and M be a mazimum match-
ing of R(G). Then

Vel = IM| < |E']. (3.1)

4 Augmentation by edge-interchange

We explain an operation called edge-interchange
which was originally introduced in [21,22] for an
efficient augmentation. It is also used in [14-18).
Let LF(G) = {Y1,...,Y,} (¢ = |LF(G)|) denote
the class of all leaves of G and choose y; € Y; as
the representative of Y;. Let

Y(G) ={y|Y; € LF(G)}, ¢>2, andr = [q/2].

We can easily prove the next proposition.

203

Proposition 7. If there is a set E' of edges, each
connecting vertices of G, such that E'NE = 0 and
V(E") =Y (G) C S for some (o + 1)-component
Sof G+E' thenS=V.

Let Y stand for Y (G) in the rest of the section.

4.1 Attachments

We have dg(Y;) = o and A(y;,y;; G) = o for any
¥i,Y; € Y (i # j). An edge set F is called an
attachment (for G) if and only if the following (1)
through (4) hold:

(1) V(F) Y,

(2) FNE(G) =90,

(3) V(e) #V(e) (Ve, e € Fe#¢€'), and

(4) if ¢ (= |LF(Q)]|) is odd then F' has at most
one pair f, f/ such that |V(f)NV(f')|=1;0or
if ¢ is even then F has no such pair.

Let F be any attachment for G. For each e =
(u,v) € F, G + F has a new (o + 1)-component,
denoted by A(e, G + F), containing V (e).

We are going to show that we can find a min-
imum attachment Z(c + 1) = {e1,...,e;} (r =
[¢/2]) such that A(G + Z(c + 1)) = 0 + 1. Al-
though there are two cases: r = 1 and r > 2,
we discuss only the latter case in the following.
(Note that if r = 1 then we immediately obtain
the desired attachment F'.)

4.2 Finding a minimum attachment

Suppose that there are an attachment F' for G
and vertices y;; € Y —V(F), 1 <4,j < 2, where
Y11, Y12, Y21 are distinct, and if y92 is equal to one
of the other three then we assume that yoe = y21
(see Fig. 4). We use the following notations:

Y1 =
fi1=fs Y21 Y22

e e =fa=fa

Y12

(2)

Fig. 4. The edges e, ¢’ and fi, 1 <i < 4: (1) ya1 # ya2; (2)
Y21 = Ya2.

L=G+F, e= (y11,¥12),

o= { (y21,y22) if Y1 # y2
(y12,21) if Y21 = yo2,

Ale) = Ale, L+{e, €'}), A(e') = A(e/, L+{e, €'}),
fi =W, v21), f2= (Y12, 122),
f3 =11, y22), fa= (v12,921),

where we set fi = fzand € = fo = f4 if yo1 =
Y22, and :

N JAFL+{fi,f2}) f1<i<2
Alfi) = {A(fi, L+ {f;, fZ}) if3<i<4.

Note that e, €', f; ¢ E(L),1 < i < 4. We have the
following two cases.

CaseI: A(e)NA(e) = 0; Case II: A(e)NA(e’) #
0 (that is, A(e) = A(¢')).

For Case I, we are going to show that there are
two edges f, f/, with V(f)UV(f') = V(e)uV (€',
such that

AUA(E') C A(f, L+{f, f'}) = A(f, L+, £}).

That is, we can add two edges so that one (o +1)-
component containing A(e) U A(e’) may be ob-
tained. Finding and adding such a pair of edges
[, f' is called edge-interchange (with respect to
Vi UViea). |

Suppose that A(e)N.A(e') = (). Note that y91 #
Y22 in this case. Let K be any fixed (A(e), A(e'))-
cut of L + {e, €'}, and let B;, 1 < ¢ < 2, denote
the two sets of vertices in L + {e, €'} such that
BiUBy =V,By =V — B, K = (BI,BQ;L“I‘
{e,€'}), A(e) C B; and A(¢/) C Bs. |[K| =0 =
My1,y2; L") for any y; € B;, 1 < i < 2, where
L" denotes L, L+ e, L+ ¢ or L+ {e,¢'}. K is
a (y1,y2)-cut of L. Suppose that f and f’ satisfy
either (i) or (ii):

() f=fi, f'=foor (il) f = f5, ' = fa,
where {f, fANE(L)=0 .

The next proposition shows a property of edge-
interchange.

Proposition 8. If A(e) N A(e/) = A(fi) n
A(f2) = 0 then A(f3) N A(fs) # 0, that is,
A(fs) = A(fa)

Let {f, f'} denote the following pair of edges:

{e, €'} if A(e) = A(€')(the case with
V(e) NV (e') =0 is included);

{f1, f2} if A(e) N A(€') = 0 and A(f1) = A(f2);

204

{fB, f4} if A(e) N A(CI) = .A(f1) N .A(fz) = (D

Clearly, {f, f'} N E(L) = 0. Such a pair f, f’
are called an augmenting pair (with respect to

{11, 112, y21, Y22}) of L.

Corollary 2. Let L' = L+ {f, f'} for any aug-
menting pair f, f'. Then L' — f' has no o-cut sep-
arating V(f') from V(f). That is, if L' — f’ has a
o-cut K separating a vertez of V(f') from V(f)
then K separates the two vertices of V(f').

From Corollary 2, other important properties
(Proposition 9-11) of edge-interchange are ob-
tained.

A 17G 1,92
A(f1,G +{f1, f2}) (91,G +{g1,92})

Ys Y Ys
o
f2 f1 .
(o]
Y4 Y2 Ye

Fig.5. The two (o + 1)-components A(f1,G + {f1, f2})
and A(g1,G+{g1, 92}) produced by two augmenting pairs
{f1, f2} and {g1, g2}, respectively.

Proposition 9. Suppose that G has siz leaves
Y; € LF(G) (1<i<86), and choose y; €Y; as a
representative of each Y;. Suppose that {fi1, fa} is
an augmenting pair with respect to {y;|1 < i < 4}
of G. If A(f1, G+{f1, f2}) is a leaf then, for each
i € {1,2}, there is an augmenting pair {g1, g2}
with respect to V(f;) U {ys,v6} of G such that
A(g1,G + {91, 92}) is not a leaf (see Fig. 5).

By Proposition 9, we obtain the following pro-
cedure that is a modified version of the proce-
dure given in [15]. It finds a sequence of edges
er,...,er (r = [|[LF(G)|/2] > 1) by repeating
edge-interchange operation, where handling the
case with |LF(G)| = 2 is included. Note that
edges with which we are concerned are those con-
necting vertices belonging to distinct leaves. If an
edge g connects a vertex in a leaf Y; and another
vertex in a leaf Y; (i # j) then, for simplicity, we
say that g connects Y; and Y;.

Procedure FIND_EDGES;

begin
1. Gy « G; m «— LF(G); i + 1; E{ «— 0;
2. while 7 # () do

begin
3. if |r| =2 then
4. fi «—an edge connecting the two leaves

of m; B «— {fi};
5. elseif || <5 then

6. Find an augmenting pair E! = {f;, fi}
by Proposmon 8;

7. else /*|n|>6*/

8. Find an augmenting pair E! = {f;, f/}

: by Proposition 9;
9. E| < E/UE{;Gi1+ Gi+ El;
7e—m—{Y(W)|veV(E])}i—i+1;
end
end;

Proposition 10. G;y; has a ‘leaf containing
A(fi, Giy1) if and only if |LF(G;)| = 5 just after
the execution of Step 9 in FIND_EDGES.

Note that executing Step 6 or Step 8 once
can be done in O(|VR|) by using a structural
graph F(G), and we can construct F(G) in
O(c?|V]log(|V|/o) + | E|) time (see [7]). The de-
tails are omitted here.

The next proposition holds for the edge set E’
produced by FIND. EDG’ES

Prop0s1t10n 11. Let Z(cr +1) = {e1,-.-,e}
(r = ||LF(G)/2]) be given by FIND_EDGES.
Then Z(o+1) is a minimum attachment such that
MG") = o+1, where G' = G+Z(o+1). Further-
more the procedure runs in O(a?|V|log(|V|/o) +
|E| + |VR|?) time.

5 (o4 1)ECA(S,SA) for G having less
than 20 + 6 leaves

={¥il <i<q}(g=
|LF(G)|)? Y(G) = {y17 .- -,yq} and Vg =
{v1,...,vq}, where each y; is represented as v;
in R(G). First we consider the case where G has
two or three leaves.

We denote LF(G)

Proposition 12. If ¢ = 2 then the following (1)
or (2) holds. '

(1) If Y1xY2 then.|M| = 1, there are two vertices
vi € Yi, i = 1,2, such that E' = {(y1,2)} 18
a solution, and OPT(S) = OPT(M) = 1.

205

(2) IfY1xY2 then |M| = 0, there are three vertices
u €Y (i =1,2),zeV-—(Y1UYs) such
that E' = {(y1,x), (y2,)} is a solution, and
OPT(S) = 2= OPT(M) + 1.

Proposition 13. If ¢ = 3 and there exist two
leaves Yy, Yo with Y1XYa then |M| =1, there are
distinct edges ey, ea such that E' = {e1, e} is a
solution, and OPT(S) = OPT (M) = 2.

Next we consider the remaining case where 3 <
g < 20 + 6. For each ¢/ = (z/,y) € M, we can
choose two vertices z € Y (2'), y € Y(y'), and let
e = (z,y) be an edge, which is not included in E.
We fix such an edge e for each ¢’ € M, and let

={e=(z,9)| (@',¢) € M}.
Proposition 14. |E)| = |M| and E;NE = 0.

In the rest of this section, we consider the graph
G + E}. First we define two sets £; and Ky as
follows.

Let G1 = G + E{ and let £; be the set of
new leaves of G; created by adding Ej to G.
Clearly |£1] < |[M|. Let K1 = LF(G + Ep) — L1
(C LF(G)). Since M is a maximum matching of

‘R(G), Proposition 3 shows that each leaf in Ky

consists of only one vertex and that the set of
vertices K = {z | {z} € K1} induces a complete
graph of G and of G + Ej.

We are going to propose an
O(c?|V|log(|[V|/o) + |E| + |Vr|*) time algo-
rithm such that it finds an optimum solution
if |£1] < |Ki| and such that a 3_approximate
solution if |£;] > |K1|. Note that we have
|L4] < Ka| if IM] < |[VRI/3]-

Proposition 15. Let {1}, {vh} € K1 (Wi # v3)

and Y1,Ys € Ly (Yl # Ya). If {(y1,91), (y2,¥2)}
is not an augmenting pair with y1 € Y1 and

Y2 € Yy then there are y3 € Y1 and ys € Y2 such
that {(ya, ¥}), (¥, ¥5)} s an augmenting pair and
(y4, Y1), (y3,95) & E (See Fig. 6).

We obtain the next proposition by Propositions -
9 and 15.

Proposition 16. Assume that |E1l > 3 and
|K1| > 3. Then there exists an augmenting pair
{f1, f2} such that f1 = (y1,41) € EU Ep, fo =

(v2,v4) & EUEY, {{n1}, {va}} € K1 (1 # v2), La
has two distinct sets Y1,Yo with y; € Y1, y2 € Ya

KNKIiKnK’

Fig. 6. A situation for Proposition 15

of

=
g

5
—r—
r—ﬁ

§0-f--
—
N

cSo....;.._

A(f1,G1+ {f1, f2}

Fig. 7. A(f1,G + {fi, f2}) in the proof of Proposi-
tion 16

and A(f1, G+{f1, f2}) is not a leaf. Furthermore
L1 UKy — {{n1}; {v2}}, Y1, Y2} is the set of all
leaves in G1 + {fi, fa}. (See Fig. 7) :

Next we are going to discuss the case where
|£1| S 2 or |]C1| S 2.

Proposition 17. Suppose that |£1] < 2 and
[C1] < |Ki|. Then there ewists a set E), =
{f1,-- -, ficy} such that A(G1+ Eb) > o +1 and
E3N(EUE)) =0.

It remains to consider the cases (|£1]| > 3 and
IKi| < 2) and (|£1] < 2 and |£4] > |K4]), for
which the next proposition holds.

Proposition 18. Suppose that one of the follow-
ing (1)-(3) holds: (1) |L1] > 3 and |Kq| < 2;
(2) |L1] = 2 and |K1] = 1; (8) |L1] = 2 and
IK1| =0. Let q1 = |[LF(G1)| and ry = [%]. Then
there exists a set Ey = {fi1,..., fr,} such that
MG1+ E)) >0 +1 and Ef N (E U E}) = 0.

The discussion from Propositions 16 through
18 is-summarized in the following procedure
FIND_EDGES2.

Procedure FIND_EDGES2;

206

begin
1. Go « G; m « LF(G); Ej < 0; p — 0;
2. Find an edge set Ej as in Proposition 14;
G1 — Go + Ey;
Determine £1 and KCy; 7 «— 1;
3. while K; # 0 do
- begin
4. if |£;] > 3 and |K;| > 3 then
Find an augmenting pair {f, f'}
by Proposition 16; E! «— {f, f'};
5. elseif |£;| <2 and |£;] < |K;| then
Find an edge set E; by Proposition 17;
6. else
Find an edge set E. by Proposition 18;

7. Construct Kiy1 and L;11; E} — E!_ UEY;
Git1 — G+ E!5 i —i+1;
end;

8. if A(G;) = o then/* the case with |£;| # 0 */
Find an edge set E] by Proposition 18;
B« Ei_ UE;

end;

Proposition 19. FIND_EDGES2 produces an
optimum solution if |L1| < |Kq].

Proposition 20. FIND_EDGES2 gives a 3-
approzimate solution if |L1] > |K4].

Remark 1. Let M be any maximum matching
of R(G). Tt M| < |EEGL] then |£y| < |Ky]
and we can find an optimum solution in polyno-
mial time. If L%J < M| < LE—F—’Z—(G—)’J then
|£1] < |K4q| or |£1] > |K4|. Since the proof of
NP-completeness of kECA(S,SA) in [10] is given
for the case with M| = I_lLFzﬂ_l, we consider
approximate solutions if |£q]| > |K4].

Theorem 1. Suppose that |LF(G)| < 20 + 6.
Then FIND_EDGES?2 can find an optimum so-
lution, if |£1] < |K1l, or a 2-approzimate solution
if |L1] > |K4|, in O(c?|V|log(|V|/o) + |E|) time.

6 (o + 1)ECA(S,SA) for G having at
least 20 + 6 leaves

In this case, Proposition 5(3) shows that any
maximum matching M of R(G) has M| =
LJL—FQ(QMJ First, some basic results on nonadja-
cent pairs and edge interchange operation are go-

“ing to be given.

Proposition 21. Suppose that there are a non-
adjacent pair of leaves Y1,Y2 € LF(G) and two
vertices y; € Y, 1 = 1,2, with (y1,y2) € E, such
that G' = G + {(y1,y2)} has a leaf S contain-
ing YiUYs. Let L' = {Y C S|Y € Ig(c + 1)},
X =Y1UYs and Z = Uyerr(e)—{v1,v2} Y - Then
(X, 2,6) < o—1if|L] = 3.

The next proposition can be proved by using
Propositon 21.

Proposition 22. Suppose o > 3 and let M' =
{(vai-1,v2:)|1 <7 <m} C M for somem < | M|,
and put Y; =Y (v;) for each v; € Vg.

(1) If |IM'| > 2 and there are distinct in-
dices 1,5 with 1 < 4,5 < m such that
(Y1, Yai-{Yaj1, Y} then (i) and (i)
hold. v

(i) These leaves are partitioned into
o D-combination {{L}, Ly}, {L}, T4}}
having four wvertices y € . Li,
t = 1,2,3,4, such that G +
{(y1,92), (y3,94)} has a (o + 1)-
component S containing all L}, t =
1,2,3,4.

(ii) The (o + 1)-component S’ of G +
{(y1,y2)} such that Ly UL, C S’ is not
a leaf.

(2) If\M'| = [0/2]+1 and no such pair of indices

as in (1) exist then, for each (va;_1,va) € M/,

- there are vertices yo;—1 € Y2i—1 and yz; € Yo;

such that G' = G + {(y2i—1, y2:i)} s a simple

graph having a (o +1)-component X which is
not a leaf and which contains Ya; 1 U Ya;.

Proposition 23. Suppose that there is a set
MI = {(vzi_l,vzi)|1 S 1 < m} - M fO’I‘ some
m with e +2 <m < |M|, and put Y; =Y (v;) for
each v; € Vg. Then there is an edge (vop—_1,v2p) €
M, with {}/1’ YQ}L{Y%—l, }/TZh}

By combining Propositions 9, 22 and 23, we
obtain the following proposition.

Proposition 24. Suppose that there is a set

= {fi = (vai-,v)|l < i <m} C M
for some m with ¢ +3 < m < |M]|, and put
Y, = Y(v;) for each v; € Vr. Then there ex-
ists an augmenting pair {e}, ey} with respect to
Y1,Ys, Y1, Ya; such that G + {e}, ey} is simple
and has no leaf S with Y1UY2UY;_1UY3; C S,
where {f1, fi} C M'.

207

Based on Proposition 24, the next procedure
FIND_EDGESS is obtained.

Procedure FIND_EDGESS3;
begin
1. Gy « G; 7 — LF(G); i < 1; Ej < 0;
2. while 7 # 0 do '
begin
3. if |nr| <3 then
4. Find an edge set E. as E’
in Proposition 12(1) or 13;
5. else
begin /* x| >4 */

6. Find a matching M” =
1 <p<m'}of R(Gy), :
where if |7| < 20 + 6 then m/ « |7/2],
otherwise m' « o + 3;

7. if |7| < 20 + 6 then
begin ,

Choose E! C E! with |El| =0 +3—-m/
appropriately;
M — M"U{(v,w) € ERg|
(v, w') € E[,v' € Y(v),w' € Y(w)};
/* M’ is a matching on R(G) in the case.*/
end; :
else
M/ (_M”;
8. Find an augmenting pair E! as {e], €5}
v in Proposition 24
by choosing f; € M";
/* Note that [M'| =¢ + 3. */
M" for f;
of Proposmon 24 then
‘begin /* In the case with |7| <20 46 */

E} « E} — {(y2j-1, ¥25) };

Gi — G; — {(y2j-1,y2;)}, where
Y2j-1 € Y21 and yz; € Yo ;

{(vap-1, vap)|

9. if fj eM —

end; ,
10. E},, < E[UE; Git1 < G; + E};
e m—{Y()v e V(BN i —i+1;
end;
end;

Proposition 25. Any set E finally obtained at
the termination of FIND_EDGESS is a minimum
attachment such that \(G') = o + 1, where G’ =
G+ E'.

Theorem 2. If G has at least 20 + 6 leaves then
the algorithm FIND_EDGES3 correctly finds a
solution E' to (o + 1)ECA(S,SA) for any given
G with M(G) = o in O(c*|V]log(|V|/o) + |E| +
|VR|?) time. '

7 Concluding Remarks

The paper has proposed

(1) an O(c?|V|log([V|/o) + |E| + |V&|?) time al-
gorithm for finding an optimum solution if G
has at least 20 + 6 leaves or if |£1]| < |K1| and
G has less than 20 + 6 leaves,

an O(c?|V|log(|V|/o) + |E|) time one for a
3_approximate solution if |£1] > |K1| and G
has less than 20 + 6 leaves.

(2)

We can improve the first algorithm to an
O(o?|V|log(|V|/o) + |E]) time one by devising
how to check whether or not {fi, f2} is an aug-
menting pair, and whether or not A(f1,G +
{f1, f2}) is a leaf in Proposition 9.

Acknowledgments

The research of T.Watanabe is partly supported
by the Grant in Aid for Scientific Research on
Priority Areas of the Ministry of Education, Sci-
ence, Sports and Culture of Japan, under Grant
No.10205219.

References

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN,
The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

2. J. BANG-JENSEN AND T. JORDAN, FEdge-connectivity
augmentation preserving simplicity, SIAM J. Discrete

v Math., 11 (1998), pp. 603-623. .

3. K. P. EsWARAN AND R. E. TARJAN, Augmentation
problems, SIAM: J. Comput., 5 (1976), pp. 653—655.

4.-S. EVEN, Graph Algorithms, Pitman, London, 1979.

5. A..FRANK, Augmenting graphs to meet edge connec-
tivity requirements, SIAM J. Discrete Mathematics, 5
(1992), pp. 25-53. :

6. H. FRANK AND W. CHoU, Connectivity considerations
in the design of survivable networks, IEEE Trans. Cir-
cuit Theory, CT-17 (1970), pp. 486-490.

7. H. N. GABow, Applications of a poset representation
to edge connectivity and graph rigidity, in Proc. 32nd

. IEEE Symposium on Foundations of Computer Sci-
ence, 1991, pp.:812-821. . .

_ , Efficient splzttmg oﬁ algorzthms for graphs, in
Proc. 26th ACM Symposium on Theory of Comput-
ing, 1994, pp. 696-705.

9. T. C. Hu, Integer Programming and Network Flows,
Addison-Wesley, Reading, Mass, 1969.

10. T. - JorRDAN, Two - NP-compléte
“tation . problems, - Tech. Rep. 'PP-1997-08,

~Odense = University, Denmark, March . 1997.
http://www.imada.ou.dk/Research/Preprints/j-
Lhtml.

augmen-

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

208

A. V. KarzanNov AND E. A. TIMOFEEV, Efficient al-
gorithm for finding all minimal edge cuts of a nonori-
ented graph, Cybernetics, (1986), pp. 156-162. Trans-
lated from Kibernetika, 2 (1986), 8-12.

H. NacaMocH! AND T. IBARAKI, A faster edge split-
ting algorithm in multigraphs and its application to the
edge-connectivity augmentation problem, Tech. Rep.
94017, Kyoto University, 1994.

D. NAOR, D. GUSFIELD, AND C. MARTEL, A fast al-
gorithm for optimally increasing the edge connectivity,
SIAM J. Comput., 26 (1997), pp. 1139-1165.

D. Takarull, S. TaokAa, AND T. WATANABE,
Simplicity-preserving augmentation to 4-edge-connect
a graph, IPSJ SIG Notes, AL-33-5 (1993), pp. 33—-40.
S. Taoka, D. TAKAFuUJI, AND T. WATANABE,
Simplicity-preserving augmentation of the edge-
connectivity of a graph, Tech. Rep. of IEICE of Japan,
COMPY3-73 (1994), pp. 49-56.

S. TAOKA AND T. WATANABE, Efficient algorithms for
the edge-connectivity augmentation problem of graphs
without increasing edge-multiplicity, IPSJ SIG Notes,
AL-42-1 (1994), pp. 1-8.

, Minimum augmentation to k-edge-connect
specified vertices of a graph, in Lecture Notes in Com-
puter Science 834(D-Z du and X-S Zhang(Eds.): Al-
gorithms and Computation), Springer-Verlag, Berlin,
1994, pp. 217-225. (Proc. 5th International Sympo-
sium on Algorithms and Computation(ISAAC’94)).

,- Smallest augmentation to k-edge-connect all
specified vertices in a graph, IPSJ SIG Notes, AL-38-3
(1994), pp. 17-24.

, The (o0 + 1)-edge-connectivity augmentation
problem without creating multiple edges of a graph,
in Lecture Notes in Computer Science 1872 (J. van
Leeuwen, et al. (Eds.): Theoretical Computer Sci-

- ence), Springer-Verlag, -Berlin, 2000, pp. 169-185.

(Proc. 1st International Conference IFIP TCS 2000).
R. E. TARJAN, Data Structures and Network Algo-
rithms, CBMS-NSF Regional Conference Series in Ap-
plied Mathematics, STAM, Philadelphia, PA, 1983.
T. WATANABE, An efficient way for edge-connectivity
augmentation, Tec. Rep. ACT-76-UILU-ENG-87-
2221, Coordinated Science Lab., University of Illinois
at Urbana, Urbana, IL 61801, April 1987. Also pre-
sented at Eighteenth Southeastern International Con-
ference on Combinatorics, Graph Theory, Computing,
No.15, Boca Raton, FL, U.S.A., February 1937.

, A simple improvement on edge-connectivity
augmentation, Tech. Rep., IEICE of Japan, CAS87-
203 (1987), pp. 43-48.

T. WATANABE AND A. NAKAMURA, Edge-connectivity

augmentation problems, J. Comput. System Sci., 35
(1987), pp. 96-144.

T. WATANABE AND M. YAMAKADO, A linear time al-
gorithm for smallest augmentation to 3-edge-connect
a graph, IEICE Trans. Fundamentals of Japan, E76-A

(1993), pp. 518-531.

