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Abstract: Evolutionary algorithms are problem-independent randomized
search heuristics. It is discussed when it is useful to work with such algorithms and
it is argued why these search heuristics should be analyzed just as all other deterministic
and randomized algorithms. Such an approach is started by analyzing a simple evolutionary
algorithm on linear functions, quadratic functions, unimodal functions, and its behavior on
plateaus of constant fitness. Furthermore, it is investigated what can be gained and lost by
a dynamic variant of this algorithm. Finally, it is proved that crossover can decrease the
run time of evolutionary algorithms significantly.
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1 Introduction

The history of evolutionary algorithms dates back
to the sixties (see Fogel (1985), Goldberg (1989),
Holland (1975), or Schwefel (1995), the hand-
book edited by B\"ack, Fogel, and Michalewicz
(1997) presents all developments). It is a class of
problem-independent randomized search heuris-
tics used for optimization, adaptation, learning,
and some other aims. Here we focus on opti-
mization. Randomization is also a major tool
for problem-independent algorithms (see Mot-
wani and Raghavan (1995) $)$ . Nevertheless, there
is almost no contact between people working
on evolutionary algorithms and people work-
ing on classical randomized optimization algo-
rithms. The reasons are certain misunderstand-
ings. Many people doubt the need for problem-
independent search heuristics and argue that
problem-dependent algorithms have to better,
since they are based on problem-specific knowl-
edge. We discuss these aspects in Section 2.
There we present some realistic scenarios where
one has to work with problem-independent search
heuristics.

The classical research on efficient algorithms
combines the design and the analysis of algo-
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rithms. There are only few analytical results
on evolutionary algorithms comparable to the
analytical results on the classical algorithms.
The analysis of a problem-independent algorithm
working on a specific problem is typically harder
than the analysis of problem-specific algorithms
which often are designed to support the analysis.
We discuss $\mathrm{i}\dot{\mathrm{n}}$ Section 3 the limited value of often
discussed statements on evolutionary algorithms
and argue why the analysis of evolutionary algo-
rithms should be performed in the same way as
the analysis of all other types of algorithms. In
the rest of the paper we present shortly results
which have been obtained this way.

In Section 4, we introduce the (I+I)EA, the
perhaps simplest evolutionary algorithm which
is in many situations surprisingly successful.
The next three sections consider the analysis of
the $(1+1)\mathrm{E}\mathrm{A}$ on pseudo-boolean functions $f$ :
$\{0,1\}^{n}arrow \mathbb{R}$ in order to prove or to disprove well
accepted conjectures. In Section 5, it is shown
that the (I+I)EA optimizes linear functions ef-
ficiently. However, statements on the efficiency
on classes of functions are difficult. In Section
6, two conjectures are disproved namely the con-
jectures that the (I+I)EA is efficient for all uni-
modal functions and for all functions of small de-
gree. In Section 7, the behavior of the $(1+1)\mathrm{E}\mathrm{A}$

and one of its variant on plateaus of constant fit-
ness is investigated. The $(1+1)\mathrm{E}\mathrm{A}$ works with the
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mutation probability $1/n$ . In Section 8, we ana-
lyze a dynamic variant of the $(1+1)\mathrm{E}\mathrm{A}$ working
with alternating mutation probabilities.

The $(1+1)\mathrm{E}\mathrm{A}$ uses only nlutation and selection.
Many people believe that crossover is a funda-
mental operation. Nevertheless, this was proved
by experiments only. In Section 9, we present
the first proof that crossover can decrease the ex-
pected run time for a specific function from su-
perpolynomial to polynomial.

The main purpose of this paper is to convince
$\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}\dot{\mathrm{e}}\mathrm{r}\mathrm{S}$ that evolutionary $\mathrm{a}\mathrm{l}\mathrm{g}’ \mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{S}$ are a
generic part of the research area of efficient al-
gorithms.

2 Scenarios for general random-
ized search heuristics

First, we have to define the notion of random-
ized search heuristics. For some state space $S$ ,
we look for heuristics to find efficiently good or
even op.timal $\dot{\mathrm{p}}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}_{\mathrm{S}\mathrm{f}\mathrm{o}}\mathrm{r}..\xi \mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}f$: $Sarrow \mathbb{R}$ . The
main handicap of the search is that the algorithm
does not “

$\mathrm{k}\mathrm{n}\mathrm{o}\mathrm{W}$
”

$.$ f.in. advance. It can sample $f$ ,
i.e., it can choose search points $x$ from $S$ and then
evaluate $f(X\backslash )$ . The further search can be directed
by the partial knowledge about. $f$ obtain.e $\mathrm{d}$ from
previous sampling.

Definition 1 Randomized search $heurist\dot{i}.c$ for
real-valued functions on $S$ .
The first search point $x_{1}$ is chosen according to
a $probab\dot{i}l_{\dot{i}}ty$ distribution on $S$ specified by the
heuristic. $T\dot{h}$en $f(x_{1})$ for the actual $f$ is eval-
uated. The search point $x_{t}$ is chosen accord-
ing to a probability distribution which is speci-
fied by the heuristic and which may depend on
$(x_{1}, f(x_{1}),$ $\ldots$ , $x_{t-1},$ $f(x_{t1}-))$ . Then $f(x_{t})$ is eval-
uated. The process is iterated until a stopping
criterion is fulfilled.

This definition captures all randomized search
heuristics. If an algorithm starts with $n$ ran-
domly chosen search points, this is captured
by Definition 1, since the search points $x_{i}$ ,
$2\leq\dot{i}\leq n$ , can be chosen independently from
$(x_{1}, f(x_{1}),$

$\ldots,$ $Xi-1,$ $f(X\mathrm{i}-1))$ . The consideration
of so-called populations is space efficient and pre-
scribes that the further search process is inde-
pendent from all sampled search points which are

not in the actual population. Figure 1 illustrates
the $\acute{\mathrm{m}}$ain differences between the classical opti-
mization scenario and the so-called black-box op-
timization scenario which assumes that the func-
tion $f$ to be optimized is hidden in sonle black-
box.

classical optimization

black box optimization

Figure 1: Optimization scenarios.

The design of problem-specific algorithms is in-
fluenced by the results of the analysis of the algo-
rithm and by the experimental experience. The
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analytical results and the experimental experi-
ence about a problem-independent algorithm on a
specific problem should have not too much influ-
ence on the design of this algorithm as a problem-
independent one. Only results and experiments
on many different problems should have such an
influence. Otherwise, the algorithm may turn
into a problem-specific one. The question is
why we need problem-independent algorithms. If
we know a problem, analyze it and use all our
knowledge to design a problem-specific algorithm,
this should be better than a problem-independent
algorithm. Nobody should doubt this. How-
ever, there are at least two situations or scenar-
ios where one needs problem-independent algo-
rithms.

Scenario 1 A problem has to be solved quickly
on not too many instances and there are not
enough resources (time, money, $and/or$ knowl-
edge) to design a problem-specific algorithm.

This scenario is realistic in applications. There
are not so many experts in designing algorithms
that all optimization problems in applications can
be attacked by them.

Scenario 2 The function $f$ : $Sarrow \mathbb{R}$ is not
‘known” and one can only $\dot{‘}{}^{t}s$ample” $f$ .

If one likes to optimize a complicated technical
system by fixing some free parameters, it hap-
pens that the technical system is so complicated
that its input-output behavior cannot be com-
puted and only experiments improve the knowl-
edge about the system.

In black-box optimization the cost is measured
by the number of search points which are sam-
pled.

3 How to analyze evolutionary
algorithms

First, we introduce the essential modules of EAs
(evolutionary algorithms):

-Selection is used to decide which search
points will be forgotten (the others are the
members of the actual population called gen-
eration) and it is also used to decide which
“individuals” of the “current population” are
chosen as “parents”.

-Mutation and crossover produce new indi-
viduals called “children” from the parents.
Mutation works on one parent and produces
usually one child while crossover works on
at least two parents (most often exactly two
parents) and produces a certain number of
children.

Evolutionary algorithms are designed as ro-
bust search heuristics with the hope that they
are quite efficient on many problems of differ-
ent type. However, often exaggerated statements
like “an evolutionary algorithm is better than all
other algorithms on the average of all problems”
have been used. The NFL theorem of Wolpert
and Macready (1997) shows that such statements
are wrong and it is necessary to analyze evolu-
tionary algorithms more carefully. Too general
statements tend to be wrong. This is also the
case with the building block hypothesis. Mitchell,
Forrest, and Holland (1992) have presented the
so-called royal-road functions where evolutionary
algorithms with crossover should have big ad-
vantages if the building block hypothesis holds.
Later they have admitted that a simple evolu-
tionary algorithm outperforms genetic $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\dot{\mathrm{h}}\mathrm{m}\mathrm{S}$

which rely on crossover (Mitchell, Holland, and
Forrest (1994) $)$ . The often cited schema theo-
rem is a correct but simple result on the behavior
within one step. Other one step measures like
the quality gain and the progress rate are well an-
alyzed. The results describe the microscopic be-
havior, but in many situations this implies almost
nothing for the macroscopic behavior. Finally,
evolutionary algorithms are analyzed as dynam-
ical systems and therefore implicitly under the
assumption of an. infi.nite population. Then the
difference between finite and infinite populations
has to be investigated carefully. Rabani, Rabi-
novich, and Sinclair (1995) have started such an
approach.

We have chosen another $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\backslash$ of view. A ran-
domized search heuristic is nothing but a random-
ized algorithm and should be analyzed like a ran-
domized algorithm with one distinction. Since $f$

is assumed to be unknown, on..e never knows when
the optimum is reached. Hence, we consider evo-
lutionary algorithms without stopping criterion
and investigate random variables $x_{f}$ measuring
the first point of time where on $f$ something nice
happens. Here the nice event is the evaluation
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of an optimal search point and we consider the
maximization of $f$ . Our interest (motivated by
the requirements of applications) is the behavior
within reasonable time bounds and not the limit
behavior. Moreover, we are interested in the be-
havior for typical functions (typical instances for
classical algorithms). This leads to bounds on the
best and worst case behavior on classes of func-
tions (problems for classical algorithms). Such
results can be used to compare different random-
ized search heuristics.

The obvious problem is to estimate the ex-
pected search time $E(X_{f})$ . This expected value
can be exponentially large, although the event
“$x_{f}\leq t(n)$

” for small $t(n)$ has a probability
which is not too small. Such a result is of special
interest, since we have the multi-start option, i.e.,
many independent runs of the algorithm can be
performed in parallel.

4 The simple $(1+1)\mathrm{E}\mathrm{A}$

Algorithm 1 $(l+l)EA$

- choose $x\in\{0,1\}^{n}$ randomly,

- let $x’$ be the result of a mutation of $x,\dot{i}.e.$ ,
the bits $x_{i}’$ are generated independently and
$x_{i}’=\overline{x}_{i}$ with the mutation probability $1/n$ and
$x_{i}’=x_{i}$ otherwise, . ’

- $x$ is replaced with $x’$ iff $f(x’)\geq f(x)$ ,

- the last two steps are iterated.

The notation $(1+1)\mathrm{E}\mathrm{A}$ means that the popu-
lation size is 1, the current search point creates
one child by mutation and the child replaces its
parent iff it is not worse than its parent. One
can easily design algorithms with larger popula-
tions. However, selection has the tendency to cre-
ate populations with a small diversity. Hence, one
can prove in many cases that $p$ independent runs
of the (I+I)EA outperform an evolutionary al-
gorithm with population size $p$ . This will not be
discussed here in detail, but we sometimes men-
tion the behavior of multi-start variants.

5 The $(1+1)\mathrm{E}\mathrm{A}$ on linear func-
tions

Definition 2 A function $f$ : $\{0,1\}^{n}arrow \mathbb{R}$ is
called linear $\dot{i}ff(x_{1,\ldots,n}x)=w_{0}+w_{1}x_{1}+\cdots+$

$w_{n}x_{n}$ .

For the analysis of the $(1+1)\mathrm{E}\mathrm{A}$ on linear func-
tions we can assume without loss of generality
that $w_{0}=0$ and $w_{1}\geq\cdots\geq w_{n}>0$ . Droste,
Jansen, and Wegener (1998a) have proved the fol-
lowing result which has been an open conjecture
for several years.

Theorem 1 The expected run time of the
$(l+l)EA$ with non-zero linear weights equals
$\ominus(n\log n)$ .

In this survey article we only list the main ideas
of the proofs. The lower bound follows easily with
the Chernoff’s bound, showing that the initial
point has a large Hamming distance to the opti-
mum, and the coupon collector’s theorem, prov-
ing a bound on the time until the bits different to
the bits of the optimum have tried to flip at least
once.

The simpliest case where $w_{1}=\cdots=w_{n}=1$

has been solved by M\"uhlenbein (1992). A general
upper bound of $O(n^{2})$ can be obtained easily. Let

$A_{i}=\{X|w1+\cdots+w_{i}\leq f(x)<w_{1}+\cdots+wi+1\}$ .

Then it is easy to see that for the Hamming dis-
tance $H$ and $\dot{i}<n$

$\forall x\in A_{i}\exists y\in A_{i+1}\cup\cdots\cup A_{n}$ : $H(x, y)=1$ .

Hence, the expected time to leave $A_{i}$ is bounded
above by $e\cdot n$ leading to the upper bound $e\cdot n^{2}$ .

The proof method for the upper bound of The-
orem 1 is best explained for the special case of
the binary value function BV defined by

$\mathrm{B}\mathrm{V}_{n}(x)=x_{1}2^{n-1}+x_{2}2^{n-2}+\cdots+x_{n-1}2+x_{n}$ .

The crucial fact is that steps increasing the Ham-
ming distance to the optimal point 1n can be ac-
cepted. The leftmost flipping bit decides whether
the child is accepted ($0arrow 1$ is accepted, $1arrow 0$

is rejected). There may be many 1-bits to the
right which flip to $0$ . The analysis distinguishes
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successful steps ( $x’$ replaces $x$ and $x’\neq x$ ) and
unsuccessful steps.

We define a Markoff process which is provably
slower than the $(1+1)\mathrm{E}\mathrm{A}$ and we measure the
progress with respect to a potential function. The
situation is illustrated in Figure 2.

firqt half $.\mathrm{q}\mathrm{e}.\mathrm{r}\cdot.0\eta \mathrm{d}$ half

We need a tedious case inspection to control the
progress with respect to this pontential func-
tion and we also have proved a generalization of
Wald’s identity.

6 The $(1+1)\mathrm{E}\mathrm{A}$ on unimodal
functions and quadratic func-
tions

Figure 2: A successful mutation step for $\mathrm{B}\mathrm{V}_{n}$ .

The potential function counts the number of
ones in the first half. For $\mathrm{B}\mathrm{V}_{n}$ , the last half has
no influence on the decision whether a step is suc-
cessful–as long as some bit in the first half flips.
A step is successful iff the first flipping bit is a
$0$ . With respect to the potential function we pes-
simistically assume that all other flipping bits in
the first half flip from $0$ to 1. We look for an
upper bound on the number of successful steps
$.\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{l}|$ the $\mathrm{n}\mathrm{u}\mathrm{m}$

.
ber $.0..\mathrm{f}$ ones in th.$\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{r}\mathrm{S}\mathrm{t}|$ h.alf has in-

creased from $\dot{i}$ to a larger value. The number of
ones is by our assumption a random walk on $\mathbb{Z}$

(in order to $\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}\mathrm{i}\dot{\mathrm{n}}$ a homogeneous random walk,
we allow negative numbers). The difference be-
tween two consecutive points of time is described
by a random variable $Y$ where (by our assupm-
tion) $Y\leq 1$ and (as one can prove) $E(Y) \geq\frac{1}{2}$

(here it is essential to consider only one half of
the string). By Wald’s identity, the number of
successful steps until the number of ones has in-
creased is bounded by 2. If the first half consists
of ones only, the same analysis works for the sec-
ond half, if one takes into account that no bit
from the first half flips in successful steps. The
probability of a successful step is for strings with
$\dot{i}$ ones in the corresponding half bounded below
by $e^{-1}\cdot(n-\dot{i})/n$ leading to the proposed bound.

The situation of general linear functions is
much more difficult. However, a very simple po-
tential function can be used namely

$v(x).–2\cdot(_{X_{1}}+\cdots+x_{n//+}2)+(x_{n}21+\cdots+xn)$ .

The following conjectures had a great influence
in the discussion on evolutionary algorithms.
First, we introduce the notion of unimodal and
quadratic functions.

Definition 3 $\dot{i}$) A function $f$ : $\{0,1\}^{n}arrow \mathbb{R}$

is called unimodal $\dot{i}f$ it has a unique global
optimum and all other search points have a
Hamming neighbor with a larger fitness.

$\dot{i}\dot{i})$ A function $f$ : $\{0,1\}^{n}$ $arrow$ $\mathbb{R}$ is called
quadratic if

$f(X_{1}, \ldots, X_{n})=w0$ $+ \sum_{1}\leq i<j\leq niwj+\sum_{1\leq}i\leq nwiXix_{i^{X}j}$

.

The conjectures claim that the (I+I)EA is ef-
ficient on all unimodal and on all quadratic func-
tions. Both conjectures are wrong proving that
statements that evolutionary algorithms are ef-
ficient on not very “simple” classes of functions
are in general not true. The class of unimodal
functions includes path functions.

Definition 4 A path $p$ starting at $a\in\{0,1\}^{n}$ is
defined by a sequence of points $p=(p_{0}, \ldots,p_{m})$

where $p_{0}=a$ and $H(p_{i},p_{i}+1)=1$ . A function
$f$ : $\{\dot{0}, 1\}^{n}arrow \mathbb{R}$ is a path $f\dot{u}nct_{\dot{i}}on$ with respect to
the path $p$ if $f(p_{i+1})>f(p_{i})$ for $0\leq i\leq m-1$

and $f(b)<f(a)$ for all $b$ outside the path.

Path functions where the fitness outside the
path is defined in such a way that the $(1+1)\mathrm{E}\mathrm{A}$

reaches the path with high probability at the be-
ginning of the path may lead to the conjecture
that the (I+I)EA “has to follow” the path which
would take an expected time of $(kn)$ . Horn,
Goldberg, and Deb (1994) have defined expo-
nentially long paths leading to unimodal func-
tions. However, Rudolph (1997) has shown that
these paths allow “shortcuts”, i.e., mutation steps

213



where only a few bits flip (here three bits) and
where the progress on the path is exponentially
large. The so-called long-path functions are op-
timized by the (I+I)EA in expected $\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\ominus(n^{3})$ .
Rudolph (1997) has defined other long-path func-
tions such that for all $\dot{i}\leq n^{1/2}$ each point $p_{j}$

on the path has only one successor on the path
with Hamming distance $i$ , namely $p_{i+j}$ . Hence,
shortcuts are only possible by flipping $\Omega(n^{1/2})$

bits simultaneously, an event with an exponen-
$\mathrm{t}\mathrm{i}\mathrm{a}\}\mathrm{l}\mathrm{y}$ small probability. Droste, Jansen, and We-
gener (1998b) have defined a unimodal function
based on this long path and have proved that the
(I+I)EA needs an expected time $\mathrm{o}\mathrm{f}\ominus(n^{3/2n^{1/}}2)2$

for this function. Additionally, it can be shown
that multi-start variants will not lead to subex-
ponential run times.

Theorem 2 There are unimodal functions where
the expected run time of the $(l+l)EA$ is of size
$\ominus(n^{3/2n}2)1/2$ .

Wegener and Witt (2000) have analyzed the
behavior of the (I+I)EA on quadratic functions.
In contrast to the class of linear functions, it is
not possible to assume without loss of generality
that all weights are non-negative. The trick to
replace $x_{i}$ by $\overline{x}_{i}=1-x_{i}$ does not work, since
$w_{ij}x_{i}\dot{x}_{j}$ leads by this replacement to a new term
$w_{ij}x_{j}$ which can make the weight of $x_{j}$ negative.
In $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\wedge \mathrm{c}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$ , there are non-u.nimodal $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}\mathrm{r}\grave{\mathrm{a}}\mathrm{t}\mathrm{i}_{\mathrm{C}}$

functions essentially depending on all variables.
With the methods of the $O(n^{2})$ bound for linear
functions one obtains the following result.

Theorem 3 Let $f$ : $\{0,1\}^{n}arrow \mathbb{R}$ be a quadratic
function without negative weights and with $N$

non-zero weights. Then the expected run time of
the $(\mathit{1}+. \mathit{1}..)EA-$ is.bounded by $O(Nn^{2})$ .

There is another interesting special case
namely the case of squares of linear functions,
i.e., quadratic functions which can be written as

$f(x)=g(x)^{2}$ where $g(x)=w\mathrm{o}+w_{1}x_{1}+\cdots+wnx_{n}$ .

Again we can assume without loss of generality
that $w_{1}\geq\cdots\geq w_{n}>0$ . The case $w_{0}\geq 0$ is
not different from the case of linear functions.
However, the case $w_{0}<0$ is interesting. If
$w_{1}=\cdots=w_{n}=1$ and $w_{0}=-(n/2-1/3)$ , the

(I+I)EA finds one of the local optima $0^{n}$ and 1n
quickly. Sitting at the suboptimal point $0^{n}$ it has
to wait for a simultaneous flipping of all bits lead-
ing to an expected run time $\mathrm{o}\mathrm{f}\ominus(n^{n})$ . However,
the probability of reaching 1n within $O(n\log n)$

steps is at least $1/2-\in$ and multi-start variants
are very efficiellt. This result can be generalized.

Theorem 4 The expected run time of the
$(l+l)EA$ on some squares of linear functions
equals $\ominus(n^{n})$ . The success probability for each
square of a linear function within $O(n^{2})$ steps is
bounded below by $1/8-o(1)$ .

Finally, Wegener and Witt (2000) present a
very difficult quadratic function. The function

$\mathrm{T}\mathrm{R}.\mathrm{A}\mathrm{P}_{n}(x_{1}, \ldots, Xn. )=$ $-(x_{1}+\cdots+x_{n})$

$+(n+1)X_{1n}*\cdots*x$

has degree $n$ and is very difficult. The fitness
function gives hints to go to $0^{n}$ . However, 1n is
the global optimum. Using a reduction due to
Rosenberg (1975) $\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{P}_{n}$ is reduced to

$\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{P}_{n}^{*}(x_{1,\ldots\overline{\iota}}, x_{?})$ $=$
$- \sum_{\leq 1\leq in}Xi+(n+1)X_{1}x_{22}n-$

$-(n+1)1 \leq i\sum_{\leq 2n-2}(_{X}n-iXn+i-1$

$+x_{n+i}(3-2Xn-i-2X_{n}+i\neg^{1}))$ ,

a quadratic function with almost the same prop-
erties as $\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{P}_{n}$ . Nevertheless, the analysis of
the (I+I)EA on $\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{P}_{n}^{*}$ is more involved than
on $\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{P}_{n}$ .

Theorem 5 With probability 1 $-2^{-\Omega(n)}$ , the
$(l+l)EA$ needs $2^{\Omega(n\mathrm{l})}\mathrm{o}\mathrm{g}n$ steps on the quadratic
function $TRA$. $P_{n}^{*}$ .

7 Evolutionary algorithms on
plateaus of constant fitness

Definition 5 A plateau for $f$ : $\{0,1\}^{n}arrow \mathbb{R}$ is
a set $P\subseteq\{0,1\}^{n}$ such that $f(a)=f(b)$ for all
$a,$ $b\in P$ and there is path from $a$ to $b$ inside $P$ .

As long as an evolutionary algorithm only finds
search points from a plateau, it gets no hints how
to direct the search. The $(1 +1)\mathrm{E}\mathrm{A}$ searches
blindly on the plateau and accepts each string.
We are discussing plateaus which are short paths.
Is it possible for the (I+I)EA to reach the (

$‘ \mathrm{e}\mathrm{n}\mathrm{d}$
”
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of such a plateau efficiently? To be more precise,
Jansen and Wegener (2000) have defined the func-
tion $\mathrm{S}\mathrm{P}\mathrm{P}_{n}$ (short path as plateau), see Figure 3.
We define $||a||=a_{1}+\cdots+a_{n}$ .

Definition 6

$SPP_{n}(a)=\{$

$2n$ if $a=1^{n}$

$n$ $\dot{i}fa=1^{i}0^{n-i},$ $i\neq n$

$n-||a||$ otherwise.

Figure 3: The function $\mathrm{S}\mathrm{P}\mathrm{P}_{n}$ . .

Theorem 6 The expected run time of the
$(1+1)EA$ on $\mathrm{S}\mathrm{P}\mathrm{P}_{n}$ is bounded by $O(n^{3})$ and the
success probability for $n^{4}$ steps is $1-2^{-\Omega(n}$ ).

It is easy to see that the (I+I)EA reaches the
plateau with high probability close to $0^{n}$ and is
far away from the “golden point” $1^{n}$ . Then only
points from the plateau or 1n are accepted. The
$(1+1)\mathrm{E}\mathrm{A}$ makes a random walk on the plateau
like on a bounded interval of Z. A fraction of
$\ominus(1/n)$ of the steps is successful, since these steps
find another point on the plateau. The random
walk is almost symmetric (we cannot jump “be-
hind” $0^{n}$ or $1^{n}$ ). Now we can use results on the
gambler’s ruin problem to prove that the success
probability within $cn^{2}$ steps, $c$ large enough, is
bounded below by a positive constant. This leads
to the bounds of Theorem 6.

For $\mathrm{S}\mathrm{P}\mathrm{P}_{n}$ , it is essential to investigate the
plateau. Let the (I+I)*EA be the variant which
accepts $x’$ only if $f(x’)>f(x)$ . The (I+I)*EA
also finds the plateau close to $0^{n}$ and then only
accepts $1^{n}$ . It is quite easy to prove that its ex-
pected run time is $2^{(n\mathrm{l})}\mathrm{o}\mathrm{g}n$ and that the success

probability for $n^{n/2}$ steps is only $2^{-\Omega(n)}$ . One can-
not expect that the (I+I)*EA has any advantage.
However, Jansen and Wegener $(200\mathrm{o}\mathrm{b})$ have also
shown that the (I+I)*EA can prevent that the
search process runs .into a trap. Their function is
called MPT (multiple plateaus with traps).

We define $\mathrm{M}\mathrm{P}\mathrm{T}_{n}$ informally. Again, the path of
$\mathrm{a}\mathrm{l}11^{i}0^{n-i}$ plays a central role and 1n with fitness
$3n$ is the unique optimum. Between $1^{n//4}40^{3n}$ and
$1^{n/2}0^{n}/2$ there are $\lfloor n^{1/2}/5\rfloor$ so-called holes with a
distance of at least $\lfloor n^{1/2}\rfloor$ . The holes have the
fitness $0$ . All other points $1^{i}0^{n-i}$ have the fitness
$n+\dot{i}$ . $\mathrm{H}\dot{\mathrm{e}}\mathrm{n}\mathrm{c}\mathrm{e}$, we have a path with increasing
fitness values besides some holes where a jump
where two bits have to flip simultaneously has to
be performed. The expected run time along this
path is $(n^{5}/2)$ . Just before a hole, say at 1i $0^{n-i}$ ,
a plateau consisting of a short path starts. All
the points 1i $0^{n-i-j}1^{j},$ $1\leq j\leq\lfloor n^{1/4}\rfloor-1$ have
the same fitness as $1^{i}0^{n-i}$ . The final point on
this path 1i $0^{n-i-j}1^{j},$ $j=\lfloor n^{1/4}\rfloor$ has the second
best fitness value of $2n$ . These points are traps,
since these points are far away from 1n and only

$\mathrm{j}\mathrm{u}\mathrm{m}_{\mathrm{P}^{\mathrm{S}}}$ to 1n $0\dot{\mathrm{r}}$ to other traps are accepted. All
other points with $\dot{i}$ ones have the fitness $n-\dot{i}$ (see
Figure 4).

Figure 4: The function $\mathrm{M}\mathrm{P}\mathrm{T}_{n}$ .

A typical run of the $(1 +1)\mathrm{E}\mathrm{A}$ or the
$(1 +1)^{*}\mathrm{E}\mathrm{A}$ with a reasonable run time has no
step where at least $\Omega(n^{1/2})$ bits flip simultane-
ously. Therefore, the plateaus and traps can be
treated independently. The path is again reached
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close to $0^{n}$ . Both algorithms have a good chance
to reach points at the beginning of a plateau.
The $(\mathrm{I} +1)^{*}\mathrm{E}\mathrm{A}$ waits there for a better search
point. Better strings on the search path are much
closer than the traps. Hence, it is very likely
that the (I+I)*EA omits all traps. Instead of
waiting at the same place for a better string, the
$(1 +1)\mathrm{E}\mathrm{A}$ explores the plateau. The expected
time to reach the trap is only $(n^{3}/2)$ , since the
plateau length is $(n^{1}/2)$ . Hence, there is already
a good chance to reach a single trap, and the
probability of omitting all traps is exponentially
small.

Theorem 7 The success probability of the
$(1+1)EA$ on $MPT_{n}$ within $n^{n/2}$ steps is bounded
above by $(1/n)\Omega(n^{1/2})$ . The success probability of
the $(1+1)^{*}EA$ on $MPT_{n}$ within $O(n^{3})$ steps is
bounded below by $1-(1/2)\Omega(n^{1/4})$ .

8 The dynamic $(\mathrm{I}+1)\mathrm{E}\mathrm{A}$

The $\mathrm{c}\mathrm{h}\mathrm{o}_{\mathrm{t}}\mathrm{i}_{\mathrm{C}}\mathrm{e}$ of the mutation probability $1/n$ seems
to be a good choice. The average number of flip-
ping bits equals 1 implying that much smaller val-
ues seem to be not useful. However, there is a rea-
sonable possibility of flipping more bits. Indeed,
the probability of $k$ flipping bits is approximately
$1/(ek!)$ (Poisson distribution). One may imagine
situations where larger mutation probabilities can
help.

If the search space is $\mathbb{R}^{n}$ one should start
with larger steps and one needs smaller steps
to approximate a unique optimum. In this sce-
nario, several strategies to adapt the “muta-
tion strength” have been discussed and analyzed
(B\"ack (1993, 1998), Beyer (1996)). The idea of
self-adaptation seems to be less useful in search
spaces like $\{0,1\}^{n}$ . Jansen and Wegener (2000a)
have proposed and analyzed a simple dynamic
variant of the (I+I)EA. The first mutation step
uses the mutation $\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}1/n$. The mutation
probability is doubled in each step until a value
of at least $1/\dot{2}\dot{\mathrm{i}}\mathrm{s}$ reached. A mutation probability
of 1/2 is equivalent to random search. Therefore,
we do not. allow $\mathrm{s}\mathrm{u}.\mathrm{c}\mathrm{h}$ large mutation probabili-
ties and start again with a mutation probabil-
ity of $1/n$ . Hence, we have phases of approxi-
mately $\log n$ steps where each mutation probabil-
ity within the interval $[1/n, 1/2]$ is approximately

used in one step. If one specified mutation proba-
bility is optimal, we may expect that the dynamic
$(1+1)\mathrm{E}\mathrm{A}$ is by a factor of $O(\log n)$ worse than
the best static one. The reason is that all but one
step during a phase are “wasted”. Such a behav-
ior can be proved for the function $\mathrm{L}\mathrm{O}_{n}$ (leading
ones) which measures the length of the longest
prefix of the string consisting of ones only.

Theorem 8 The expected run time of the static
$(l+l)EA$ with mutation probability $1/n$ on $LO_{n}$

equals $\ominus(n^{2})$ while the expected run time of the
dynamic $(l+l)EA$ equals $\ominus(n^{2}\log n)$ .

It is possible to prove for all linear functions
and the dynamic (I+I)EA an upper bound of
$O(n^{2}\log n)$ and for the special case where all
weights equal 1 an upper bound of $O(n\log^{2}n)$ .
The dynamic (I+I)EA wastes a factor of $\ominus(\log n)$

on all (short or long) path functions considered
in this paper. Jansen and Wegener $(20\mathrm{o}\mathrm{o}\mathrm{a})$ have
also presented a function where the dynamic
(I+I)EA beats all static $(1+1)\mathrm{E}\mathrm{A}\mathrm{s}$ and where
it would be difficult to find the best mutation
probability. The function is called $\mathrm{P}\mathrm{J}_{n}$ (path and
jump) and is defined in the following way (see
Figure 5).

Definition 7

$PJ_{n}(a)=\{$

$3n$ $if||a||=k$ and
$a_{1}+\cdots+a_{k}=0$

$2n-i$ if $a=1^{i}0^{n-i}$ ,
$0\leq i<\lfloor n/4\rfloor$

$n+a_{1}+\cdots+a_{\mathrm{L}^{n}/4\rfloor}$ $if||a||=\lfloor n/4\rfloor$

$||a||$ $if||a||<\lfloor n/4\rfloor$ and
$a$ does not belong
to the previous cases

$n-||a||$ otherwise.

where $k=$ rlog $n1$ .

Theorem 9 The optimal static mutation prob-
ability equals $(\ln n)/(4\cdot(\ln 2)\cdot n)$ leading to an
expected run time of the $(1+1)EA$ $of\ominus(n^{2361}\cdots)$ .
The expected run time of the dynamic $(1+1)EA$
$equals\ominus(n^{2}\log n)$ .

The search procedure works as follows. It is
rather easy to find the level $\lfloor n/4\rfloor$ , a mutation
probability of $1/n$ is good for this purpose. On
this level we look for the best point 1 $\lfloor n/4\rfloor_{0}n-\lfloor n/4\rfloor$ .
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cepted while sitting in a trap are the other trap
points and $1^{n}$ . Finally, a jump of length at least
$n/8$ flipping exactly all zeros is necessary to reach
$1^{n}$ . All not mentioned points $a$ have a fitness of
$n-||a||$ .

It is unlikely that the dynamic $(1 +1)\mathrm{E}\mathrm{A}$

reaches the trap before reaching the path. How-
ever, while passing the path it is very likely to
reach the trap which leads to an exponential run
time with very high probability. The (I+I)EA
with mutation probability $1/n$ also reaches the
path with high probability before reaching the
trap. Sitting on the path it is very unlikely to
reach the trap whose distance is at least $n/16$ .
Hence, with overwhelming probability the global
optimum is reached in polynomial time.

Figure 5: The function $\mathrm{P}\mathrm{J}_{n}$ .

We have to exchange zeros from the first quarter
with ones from the rest. Again mutation prob-
abilities of approximately $1/n$ are good for this
purpose and the same holds for the short path
with increasing fitness values from $1\lfloor n/4\rfloor \mathrm{o}n-\mathrm{L}^{n}/4\rfloor$

to $0^{n}$ . Finally, we have to flip rlog $n1$ zeros (not
from the first rlog $n1$ positions) simultaneously.
Then a mutation probability of $\ominus((\log n)/n)$ is
appropriate. The dynamic $(1 +1)\mathrm{E}\mathrm{A}$ has dur-
ing each phase for each situation one step with a
good mutation probability. A good static muta-
tion probability has to be a compromise between
a good choice for the early stages and a good
choice for the last jump.

However, the dynamic (I+I)EA can be a dis-
aster for functions which can be solved efficiently
with a static $(1 +1)\mathrm{E}\mathrm{A}$ with mutation proba-
bility $1/n$ . The corresponding function is called
$\mathrm{P}\mathrm{T}_{n}$ (path with trap). Again, we consider the
path from $0^{n}$ to 1n containing all points $1^{i}0^{n-\acute{l}}$ .
Except some holes with fitness $0$ the fitness of
the points equals $n+\dot{i}$ and 1n is the global op-
timum with fitness $3n$ . The holes are chosen
to guarantee that the algorithm cannot pass the
path too quickly. The trap consists of all points
which can be reached from some point 1i $0^{n-i}$ ,
$n/4\leq\dot{i}\leq 3n/4$ , if approximately $n/8$ bits flip
simultaneously and which have a Hamming dis-
tance of at least $n/16$ to the path. The trap
points have a fitness of $2n$ . The only points ac-

9 Crossover really can help ,

Jansen and Wegener (1999) were the first to
prove that uniform crossover can decrease the run
time of evolutionary algorithms without crossover
from superpolynomial to polynomial.

Definition 8 Uniform crossover applied to
$x,$ $x’$ $\in$ $\{0,1\}^{n}$ produces the random point
$x”$ $\in$ $\{0,1\}^{n}$ where the bits $x_{i}’’$ are chosen
independently and $x_{i}^{\prime;}=x_{i}$ , if $x_{i}=x_{i}’$ , and
$Pr(x_{i}^{J}’=0)=Pr(x_{i}^{J}’=1)=1/2$ otherwise.

Definition 9 The function $JUMP_{m,n}$ is defined
$by$

$JUMP_{m,n}(a)=\{$

$||a||$ $\dot{i}f||a||\leq n-m$ or
$||a||=n$

$n-||a||$ otherwise.

We only consider the case where $m=o(n)$ .
Then it is very likely that the initial population
of polynomial size only contains individuals with
at most $n-m$ ones. Individuals with more than
$n-m$ ones and less than $n$ ones will not be ac-
cepted. Hence, the global optimum has to be
produced from individuals with at most $n-m$
ones. Mutations have difficulties with this task.
The expected time for the nlutation probability
$1/n$ is bounded below by $n^{m}$ and a lower bound
of $\Omega(n^{m-\in}),$ $\epsilon>0$ , for the general case can be
obtained easily.

What about uniform crossover? If we have two
parents with $m$ zeros and if these parents have
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no common zero, uniform crossover produces 1n
with probability $2^{-2m}$ and the probability that
a mutation step with mutation probability $1/n$

does not destroy 1n is approximately $e^{-1}$ . Hence,
uniform crossover works well, more precisely leads
to expected polynomial time if the individuals are
randoml strings with $m$ zeros and $m=O(\log n)$ .
The difficulty is the so-called hitchhiking effect.
Because of selection and crossover the individuals
are not independent and have a larger chance of
(

$‘ \mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{g}$ zeros”.
Therefore, Jansen and Wegener (1999) have in-

vestigated a genetic algorithm with the very small
crossover probability $p_{C}=1/(.n\log n)$ . The algo-
rithm works as follows.

Algorithm 2 Steady state genetic algorithm
with crossover probability $p_{c}=1/(n\log n)$ and
mutation probability $p_{m}=1/n$ . The population
size is $n$ and the population is initialized ran-
domly. The main loop of the algorithm looks as
follows:

2. If
$\cdot$

$m$ $=$ $O(\log n)$ , the expected run time
is bounded by $O(n\log n(3n\log n2+2^{2m}))=$

$poly(n)$ .

For tlue proof of this bound we describe a “typ-
ical run” of the genetic $\mathrm{a}_{\mathrm{o}\mathrm{r}\mathrm{i}}\mathrm{t}\mathrm{h}\mathrm{n}1$ starting with
an arbitrary initial population. A typical run
should reach the optimum within a given time
bound. We describe the events leading to a non-
typical run and estimate the corresponding “fail-
ure probability”. If the sum of failure probabili-
ties is bounded above by $1-\delta,$ $\delta>0$ , the success
probability for the considered number of steps is
at least $\delta$ . If the search was. not successful, we
start the next phase. Since the initial population
was assumed to be arbitrary, we can use the same
estimates. Hence, the expected number of phases
can be estimated above by $\delta^{-1}$ . In our case, $1-\delta$

is even $o(1)$ .
For $\mathrm{J}\mathrm{u}\mathrm{m}_{\mathrm{P}m,n}$ , a typical run consists of three

phases where the length of all phases is bounded
$\dot{\mathrm{a}}\mathrm{b}\mathrm{o}\mathrm{v}\mathrm{e}$ by the stated asymptotic bounds. A
typical run has $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{i}1_{\mathrm{o}\mathrm{W}\mathrm{i}}\mathrm{n}\dot{\mathrm{g}}$ properties:

- after phase 1, we either have found the op-
timum or the population only contains indi-
viduals with exactly $n-m$ ones (this implies
for all further phases that we only accept in-
dividuals with $n-m$ ones or the optimum),

- after phase 2, we either have found the op-
timum or the population only contains indi-
viduals with exactly $n-m$ ones and for each
bit position there are at most $n/(4m)$ indi-
viduals with a zero at this position (the zeros
are sufficiently well spread),

The choice of the parents or the parent can be
done randomly or fitness based. The selection
procedure is the following one. If $\dot{t}he$ new indi-
vidual $x$ equals one of its parents, it is rejected.
Otherwise, it replaces one $of.the$ worst individuals

$y$ if $f(x)\geq f(y)$ .

Theorem 10 The steady state genetic algorithm
has for $JUMP_{m,n}$ the following behavior.

1. If $m$ $=$ $O(1)$ , the expected run time is
bounded by $O(n^{2}\log n)$ .

- during phase 3, we either find the optimum
or the population only contains individuals
with exactly $n-m$ ones and for each bit po-
sition there are at most $n/(2m)$ individuals
with a zero at this position and at the end of
phase 3 the optimum is found.

The analysis of phase 1 is easy using the coupon
collector’s theorem. If the condition of phase 3 is
fulfilled, the probability that two randomly cho-
sen parents (or fitness based chosen parents which
is the same, since the fitness of all individuals
is the same) have no common zero is at least
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1/2 and uniform crossover can work. The anal-
ysis of phase 2 is the difficult task (the difficult
part of the analysis of phase 3 can be performed
similarly). We consider only bit position 1, all
other positions lead to the same failure probabil-
ities. Hence, the total failure probability can be
bounded by $n$ times the failure probability for bit
position 1.

We denote by $p^{-}(z)$ and $p^{+}(z)$ the probabil-
ity that the number of individuals with a zero at
bit position 1 decreases by 1 resp. increases by 1
during one step starting with $z$ individuals with a
zero at bit position 1. In order to estimate these
probabilities we have to perform quite exact cal-
culations. Since $p_{c}$ is small enough, we can con-
sider a crossover step as a “bad event” increasing
the number of zeros at position 1. The result of
the calculations is that

$z\geq n/(8m)\Rightarrow$ $p^{-}(z)=( \frac{1}{n})$ and
$p^{-}( \mathcal{Z})-p^{+}(z)=\ominus(\frac{1}{n})$ .

Hence, either $z<n/(8m)$ and we are far away
from a failure or $z\geq n/(8m)$ and we have a large
enough tendency to decrease the number of zeros.
The precise calculations lead to the desired result.

Conclusions

We have argued why the analysis of evolutionary
algorithms should be performed just as the anal-
ysis of other randomized algorithms and search
heuristics. Several examples of new results, some
of them proving or disproving well-known con-
jectures, others leading to results of a new type,
prove that this approach is worth to be followed
further.
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