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Abstract: In this primer, we give an overview of a technique used to design and analyze
algorithms that provide approximate solutions to $NP$-hard problems in combinatorial opti-
mization. Because of parallels with the primal-dual method commonly used in combinatorial
optimization, we call it the primal-dual method for approximation algorithms. We give a
general overview of this technique and show how it can be used to derive approximation
algorithms for a number of different problems, including a network design problem and a
feedback vertex set problem.
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1 Introduction

Many problems of interest in combinatorial op-
timization are considered unlikely to have effi-
cient algorithms; most of these problems are NP-
hard, and unless $P=NP$ they do not have
polynomial-time algorithms to find an optimal
solution. Researchers in combinatorial optimiza-
tion have considered several approaches to deal
with $NP$-hard problems. One approach that has
received considerable attention recently is that of
approximation algorithms. An $\alpha$ -approximation
algorithm for an optimization problem is an al-
gorithm that runs in polynomial time and pro-
duces a solution whose value is within a factor
of $\alpha$ of the value of an optimal solution. The
parameter $\alpha$ is called the performance guarantee
or the approximation ratio of the algorithm. We
will follow the convention that $\alpha\geq 1$ for mini-
mization problems and $\alpha\leq 1$ for maximization
problems, so that a 2-approximation algorithm
for a minimization problem produces a solution
of value no more than twice the optimal value,
and $\mathrm{a}\frac{1}{2}$ -approximation algorithm for a maximiza-
tion problem produces a solution of value at least
half the optimal value. The reciprocal $1/\alpha$ is
sometimes used in the literature for maximization
problems, so that the examples above would both
be referred to as 2-approximation algorithms.

In the past dozen years there have been a
number of exciting developments in the area
of approximation algorithms. For more details
about the area of approximation algorithms, the
reader is invited to consult the excellent survey
of Shmoys [26], the book of surveys edited by
Hochbaum [19], or the forthcoming monograph
of Vazirani [29]. In this primer we will focus
on one very useful algorithmic technique, called
the primal-dual method for approximation algo-
rithms, that has been developed and applied to
several different proble.ms in combinatorial opti-
miza.tion.

In order to discuss this method, it is necessary
to have some familiarity with the theory of inte-
ger and linear programming. Good introductions
can be found in Chv\’atal [6] or Strang [27, Ch.
8]. We give a very basic introduction here. In
a linear program $(\mathrm{L}\mathrm{P})$ , we try to minimize (or
maximize) a linear objective function in variables
$x_{1},$ $\ldots,$

$x_{n}$ subject to linear constraints on the $x_{i}$ .
For example, consider the linear program

${\rm Min}$ $\sum_{i=1}^{n}c_{i}x_{i}$

subject to:

$(P)$ $\sum_{i=1}^{n}a_{ij}..x_{i}\geq b_{j}$ $j=1,$ $\ldots,$
$m$

$x_{i}\geq 0$ $\dot{i}=1,$
$\ldots,$

$n$ .
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A particular setting of the $x_{i}$ which obeys all the sible for the relaxation, and will have the same
linear const$r$aints is said to be a feasible solution. objective function value.
A setting of the $x_{i}$ which minimizes the objective The name “the primal-dual me,thod” has been
function is called an optimal solution. Associated borrowed from a standard tool used in designing
with every linear program is a dual linear pro- algorithms for polynomial-time solvable problems
gram. For instance, the dual of the line$a\mathrm{r}$ pro- in combinatorial optimization. A good overview
gram $(P)$ above is $\mathrm{c}$.an be found in the textbook of Papadimitriou

and Steiglitz $[23]$
’

(see also the survey of Goe-
${\rm Max}$

$\sum_{j=1}^{m}b_{j}y_{j}$ mans and Williamson [16] $)$ . The primal-dual
method for approximation algorithms is a sim-

subject to: ple modification of the standard method. Given

$.(D)$ $\sum_{j=1}^{m}a_{i}jy_{j}.\leq c_{i}$

. $\dot{i}=1.’\ldots,$ $n$ be $\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}}1\mathrm{a}\mathrm{t}\mathrm{e}\dot{\mathrm{d}}$ as an integer programming prob-
a combinatori$a1$ optimization problem that can

$\mathrm{l}\mathrm{e}\mathrm{m}$ , the primal-dual method for approximation
$y_{j}\geq 0$ $j=1,$ $\ldots,$

$m$ . algorithms considers this primal int.eger program

This linear program $(D)$ is the dual of $(P)$ , which and a dual of a linear programming relaxation of

is sometimes called $\mathrm{t}$he primal $\mathrm{L}\mathrm{P}$. The dual has the integer program. We start with a dual fea-

many important properties, one of which is the sible solution $y$ , and attempt to find a feasible

following: the value of the dual objective func- integer primal solution $x$ that obeys the primal

tion for any feasible dual $y$ is a lower bound on complementary slackness conditions with respect

the value of an optimal solution to the primal to $y$ . If one exists, we stop, otherwise we can
$\mathrm{L}\mathrm{P}$ . Notice that there is a dual constraint $\dot{i}$ for show that we can modify $y$ so as to increase the

each primal variable $x_{i}$ and a primal const$r$aint dual objective function value. In the standard
$j$ for each dual variable $y_{j}$ . Given a primal fea- primal-dual method, we would have wanted $x$ and

sible solution $x$ and a dual feasible soiution $y$ , $y$ that obeyed both primal and dual complemen-

the solution $x$ is said to obey the primal com- tary slackness conditions, implying that both $x$

plementary slackness conditions with respect to and $y$ are optimal. However, in general we can’t

$y$ if wh\‘enever $x_{i}>0\mathrm{t}$he corresponding dual con- expect that there exists an optimal integral so-

straint is met with equality by $y$ . Similarly, $y$ is lution to the linear programming relaxation, so

said to.obey the dual complementary slackness we drop the dual complementary slackness con-
ditions.conditions with respect to $x$ if whenever $y_{j}>0$

the corresponding primal constraint is met with As we will see below, relaxing. the dual comple-
equality by $x$ . If $x$ and $y$ obey both primal and mentary slackness condition in appropriate ways
dual complementary slackness conditions, it can leads to provably good algorit $h\mathrm{m}\mathrm{s}$ for NP-hard
be shown that they are optimal primal and dual problems in combinatorial optimization by yield-
solutions. S.ometim.es we add constraints to linear ing solutions to the primal integer problem that
programs asking that $x_{i}$ be a nonnegative integer cost no more than $\alpha$ times the value of a feasi-
or restricted to some bounded range of integers ble solution to the dual, which implies that $\mathrm{t}$he
(e.g. $x_{i}\in\{0,1\}$ ). A linear program with this type solution is within a factor of $\alpha$ of optimal. The
of $\mathrm{c}.0,\mathrm{n}$str

$’$ .aint is usually called an integer program. value of the dual solution is always within some
Given an integer program, it is often useful to factor of $\alpha$ of optimal, but may from instance to

consider its linear programming relaxation; that instance be much closer; since we generate a dual
is, the LP obtained by dropping the condition each time we can know when we are closer $\mathrm{t}h$an
that the variable $x_{i}$ be a nonnegative integer, and factor of $\alpha$ from the optimum.

replacing it with the condition that $x_{i}\geq 0$ . Ob- In the next section, we develop the basic ideas
serve that the value of an optimal solution for the given above into a primal-dual algorithm for a
linear programming relaxation will be no greater generic problem, and give theorems for its analy-
than the value of the integer program (in which $\mathrm{s}\mathrm{i}\mathrm{s}$ . We conclude in Section 3.
we minimize the objective function) since any $x$ Other surveys on the primal-dual method have
feasible for the integer program will also be fea- been given by Goemans and Williamson [16] and
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Bertsimas and Teo [4] (see also the thesis of Teo
[28] $)$ . Our central exposition is taken from a
forthcoming survey of Williamson [31] and closely
follows that of [16].

2 The primal-dual method for
approximation algorithms

2.1 The hitting set $\mathrm{p}_{\Gamma \mathrm{o}\mathrm{b}}1\mathrm{e}\dot{\mathrm{m}}$

We now show how the primal-dual method can be
used to give approximation algorithms for NP-
hard problems in combinatorial optimization. In
order to do this, it will be useful to consider the
hitting set problem: given a ground set of ele-
ments $E$ , nonnegative costs $c_{e}$ for all elements
$e\in E$ , and subsets $T_{1},$

$\ldots,$
$T_{p}\subseteq E$ , we want to

find a minimum-cost subset $A\subseteq E$ so that $A$ has
a nonempty intersection with each subset $T_{i}$ . We
say that A hits each subset $T_{i}$ .

$\cdot$

The hitting set problem can be used to model
a number of $NP$-hard problems, and we will con-
sider several in this section. In $\mathrm{t}$he minimum-
weight vertex cover problem, we are.given a graph
$G=(V, E)$ with weights $w_{i}\geq 0$ for all vertices
$i\in V$ , and we must select $a$ minimum-weight sub-
set of vertices such that each edge is covered (that
is, at least one of its endpoints is chosen). We can
formulate the minimum-weight vertex cover prob-
lem as a hitting set problem in which the ground
set elements are vertices, and we have a subset
$T_{i}=\{u, v\}$ for each edge $(u, v)$ in $\dot{\mathrm{t}}\dot{h}e$ graph. In
the minimum-weight feedback vertex set problem
in undirected graphs, we are given as input an
undirected graph $G=(V, E)$ and nonnegative
weights $w_{i}\geq 0$ on the vertices $\dot{i}\in V$ , and the
goal is to remove a minimum-weight set of ver-
tices from $G$ so as to make $\mathrm{t}$he remaining graph
acyclic. We can view this as a hitting set problem
in which the ground set elements are the vertices
of the graph, and we must hit every cycle in $\mathrm{t}$he
gr$a\mathrm{p}\mathrm{h}$ ; that is, $T_{i}=C_{i}$ , where $C_{i}$ is the $\dot{i}\mathrm{t}h$ cycle of
$G$ . In the shortest s-t path problem, we are given
an undirected graph with nonnegative edge costs
$c_{e}$ for all $e\in E$ , and two distinguis$h\mathrm{e}\mathrm{d}$ vertices $s$

and $t$ , and we must find the minimum-cost path
from $s$ to $t$ . We can formulate this as a hitting
set problem in which $\mathrm{t}$he edges are the ground set
elements and we must hit every cut in the graph
separating $s$ from $t$ ; that is, for all $S_{i}\subseteq V$ with

$s\in S_{i}$ and $t\not\in S_{i}$ , we must select an edge from
$T_{i}=\delta(S_{i})$ , where $\delta(S)$ is the set of edges with
exactly one endpoint in $S$ . By the $\max- \mathrm{f}\mathrm{l}\mathrm{o}\mathrm{W}/\min-$

$c$ut theorem of Ford and Fulkerson [12], we have
selected an edge in every cut separating $s$ from $t$

iff there is a path from $s$ to $t$ . In the minimum-
cost branching problem we are $\mathrm{g}\mathrm{i}^{C}\mathrm{v}$en a directed
graph $G=(V, A)$ , nonnegative costs $c_{a}$ for all
arcs $a\in A$ , and a root vertex $r\in V$ , and the goal
is to find a minimum-cost branching (a set of arcs
such that for every vertex, there is a path from the
root to the vertex). By using a $\max- \mathrm{f}\mathrm{l}_{0}\mathrm{w}/\min$ -cut
argument, one $c$an see that the following hitting
set problem models the minimum-cost branching
problem: the ground set of elements are the arcs,
and for every set of vertices $S_{i}\subseteq V-r$ , we must
hit the set $\delta^{-}(S_{i})$ of arcs, where $\delta^{-}(S_{i})$ is the set
of arcs whose heads are in $S_{i}$ and tails are not in
$S_{i}$ . Finally, in $\mathrm{t}$he generalized Steiner tree prob-
lem we are given an undirected gr$a\mathrm{p}hG=(V, E)$ ,
nonnegative costs $c_{e}\geq 0$ on all edges $e\in E$ , and
$k$ pairs of vertices $s_{j},$ $t_{j}\in V$ . The goal is to find a
minimum-cost set of edges $F$ , such that for each
$j=1,$ $\ldots,$

$k,$ $s_{j}$ and $t_{j}$ are connected in the graph
(V, $F$). Again, a $\max- \mathrm{f}\mathrm{l}\mathrm{o}\mathrm{W}/\min$-cut argument will
show that the problem can be modelled by the
h.i.tting set problem in which the ground set el-
emen.ts are the. edges and we must hit every cut
$\mathrm{t}\dot{\mathrm{h}}$at separates some $s_{j^{-}}t_{j}\backslash$ pair; in other $\mathrm{w}\mathrm{o}\dot{\mathrm{r}}\mathrm{d}\mathrm{s}$ , for
each $S_{i}$ such that for some $j,$ $|S_{i}.\cap\{s_{j},.t_{j},\}|=\grave{1}$ ,
we must hit $T_{i}=\delta(S_{i})$ .

Except for $\mathrm{t}$he minimum-cost s-t path problem
and the minimum-cost branching problem, all of
the problems above are $NP$-hard. For many of
them, the size of the hitting set formulation is
exponential in the size of the input. For example,
in the feedback vertex set problem, $\mathrm{t}$he number of
cycles can be exponential in $\mathrm{t}$he size of the graph.
We will see later that the primal-dual method can
often be used in this case and still $\mathrm{r}e$sult in a
polynomial-time algorithm.

We can model the hitting set problem by the
following integer program:

${\rm Min}$

$\sum_{e\in E}C_{e}x_{e}$

subject to:

$\sum_{e\in Ti}x_{e}\geq 1$

$\forall\dot{i}$

$x_{e}\in\{\mathrm{o}, 1\}$ .
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If we relax the integrality constraint $x_{e}\in\{0,1\}$

to $x_{\mathrm{e}}\geq 0$ and take $\mathrm{t}$he dual of the resulting linear
program, we obt$a\mathrm{i}\mathrm{n}$ the following:

${\rm Max}$
$\sum_{1}$.

$y_{i}$

subject to:

$i. \cdot e\in T\sum_{i}yi\leq ce$

$\forall e\in E$

$y_{i}\geq 0$ $\forall i$ .

Our goal is to construct a feasible solution
$\overline{x}$ to the primal integer program and a feasi-
ble solution $y$ the dual linear program such that
$\sum_{e\in Ee}c_{e}\overline{x}\leq\alpha\cdot\sum_{i=1}^{p}y_{i}$ for some value of $\alpha$ . This
implies that the cost of our primal solution is no
more than $\alpha$ times the cost of an optimal solu-
tion to the integer program. If we can construct
our solutions in polynomial time, then we have
an $\alpha$-approximation algorithm. We will $\mathrm{s}o\mathrm{m}e_{-}$

times give our primal solution as $\overline{x}$ or as a subset
$A\subseteq E$ , which implies the solution $\overline{x}_{e}=1$ for
$e\in A$ and $\overline{x}_{e}=0$ otherwise.

2.2 The basic algorithm

Let’s consider how to develop a primal-dual algo-
rit$h\mathrm{m}$ f..or the hitting set problem bas$e\mathrm{d}$ on what
we have said so far. Suppose we are given a dual

so.lution $y$ . We maintain the primal complemen-
tary slackness $\dot{\mathrm{c}}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}$ ; that is, we include $e$

in our solution only if the corresponding dual in-
equality is tight (that is, met with equality). Thus
$e\in A$ implies $\sum_{i:e\in^{\tau_{i}}}yi=c_{e}$ . Suppose that we
simply set $A$ to contain all elements $e$ for which
the corresponding dual inequality is tight; that is,
$A= \{e\in E:\sum_{i:e}\in\tau_{i}y_{i}=c_{e}\}$ . According to the
primal-dual method, if $A$ is not a feasible solution
to the hitting set problem for our current dual so-
$\mathrm{l}\mathrm{u}\mathrm{t}\dot{\mathrm{i}}\mathrm{o}\mathrm{n}y$, then there must be a way to modify $y$

that increases the dual objective function value.
In $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ case $0\dot{\mathrm{f}}\mathrm{t}\mathrm{h}\dot{\mathrm{e}}\mathrm{h}\mathrm{i}\mathrm{t}t\dot{\mathrm{i}}\mathrm{n}\mathrm{g}$ set problem, if $A$ is not
feasible, then there must be some set $T_{k^{\mathrm{S}}}$uch that
$A\cap T_{k}=\emptyset$ . We $c$all $s$uch a $s$et $T_{k}$ a violated set.
If $T_{k}$ is violated, then for all $e\in T_{k}$ , their cor-
responding dual inequalities must not be tight;
that is, $\sum_{i:e\in\tau}.\cdot y_{i}<c_{e}$ . However, since these in-
equalities are the only ones in which $y_{k}$ appears,
we can increase $y_{k}$ until some dual constraint be-
comes tight for some $e\in T_{k}$ , and obtain another
dual feasible solution which now has a larger ob-
jective function value. Furthermore, since a new

constraint became tight for some $e\in T_{k}$ , we can
add this element to $A$ , and now $A\cap T_{k}\neq\emptyset$ . This
leads to the basic primal-dual algorit$h\mathrm{m}$ , which
is shown in Figure 1. This algorithm is due to
Bar-Yehuda and Even [2].

We now analyze the $\mathrm{c}o$st of the feasible solution
$A$ returned by the algorithm. The cost of $A$ is

$\sum_{e\in A}c_{e}$

$=$
$\sum_{e\in A}.\sum_{i.e\in\tau_{i}}y_{i}$

(1)

$=$ $\sum_{i=1}^{p}yi|A\cap T_{i}|$ , (2)

where (1) follows since the complementary slack-
ness conditions are obeyed for the primal vari-
ables, and (2) follows by reversing the double
sum. If we let $f= \max_{i}|T_{i}|$ , then certainly
$|A\cap T_{i}|\leq f$ for all $\dot{i}$ , so that

$\sum_{e\in A}C_{e}\leq f\cdot i\sum_{=1}yip$ .

We $\mathrm{t}h\mathrm{u}\mathrm{s}$ have an $f$-approximation algorithm for
the hitting set problem, since the dual objective
function value is a lower bound on the cost of an
optimal solution to the hitting set probl$e\mathrm{m}$ . As
an example of what can be proved in this case,
recall that for the minimum-weight vertex cover
problem each subset $T_{i}$ contained the two end-
points of an edge in a $\mathrm{g}r\mathrm{a}\mathrm{p}\mathrm{h}$ , so that $|T_{i}|=2$

for each $\dot{i}$ in thi$s$ case. Thus $\mathrm{t}$he algorit $h\mathrm{m}$ gives
a 2-approximation algorit $h\mathrm{m}$ for the minimum-
weight vertex cover problem.

2.3 Feedback vertex sets

We now turn to a slightly more complicated appli-
cation of the primal-dual algorithm: the feedback
vertex set problem for undirected graphs. Let $A$

and $y$ be the primal and dual solution created by
the algorithm. Recall from equations (1) and (2)
if for any $y_{i}>0$ it is the case that $|A\cap T_{i}|\leq\alpha$ ,
then the algorithm is an $\alpha$-approximation algo-
rit$h\mathrm{m}$ . Recall now that for the hitting set prob-
lem modelling this problem, each ground element
$e$ is a vertex $j$ , the cost $c_{e}$ is the vertex weight $w_{j}$ ,
and $\mathrm{t}$he sets $T_{i}$ are $\mathrm{t}$he cycles in the graph. In this
case, Bar-Yehuda, Naor, Geiger, and Roth [3] ob-
tain a performance guarantee of $4\log_{2}n$ (where
$n=|V|)$ by carefully choosing the cycle in line
4 of the algorithm, and by noticing that one can
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Figure 1: The basic primal-dual algorithm.

succesfully ignore some vertices since their corre-
sponding dual inequalities will always be satisfied.
In order to choose $\mathrm{t}$he violated cycle, Bar-Yehuda
et al. invoke the following lemma of $\mathrm{E}\mathrm{r}\mathrm{d}6\mathrm{s}$ and
P\’osa [10].

Lemma 1 ( $\mathrm{E}\mathrm{r}\mathrm{d}’\text{\’{o}}_{\mathrm{S}}$ and P\’osa [10]) Given
a graph $G’=(V’, E’)$ with no degree 1 vertices
and with every vertex of degree 2 adjacent to two
vertices of higher degree, there exists a cycle of
length no longer than $4\log_{2}|V’|$ , and it can be
found in polynomial time.

Of course, $\mathrm{t}$he given input graph might not
meet the conditions of the lemma. Thus we show
that we can ignore some vertices; the remain-
ing vertices we call special vertices. We map the
graph onto a graph $G’$ that contains exactly the
special vertices, such that there is a bijective map-
ping between cycles of $G$ and of $G’$ . Then by
applying the lemma we can find in $G$ a violated
cycle of at most 4 $\log_{2}n$ special vertices, and since
we only add special vertices to $A$ , we get that for
any $y_{i}>0$ (corresponding to some violated cycle
$T_{i}$ chosen in line 4), $|A\cap T_{i}|\leq 4\log_{2}n$ , implying
the desired performance guarantee.

Now we need to specify which vertices we can
ignore, and why their dual inequalities will re-
main feasible. Suppose that as we add a vertex $j$

to $A$ in line 6 of the algorithm, we remove $j$ and
its incident $\mathrm{e}d$ges from the graph. Certainly we
can ignore any vertex in the remaining graph that
is no longer in a cycle; since we only add vertices
from the chosen violated set (line 5), we only add
vertices that are in some cycle. Now consider any
pat$h$ of vertices that all have degree 2. Since any
cycle that goes through one of these vertices must
go through all of them, it must be the case that

when the reduced cost $\tilde{w}_{j}=w_{j}-\sum_{i:j\in T}iy_{i}$ of a
vertex $j$ on this path decreases by $\epsilon$ , the reduced
cost of all vertices on this path also decreases by $\epsilon$ .
Thus we can safely ignore all vertices in this path
except for one special vertex $j$ with the smallest
reduced cost, since no dual inequality for any ver-
tex on the pat$h$ will become tight unless the dual
inequality for $j$ becomes tight. Furthermore, if
$j$ is added to $A$ , then all cycles containing $\mathrm{t}$he
vertices on this path will be hit, and so no other
vertex from the path need by added to $A$ .

Since we $c$an ignore any vertex not on a cy-
cle, and ignore all but one vertex on a path of
vertices of degree 2, we obtain the desired graph
$G’$ from $G$ by removing all vertices currently in
$A$ , recursively removing all degree 1 vertices, and
replacing any pat$h$ of degree 2 vertices with the
special vertex for that path. This yields a graph
$G’$ obeying the properties of $\mathrm{t}$he lemma, such that
any cycle in $G’$ has a one-to-one mapping to a
cycle of $G$ . Thus we $c$an find a cycle of at most
$4\log_{2}n$ special vertices in $G$ .

This argu-
ment yields a $(4\log_{2}n)$-approximation algorithm
for the minimum-weight feedback vertex set prob-
lem in undirected graphs. In fact, one can obtain
a 2-approximation algorithm for $t$his problem us-
ing the primal-dual method, but one must use a
different integer programming formulation of the
problem; see Chudak et al. [5] and Fujito [13] for
details. .,

2.4 Reverse delete

We now turn to modifications of $\mathrm{t}$he basic primal-
dual algorithm of Bar-Yehuda and Even. The
first is a relatively simple idea: once a feasible
solution $A$ has been obtained, we should exam-
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ine the elements of $A$ and delete any that are not
needed for a feasible solution. This idea was first
introduced by Goeman$s$ and Williamson [15], but
we will present here a refinement discovered in-
dependently by Klein and Ravi [21] and Saran,
Vazirani, and Young [25]. They showed that it
is useful for the analysis of the algorithm to ex-
amine $\mathrm{t}$he elements of $A$ for possible deletion in
a certain order; in particular, in the reverse of

$\mathrm{t}$he order in which the elements of $A$ were added.
This part of the algorithm is sometimes called the
reverse delete. We present the modified algorithm
in Figure 2.

To see why $\mathrm{t}$he reverse delete step is useful for
$\mathrm{t}$he analysis, con$s$ider the set $T_{i_{1}}$ chosen in the $l\mathrm{t}h$

iteration of the algorithm. Let $A_{l}$ be the set of el-
ements in $A$ at the beginning of the $lt\mathrm{h}$ iteration,
let $e_{l}$ be $\mathrm{t}$he element added in the $l\mathrm{t}h$ iteration,
and let $A’$ be the final set returned by $t$he algo-
rithm. By the analysis at the beginning of the
section (Equations (1) and (2)), if we can $\mathrm{s}h\mathrm{o}w$

that $|A’\cap T_{i_{l}}|\leq\alpha$ for all iterations $l$ , we have
an $\alpha$-approximation algorithm. Not$e$ that since
$T_{i_{1}}$ is chosen as a violated set, it is the case that
$T_{i_{l}}\cap A_{l}=\emptyset$ , so if $B=A’-A_{l}$ , then we only need
prove that $|B\cap T_{i_{l}}|\leq\alpha$ . Furthermore, when $e_{l}$

is considered for deletion, no element $e_{j}$ for $j<l$
has been considered for deletion, so the contents
of $A$ at that point in time in $t$he reverse delete
step must be precisely $A_{l}\cup B$ . Finally, because
each element in $B$ was added after the $l\mathrm{t}h$ itera-
tion, it must be the case that each of them was
already considered by the reverse delet$e$ step and
is necessary for the feasibility of $A_{l}\cup B$ . Thus for
any $e\in B,$ $A_{l}\cup B-e$ is not a feasible solution.
We call any set of elements $D$ such that $A_{l}\cup D$ is
feasible an augmentation of $A_{l}$ , and any augmen-
tation $D$ such that for any $e\in D,$ $A_{l}\cup D-e$ is
not feasible, a minimal augmentation. We have
shown above that $B$ is a minimal augmentation
of $A_{l}$ . We are trying to bound $|B\cap T_{i_{1}}|$ , and
certainly this is dominated by the maximum of
$|D\cap T_{i}\iota|$ over all minimal augmentations $D$ of $A_{l}$ .
Thus we have shown $\mathrm{t}$he following theorem.

Theorem 2 If for all iterations $l$ of the algo-
rithm in Figure 2,

$\max$ $|D\cap Til|\leq\alpha$ ,
$D: \min$ . aug. of $A_{1}$

the algorithm is an $\alpha$ -approximation algorithm.

To illustrate the use of this analysis, we con-
sider the shortest s-t path problem and the
minimum-cost branching problem. Recall that
for the minimum-cost s-t path problem, we need
to hit the sets $T_{i}=\delta(S_{i})$ for all sets $S_{i}$ with
$s\in S_{i},$ $t\not\in S_{i}$ , where $\delta(S_{i})$ is the set of edges
with exactly one endpoint in $S_{i}$ . To apply the
primal-dual algorithm of Figure 2, we need to
specify which violat$e\mathrm{d}$ set $T_{i_{l}}$ is chosen for a given
infeasible solution $A_{l}$ . Here we invoke a princi-
ple that turns out to be useful for a number of
problems of this sort: we choose the minimal vio-
lated set $T_{i}=\delta(S_{i})$ , where by this we mean a set
$S_{i}s\mathrm{u}c\mathrm{h}$ that there is no other set $S_{j}\subset S_{i}$ with
$T_{j}=\delta(S_{j})$ also violated. For the minimum-cost
s-t path problem, this principle implies that for
an infeasible solution $A_{l}$ , we find the connected
component $S_{i_{l}}$ containing $s$ in $\mathrm{t}$he graph (V, $A_{l}$),
and choose the violated set $T_{i_{l}}=\delta(S_{i_{l}})$ . It is not
difficult to $\mathrm{s}e\mathrm{e}$ that for any augmentation $D$ of $A_{l}$ ,
if $|D\mathrm{n}\delta(s_{i_{\iota}})|>1$ , then an edge of $D\mathrm{n}\delta(S_{i})\iota$ can
be removed with the remaining edges still con-
taining an s-t path. Thus for any minimal aug-
mentation $D$ , it is the case that $|D\cap\delta(S_{i},)|=1$ ,
which implies by $\mathrm{t}$ he analysis of the preceding
paragraph that the primal-dual method gives a
1-approximation algorithm, $or$ an optimal algo-
rithm, for the shortest s-t path probl$e\mathrm{m}$ . $1n$ fact,
one $\dot{c}$an show that this algorithm is just Dijsktra’s
algorithm $[8, 30]$ .

For the minimum-cost branching problem, we
need to hit the sets $T_{i}=\delta^{-}(S_{i})$ for all $S_{i}\subseteq V-r$ .
Recall that $\delta^{-}(S_{i})$ is the set of arcs with thei$r$

heads in $S_{i}$ and their tails not in $S_{i}$ . Given an in-
feasible set $A_{l}$ , we find a strongly connected com-
ponent $S_{i_{l}}$ not containing the root $r$ for which
$A\cap\delta^{-}(S_{i})=\emptyset$ and choose as our violated set
$T_{i_{l}}=\delta^{-}(S_{i_{l}})$ . It is not hard to $s$how that such
a strongly connect$e\mathrm{d}$ component must exist if $A_{l}$

is infeasibl$e$ . Then again it is easy to $\mathrm{s}e\mathrm{e}$ that
for any augmentation $D$ of $A_{l}$ , only one arc in
$D\cap\delta-(S_{i_{l}})$ is necess $a\mathrm{r}\mathrm{y}$, since the strong connec-
tivity of $S_{i_{l}}$ implies all the vertices of $S_{i_{\iota}}$ can be
reached through that arc. Hence for any minimal
augmentation $D$ of $A_{l},$ $|D\mathrm{n}\delta^{-}(Si_{t})|=1$ , and we
again have an optimal algorithm. One can show
that this algorithm is the same as Edmonds’ al-
gorithm for $\mathrm{t}$he minimum-cost branching problem
[9].
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Figure 2: The primal-du$a1$ algorithm with reverse delete step added.

2.5 Increasing multiple duals

We now introduce another modification to our
primal-dual algorithm. To motivate $\mathrm{t}$he modifi-
cation, we consider the $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\dot{\mathrm{i}}$zed Stei$n$er tree
problem. Recall that $\mathrm{t}\dot{h}\mathrm{i}\mathrm{s}$ can be modelled by
a hitting set problem in $\mathrm{w}h$ich we must hit all
$T_{i}=\delta(S_{i})$ such $\mathrm{t}h$at $|S_{i}\cap\{s_{j}, tj\}|=1$ for some $s_{j^{-}}$

$t_{j}$ pair that must be connected. Suppose we try
to apply the algorithm in Figure 2 and the anal-
ysis above to this problem. As with the short-
est s-t pat$h$ problem, $we$ will invoke the princi-
ple of finding a minimal violated set and choose
some connected component $S_{i_{l}}$ of (V, $A_{l}$) such
that $|S_{i_{1}}\cap\{s_{j}, t_{j}\}|=1$ , and choose as our vi-
olat$e\mathrm{d}$ set $T_{i_{1}}=\delta(S_{i\iota})$ . However, consider the
problem in which $s=s_{1}=s_{2}=\cdots--s_{k}$ , and
$t_{1},$

$\ldots,$
$t_{k}$ are distinct vertices. Then for $A_{1}=\emptyset$ ,

the vertex $s$ and each $t_{j}$ is a possible minimal
violated set. Without loss of generality, $\sup-$

pose we choose $t$he violated set $T=\delta(\{s\})$ .
Then one possible minimal augmentation is $D=$

$\{(s, t_{1}), (s, t_{2}), \ldots, (s, t_{k})\}$ , and $|D\cap T|=k$ . Thus
the algorithm and analysis we have developed so
far would only give a $k$-approximation algorithm.

However, if we consider the number of times
this augmentation hits these minimal violated
$\mathrm{s}e\mathrm{t}\mathrm{s}$ averaged over $\mathrm{t}$he number of minimal vio-
lated sets, we get something better: $|D\cap\delta(\{s\})|=$

$k$ , but $|D\cap\delta(\{t_{j}\})|=1$ , with $k+1$ minimal vio-
lated $\mathrm{s}e\mathrm{t}\mathrm{s}$ , leading to an average of $2k/(k+1)\approx 2$ .
This leads to the following idea: suppose we

choose multiple violated sets and increase their
dual variables simultaneously and uniformly. It
turns out that this gives good approximation al-
gorithms for a number of problems, including
a 2-approximation algorithm for $\mathrm{t}$he generalized
Steiner tree probl$e\mathrm{m}$ . We give the modified algo-
rithm in Figure 3. The idea of increasing multi-
ple duals was introduced implicitly by Agrawal,
Klei$n$ , and Ravi [1] (who did not refer to LP du-
ality), and was made explicit by Goemans and
Williamson [15].

We now show how we can analyze the algo-
rit$h\mathrm{m}$ in Figure 3 via the followi$n\mathrm{g}$ theorem. No-
tice that this algorithm and its $an$alysis generalize
$t$he algorithm of Figure 2, in which only one vio-
lat$e\mathrm{d}$ set is chosen in each iteration.

Theorem 3 If for every iteration $l$ of the algo-
rithm in $F_{\dot{i}}gure\mathit{3}$,

$D:m\dot{i}n.aug\mathrm{m}\mathrm{a}\mathrm{x}.$ of $A_{1}Tk \sum_{\in \mathcal{V}\iota}|D\mathrm{n}T_{k}|\leq\alpha|v_{l}|$
,

the algorithm is an $\alpha$ -approximation algorithm.

Proof: Let $A’$ be the final solution returned by
$\mathrm{t}$he algorithm. We wish to prove that $\sum_{e\in A^{\prime c_{e}}}\leq$

$\alpha\sum_{i=1}^{p}y_{i}$ . As before, we have $\mathrm{t}h$at

$\sum_{e\in A}c_{e}=\prime e\in\sum_{A\prime i.e}.\sum_{i\in T}y_{i}=\sum_{i=1}|A’\cap pT_{i}|y_{i}$ .
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Figure 3: The general prim$a1$-dual algorithm.

So we need to prove that

$\sum_{i=1}^{p}|A’\cap\tau_{i}|yi\leq\alpha\sum_{i=1}^{p}yi$ .

Let $\epsilon_{l}$ be the amount by which the duals are
increased in iteration $l$ of the algorithm. Then
clearly, for $\mathrm{t}$he solution $y$ at $\mathrm{t}$he end of the algo-
rit$h\mathrm{m}$ ,

$\sum_{i=1}^{p}y_{i}=\sum_{l}|\mathcal{V}_{l}|\epsilon\iota$ .

Similarly,

$\sum_{i=1}^{p}|A’\cap T_{i}|y_{i}$ $=$ $\sum_{i=1}^{p}|A’\cap\tau i|\sum\epsilon_{l}l:T_{i\in}\mathcal{V}\iota$

$=$ $\sum_{l}(\sum_{T_{k\in}v_{\iota}}|A\prime \mathrm{n}T_{k}|\mathrm{I}^{\epsilon}l\cdot$

Thus certainly $\mathrm{t}$he ineq..uality follows if for all it-
erations $l$ ,

$\sum|A’\cap T_{k}|\leq\alpha|\mathcal{V}f|$ .
$\tau_{k\in}v_{l}$

As in $\mathrm{t}$he proof of Theorem 2, $\sum_{T_{k}\in v_{\iota}}|A’\cap T_{k}|$ is
dominated by $\max_{D:\min}$ . aug. of $A_{\mathrm{t}^{\sum_{T_{k}\in \mathcal{V}_{l}}1}}D\cap$

$T_{k}|$ . Thus the theorem follows. $\square$

To illustrate $\mathrm{t}$he use of the algorit $h\mathrm{m}$ and
the theorem, we show how we can obtain a
2-approximation algorithm for the generalized

Steiner tree problem. As suggested above, in
each iteration $l$ we choose all the minimal $v\mathrm{i}_{0-}$

lated sets; that is, we choose $\mathrm{t}$he sets $T_{i}=\delta(S_{i})$

for all connected components $S_{i}$ in (V, $A_{l}$) such
that for some $j,$ $S_{i}$ contains exactly one of $s_{j}$ or
$t_{j}$ . Thus $\mathcal{V}_{l}$ is $\mathrm{t}$he set of all such sets $T_{i}$ .

Theorem 4 Using the algorithm in Figure 3
with the choice of $\mathcal{V}_{l}$ as given above yields a
2-approximation algorithm for the generalized
Steiner tree problem.

Proof: To prove this, we show that $\mathrm{t}$he state-
ment of Theorem 3 holds for $\alpha=2$ . To do this,
we consider the graph in which each connected
component of (V, $A_{l}$) has been shrunk to a sin-
gle node; let $V’$ be this set of vertices. Let $D$ be
any minimal augmentation of $A_{l}$ , and consider

$\mathrm{t}$he gr$a\mathrm{p}hH=$ (V’, $D$). Note first that $H$ is
a forest, otherwise $D$ is not minimal. Observe
also that some of the vertices in $V’$ correspond
to connected components $S_{i}$ that are in $\mathcal{V}_{l}$ and
some do not. Let $R\subseteq V’$ be the first type of
vertex, which we will call red, and $B=V’-R$
be the second type, which we will call blue. Ob-
serve $\mathrm{t}h$at $|R|=|\mathcal{V}_{l}|$ . Also, if $deg(v)$ is the degree
of $v\in V’$ in the graph $H$ , and $v$ corresponds
to $t$he connected component $S_{i}$ in (V, $A_{l}$), then
$|D\cap\tau_{i}|=|D\cap\delta(s_{i})|=deg(v)$ . Thus $t$he desired
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inequality

$\sum|D\cap T_{k}|\leq 2|v_{l}|$

$\tau_{k\in \mathcal{V}\iota}$

reduces to proving that $\sum_{v\in R}deg(v)\leq 2|R|$ . If
we can show that no blue vertex $h$as degree 1,
then the statement would follow, $\sin$ce (ignoring
blue vertices of degree $0$),

$\sum_{v\in R}deg(v)$
$=$

$v \in R\cup\sum_{B}deg(v)-\sum dv\in Beg(v)$

$\leq$ $2(|R|+|B|)-2|B|$
$\leq$ $2|R|$ .

The inequalities follow since $t$he sum of degrees of
the vertices in $t$he forest $H$ is no more than twice
$t$he number of vertices, and every blue vertex in
the sum has degree at least 2. To show that no
blue vertex has degree 1, assume the opposite: let
$v$ be a blue vertex of degree 1, let $e\in D$ be the
adjacent edge in $H$ , and let $S$ be the connected
component correspondi$n\mathrm{g}$ to $v$ in (V, $A_{l}$). Because
$D$ is a minimal augmentation, $e$ is necessary for
feasibility. Since $e$ is the only edge in $D\cap\delta(S)$

there must be some $j$ such that either $s_{j}$ or $t_{j}$ is
in $S$ and the other is not in $S$ . But then $T–\delta(s)$

would be in $\mathcal{V}_{l}$ , and $v$ would be red, which is a
contradiction. $\square$

Thu.s.the algorithm in Figure 3 gives a
$2_{- a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\dot{\mathrm{a}}$tion algorit $h\mathrm{m}$ for the generalized
$\mathrm{S}t$einer tree problem. The first 2-approximation
algorithm for this problem was given by Agrawal,
Klein, and Ravi [1]. Its use of the primal-
dual method was made explicit by Goemans and
Williamson [15].

3 Conclusions

Approximation algorithms for many NP-hard
problems can be derived from the framework
above: for example, network design problems
( $\mathrm{s}e\mathrm{e}$ the survey of Goemans and Williamson [16]),
feedback vertex set problems [17, 5, 13], prize-
collecting problems [15], multicut problems in
trees [14], and others.

However, it is important to remember that $\mathrm{t}$he
algorithm and analysis given above is only one
potential way of applying the primal-dual tech-
nique, the one that developed historically from

papers in the $80\mathrm{s}$ and early $90\mathrm{s}$ . A few recent pa-
pers have used their own variations of the primal-
dual method. For instance, the paper of Jain and
Vazirani [20] uses $\mathrm{t}$he same ideas for $\mathrm{t}$he uncapac-
itated facility location problem, but constructs
a primal solution in a somewhat different way.
Rajagopalan and Vazirani [24] use local search
on top of a primal-dual algori$th\mathrm{m}$ to get an im-
proved algorithm for $\mathrm{t}$he St$e\mathrm{i}n\mathrm{e}\mathrm{r}$ tree problem in
some cases. Thus it is important to see that al-
though many result$s$ can be derived directly from
the algorithm in the preceeding section, it should
be viewed as $a$ starting point from which further
modifications can be made to suit the problem at
hand.
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