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Abstract: Digital halftoning is an important technique to convert an image having several
bits for brightness levels into a binary image consisting of black and white dots which looks
similar to an input image. The similarity between two images is measured by the total sum of
differences in the weighted sums of brightness levels of pixels in a neighborhood surrounding
each pixel. Then, the problem of producing an optimal halftoned image is a combinatorial
optimization problem to find a binary image minimizing the measure for a given multiple-
level image. Despite a negative result that it is $\mathrm{N}\mathrm{P}$-complete even for a simple neighborhood
consisting of $2\cross 2$ pixels, we can rely on approximation algorithms mainly based on network
flow algorithms.
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1 Introduction

The quality of color printers has been drastically
improved in recent years, mainly based on the
development of fine control mechanism. On the
other hand, there seems to be no great inven-
tion on the software side of the printing tech-
nology. What is required is a technique to con-
vert an intensity image having several bits for
brightness levels into a binary image consisting
of black and white dots so that the binary image
looks very similar to the input image. Theoret-
ically speaking, the problem is how to approx-
imate an input gray image by a binary image.
Since this is one of the central techniques in com-
puter vision and computer graphics, a great num-

ber of algorithms have been proposed (see, e.g.,
[12, 10, 6, 13, 14] $)$ . However, there have been
very few studies discussing reasonable criteria for
evaluating the quality of output binary images;
maybe because the problem itself is very practi-
cally oriented. Actually, the most popular crite-
rion is to judge the quality by human eyes. It is
desirable to establish a good evaluation system of
halftoning methods (instead of the “human eye’s
judgment”), and to handle the digital halftoning
problem fully mathematically. Unfortunately, to
the authors’ knowledge no mathematical criterion
has not been a main focus on digital halftoning
even in the comprehensive studies in the Ph.D.
Thesis by Ulichney [18].
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So, one of the purposes of this paper is to set-
tle some reasonable mathematical criterion for
this problem based on a model for human visual
perception. Although there are extensive studies
on human visual perception (see, e.g., [16]), we
use a simplified model to analyze computational
complexity of the problem. Our criterion mea-
sures the ”difference” between the average gray
levels or the total sums of levels normalized be-
tween $0$ and 1 in a neighborhood surrounding
each pixel. Then, the problem of producing an
optimal halftoned image is a combinatorial opti-
mization problem to find a binary image minimiz-
ing the measure for a given multiple-level image.
The complexity of the problem depends on the
choice of the neighborhood family. In most cases
it is $\mathrm{N}\mathrm{P}$-hard. Actually, we show that it is the
case even if each neighborhood consists of $2\cross 2$

pixels.
Although the problem itself is defined in the

two-dimensional plane, it is possible to define its
one-dimensional version in which a sequence of
real numbers is given. This problem itself is an
interesting combinatorial problem, $\dot{\mathrm{a}}$nd we show
that it can be solved in polynomial time by using
negative cycle detection algorithms.

This implies that it is essentially necessary
to consider approximation $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ heuristic algo-
rithms. $\mathrm{E}\mathrm{v}\mathrm{e}\mathrm{n}.\mathrm{f}_{\mathrm{o}\mathrm{r}}$ the $\mathrm{t}_{\mathrm{W}\mathrm{O}-}\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}.\mathrm{n}$sional problem,
if each neighborhood is one-dimensional along a
space-filling curve, we can apply the algorithms
for the one-dimensional case. The use of space-
filling curves is popular in image processing, and
we think this method (although it is merely a
heuristic method since neighborhood should be
truly $\mathrm{t}\mathrm{w}\mathrm{o}^{-}\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}_{0}\mathrm{n}\mathrm{a}\mathrm{l}$ in practice) is probably
useful if we can generate space-filling curves in
somewhat random $\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}[4]$ . We evaluate some
popular error-propagating algorithms in digital
halftoning in our optimization criterion.

2 Known Basic Algorithms

Given an $N\cross N$ array $A$ of real numbers between
$0$ and 1, we wish to construct a binary array $B$

of the same size which looks similar to $A$ , where
entry values represent light intensities at corre-
sponding locations. The most naive method for
obtaining $B$ is simply to binarize each input value
by a fixed threshold, say 0.5. It is simplest, but

the quality of the output image is worst since any
uniform gray region becomes totally white or to-
tally black. The most important is how to repre-
sent intermediate intensities. Among a number of
algorithms for digital halftoning well-known are
Ordered Dither and Error Diffusion. We briefly
describe them.

2.1 Ordered Dither

Instead of using a fixed threshold over an en-
tire image, this method uses different thresh-
olds. A simple way of implementing this idea
is as follows: We prepare a square submatrix
of $M\cross M$ entries which are integers ranging
from $0$ and $M^{2}-1$ and tile an input array by
this submatrix. Then, for each entry $(\dot{i},j)$ we
have an input value $A(\dot{i},j)$ in $A$ and an inte-
ger $D(i\mathrm{m}\mathrm{o}\mathrm{d}M,j\mathrm{m}\mathrm{o}\mathrm{d}M)$ in the submatrix. If
$A(\dot{i},j)$ $>D$ ( $i\mathrm{m}\mathrm{o}\mathrm{d}M,j$ mod $M$) $/M^{2}$ then the
corresponding output value $B(i,j)$ is determined
to be 1, and otherwise it is $0$ . This submatrix
is called a dither matrix. An example is shown
$\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{w}[12]$ .

2.2 Error Diffusion

Ordered Dither is simple and efficient, but its
output quality is not satisfactory in many cases.
Another standard method uses a fixed thresh-
old 0.5 but it diffuses the quantization error
over unprocessed neighboring pixels according
to some fixed ratios. The ratios suggested by
Floyd and Steinberg in their paper [10] are
(7/16, 3/16, 5/16, 1/16) for the right, lower left,
lower, and the lower right pixels, respectively.
This method gives excellent results in many cases,
but it tends to generate some visible patterns in
an area of uniform intensity, which are caused by
the fixed error-diffusing coefficients.
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2.3 Related Combinatorial Problems

The quality of the ordered dither method heav-
ily depends on the dither matrix. The matrix
shown above is constructed according to a simple
rule, which is known as Incremental Voronoi In-
sertion. That is, we start with an arbitrary entry.
Since the submatrix tiles the entire plane, we have
many copies of the entry. Then, we choose the
entry farthest from the existing points (entries).
Such a point must be a vertex of the Voronoi di-
agram. Thus, our strategy is to choose a Voronoi
vertex that is farthest from the existing points.
This selection is iterated until half of the entries
are chosen. The remaining half is filled in sym-
metrically.

Now we have a natural question. Does this
strategy optimize anything? Imagine a part of
an image in which intensities gradually increase.
Then, the number (or density) of white dots also
increases according to the dither matrix starting
from a dark part consisting of only O-numbered
entries until an entirely bright part. During the
transition, white dots should be uniformly dis-
tributed. This means that for any $k,$ $0\leq k\leq$

$M^{2}/2$ those entries having numbers greater than
or equal to $k$ must be as uniformly distributed as
possible. The uniformity can be measured by the
ratio of the minimum pairwise distance over the
diameter of the maximum empty circle. A combi-
natorial problem related to this is to find a point
sequence that minimizes the maximum of the ra-
tios defined above. It is rather easy to see that
the incremental Voronoi insertion is not optimal,
but it is open to find such an optimal sequence.

An easier combinatorial problem is to dis-
tribute a given number of points within a unit
square. This problem has been studied for many
years in combinatorics under the name of Pack-
ing Problem. There was a break-through recently
in this study which shows best packing patterns
up to about 50 points and proved the optimality
of their packing patterns consisting of up to 26
points. In our case the base plane is not contin-
uous but discrete. If the size of the grid plane is
small enough, say, $16\cross 16$ , we can find an opti-
mal solution by solving an integer programming
on 256 variables.

Another related problem comes from the hu-
man perception. An interesting feature of hu-

man perception is that horizontal and vertical
patterns are more sensitive to human eyes than
skewed patterns. This fact suggests us of a ro-
tated dither matrix. Then, the problem is how
to design such a rotated pattern consisting of $M^{2}$

elements. This is not so easy. In fact, to the
authors’ best knowledge only one method [17] is
known. It is a rotation by a so-called rational
angle defined by triangles of edges with integral
lengths. We have developed a scheme for achiev-
ing rotation of a squared region approximately by
any given angle. The detail will be described in
the final report.

3 Why Raster Scan

Error Diffusion is one of the most popular meth-
ods for digital halftoning. One of the drawbacks
of this method is that it tends to generate reg-
ular patternings, which are caused by fixed scan
order and fixed coefficients for error diffusion. For
better quality we need to incorporate some ran-
domness. Thus, we come up with an idea to use
random space-filling curves instead of raster scan.
Recently, it has been observed that error diffu-
sion along some space-filling curves such as Peano
curves and Hilbert curves sometimes achieve bet-
ter quality compared with the traditional error
diffusion based on a raster scan. One drawback of
the methods comes from the fact that such space-
filling curves are usually defined recursively on a
square grid plane. Thus, there is some difficulty
when they are applied to rectangular images. An-
other drawback is found in its quality of an out-
put image due to its recursive structure. Since it
is recursively defined, each quarter of an image
is completely separated and their boundaries are
often visible in the resulting binary image.

The idea of using space-filling curves for digi-
tal halftoning is not new. Velho and Gomes [19]
use space-filling curves for cluster-dot dithering.
Zhang and Webber [20] give a parallel halftoning
algorithm based on space-filling curves. Asano,
Ranjan, and Roos [5] formulate digital halftoning
as a mathematical optimization problem and ob-
tain an approximation algorithm based on space-
filling curves. So, the digital halftoning tech-
niques based on space-filling curves seem to be
promising. However, one of their serious disad-
vantages is the strong constraint on the image
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size, that is, the size of an input image must be
something like a power of 2 since most of recur-
sively defined space-filling curves are defined for
square lattice planes of sizes being such.

We have developed a theory for random space-
filling curves. One $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}[3]$ is a simple way of gen-
erating a random space-filling curves for a rect-
angular grid of even length in each side. It first
constructs a random spanning tree on a smaller
grid of the half side lengths and then generates a
tour along the tree. It runs in linear time in the
image size.

Another way of generating a random space-
filling curve without any size constraint is also
$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{S}\mathrm{e}\mathrm{d}[4]$ . It is based on the following fact:
any space-filling curve is represented by regular
arrangement of stones in such a way that white
stone always lies to the right of the curve and
black stone does to the left. Then, a space-
filling curve without self intersection corresponds
to an arrangement of stones in such a way that
no cross of different colors is included and there
are two connected components of those stones of
the same color, where two stones are connected if
they have the same color and they are adjacent
horizontally or vertically. Then, as far as a condi-
tion called parity condition is satisfied, there is a
space-filling curve with specified starting and exit
entries. Moreover, defining an operation called
flipping which changes the curve locally by ex-
changing two stone colors, we can guarantee that
for any two space-filling curves one can be trans-
formed to another by successive flippings. This
suggests generation of random space-filling curves
by successive random flippings.

4 A Mathematical Formulation
of Digital Halftoning

The main task of this section is to define the dig-
ital halftoning problem as a combinatorial opti-
mization problem by defining a reasonable con-
crete mathematical criterion. As we defined in
the introduction, let $A=(a_{ij})_{i,jN}=1,\ldots,,$ $0\leq a_{ij}\leq$

$1$ , be a matrix representing an image in the grid
array $G$ of size $N\cross N$ .

Imagine that we look at some pixel $(\dot{i},j)$ of the
gray-level image $A$ . What happens is, we actually
perceive an average of gray levels of some (small)

neighborhood of that point. Using the same ob-
servation, the intensity around the pixel $(\dot{i},j)$ of
a binary image is proportional to the number of
white points in the corresponding neighborhood.
Therefore, density values should be roughly equal
around any pixel between an output binary im-
age of the digital halftoning and the input image
$A$ . The observation motivates us to give the fol-
lowing mathematical formulation:

For any region $R$ in the grid array $G$ (regarded
as an $N\cross N$ rectangle subdivided into $N^{2}$ pix-
els each of which corresponds to an array en-
try), we consider an error function $E^{R}(A, A’)$

describing the difference between two pictures
$A$ and $A’$ within the region $R$ . A typical er-
ror function is the difference of average density
$|A(R)-A’(R)|/|R|$ , where $A(R)$ is the sum of en-
tries of $A$ located in $R$ , and $|R|$ is the number of
pixels in $|R|$ .

A family $\mathcal{F}$ of regions in $G$ is called a neighbor-
hood family if there exists a map $\phi$ from $G$ to $\mathcal{F}$

such that the region $\phi(p)\in \mathcal{F}$ contains the pixel
$p$ for each pixel $p\in G$ . We call $\phi(p)$ the neigh-
borhood of $p$ . The map $\phi$ need not be surjective
nor injective. Note that this is a quite weaker
definition than the neighborhood system in usual
geometry. For a neighborhood family $F$, we de-
fine the $L_{\infty}$ distance

$Dist_{\infty}^{\mathcal{F}}(A, A’)= \max E^{R}R\in \mathcal{F}(A, A’)$

between the images $A$ and $A’$ with respect to
$\mathcal{F}$ and the error function $E$ . This distance
is also called the maximum error between $A$

and $A’$ (with respect to $\mathcal{F}$). We only con-
sider the $L_{\infty}$ distance in this paper for techni-
cal reason, although the $L_{p}$ distance defined by
$( \sum_{R\in \mathcal{F}}(E^{R}(A, A’))p)^{1/}p$ might be a useful mea-
sure in practice.

We mainly consider the following family $\mathcal{F}$ con-
sisting of (axis parallel) rectangular regions of a
fixed shape $l\cross k$ . For an $l\cross k$ rectangular re-
gion $W$ in $G$ , its center is the pixel $p(W)$ on
the $\lceil l/2\rceil$ -th row and $\lceil k/2\rceil$ -th column counted
from the north-west corner of $W$ . Note that
$p(W)$ has the center of gravity of $W$ in the clo-
sure of the pixel. We denote $W$ as $W(\dot{i},j)$ if
$p(W)=(\dot{i},j)$ . This defines the neighborhoods
for the pixels (called central pixels) $(\dot{i},j)$ satisfy-
ing $\lceil l/2\rceil\leq i\leq N-\lceil(l-1)/2\rceil$ and $\lceil k/2\rceil\leq$

$j\leq N-\lceil(k-1)/2\rceil$ . For each of other pixels
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(called near-boundary pixels), we define its neigh-
borhood as the neighborhood of its nearest cen-
tral pixel with respect to the Euclidean metric.
This correspondence makes $\mathcal{F}$ to be a neighbor-
hood family

Consider an input images $A$ and its output bi-
nary image $B$ in the digital halftoning. If the dif-
ference between the average gray level near each
pixel image is small, the picture $B$ is expected
to look very similar to the original picture $A$ ; at
least $B$ is a very good approximation of $A$ (with-
out further knowledge of the contents of the im-
age). Let us consider our neighborhood system.
The number $|W(\dot{i},j)|$ of pixels in a neighborhood
is independent of the choice of $(\dot{i},j)$ . With that,
instead of the difference of average density, it is
natural to use

$E^{W(i,j)}(A, B)=|A(W(\dot{i},j))-B(W(\dot{i},j))|$ .

to evaluate the visual difference near $(\dot{i},j)$ be-
tween $A$ and $B$ , where $A(W(\dot{i},j))$ is the sum of
elements of $A$ within $W(\dot{i},j)$ .

Note- that. we do not claim that our choice of
the ne.ighborhood family and the error function
is the best for evaluating practical digital images:
A broader $\mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}\mathrm{o}\mathrm{r}\overline{\mathrm{h}}\mathrm{o}\mathrm{o}\mathrm{d}$ family is probably bet-
ter, and the error function can be generalized in
various ways adapting to real applications, e.g.,
by assigning larger weights to the pixels nearer
to the center $(\dot{i},j)$ in the neighborhood to take
the summation; however, we consider the above
simple model to investigate the complexity of its
optimization. We discuss some broader choice of
the neighborhood family in Section 5.3.

Our goal . is to bring
the local error $E^{W(i,j)}(A, B)$ close to $0$ for any
pixel $(\dot{i},j)$ ; That is, to minimize the $L_{\infty}$ distance
$D_{\dot{i}}st^{\mathcal{F}}\infty(A, B)$ . Hence, we have the following for-
mulation of the digital halftoning problem:

Design a method to compute a binary
image $B$ such that $D_{\dot{i}}st^{\mathcal{F}}\infty(A, B)$ is as
small as possible for an input image $A$ .

For simplicity, we write $D_{\dot{i}}st(A, B)$ for
$D\dot{i}st_{\infty}^{\mathcal{F}}(A, B)$ unless we want to emphasis the
neighborhood system $F$, error function, $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

the $L_{\infty}$ measure. In particular, the binary im-
age $B$ minimizing $D_{\dot{i}}st(A, B)$ is called the opti-
mized digital approximation of $A$ (with respect to

the neighborhood family $\mathcal{F}$). We investigate the
time complexity of computing the optimized dig-
ital approximation.

5 One dimensional problem

If $l=1$ , each member in $\mathcal{F}$ is a horizontal strip
of length $k$ , and the problem can be solved on
each row independently. Therefore, we first con-
sider the one-dimensional version of the problem.
Let $a=(a_{1}, a_{2}, \ldots, a_{n})$ be a rational vector such
that $0\leq a_{j}\leq 1$ for all $j\in\{1,2, \ldots , n\}$ and $k$

be an integer with $1\leq k\leq n$ . We consider the
neighborhood family $\mathcal{I}_{k}$ consisting of intervals of
length $k$ . If $k$ is a constant, it is relatively easy
to design a linear time algorithm in $n$ by using
dynamic programming (in precise, $O(2^{k}n)$ time
using $O(2^{k}+n)$ space) to compute the optimized
digital approximation $b$ . However, it is nontriv-
ial to design an algorithm which is polynomial in
both $n$ and $k$ .

5.1 Polynomial time algorithms

The one-dimensional optimized digital approx-
imation of $a$ is the binary vector $b$ $=$

$(b_{1}, b_{2}, ’. . , b_{n})$ which is the solution of the follow-
ing integer programming problem, where $z$ cor-
responds to the distance between $a$ and $b$ in our
measure:

minlmlze $z$

subject to $-Z \leq\sum_{j=}^{i+k}i(aj-bj)\leq z$ (1)
$(\forall\dot{i}\in\{1,2, \ldots, n-k\})$ , (2)
$b_{j}\in\{0,1\}(\forall j\in\{1,2, \ldots, n\})$ .

Since the variables $b_{1},$
$\ldots,$

$b_{n}$ are 0-1 valued,
we can replace the inequality constraints (1) by

$\lfloor_{Z+}\sum_{j}^{i+}=i\rfloor ka_{j}\geq\sum_{j=}^{i+k}ib_{j}$

$\geq\max\{\lceil-Z+\sum^{i+k}j=ia_{j}\rceil, 0\}$

$(\forall\dot{i}\in\{1,2, \ldots, n-k\})$ .
We introduce the variables $x_{0},$ $\ldots,$ $x_{n}$ satisfying

$x_{i}-x0=b_{1}+\cdots+b_{i}$ for $\dot{i}\in\{1,2, \ldots, n\}$ . Then
the above problem is transformed to the following
problem

minlmlze $z$

subject to
$x_{i+k}-x_{i-1} \leq\lfloor_{Z+}\sum_{jj}^{i+k}=i\rfloor a$

$(\forall\dot{i}\in\{1,2, \ldots, n-k\})$ ,
$x_{i-1}-Xi+k \leq-\max\{\lceil-Z+\sum_{j=}^{i+k}ija\rceil, \mathrm{o}\}$ ,

$(\forall\dot{i}\in\{1,2, \ldots, n-k\})$ ,
$x_{j}-x_{j}-1\leq 1$ , $(\forall j\in\{1,2, \ldots, n\})$ ,

22



$x_{j-1}-X_{j}\leq 0$ , $(\forall j\in\{1,2, \ldots, n\})$ ,
$x_{j}$ is an integer, $(\forall j\in\{0,1,2, \ldots , n\})$ .

The problem of checking the existence of the
vector $(x_{0}, x_{1}, \ldots, x_{n})$ satisfying the above con-
straints when the value $z$ is fixed can be trans-
formed to a negative cycle detection problem (see
[2] for detail). The optimal value of $z$ (i.e., small-
est $z$ causing no negative cycle) can be found by
the ordinary binary search technique. Each edge
weight is represented by a step function with re-
spect to $z$ . Thus, we only need to consider the
break points of the step functions. If we define
$q(s, \dot{i})=s+0.5+\sum_{j=i}^{i+k}a_{j}$ for integers $s$ and $\dot{i}$ ,
the set $Q=\{q(s, i)|1\leq\dot{i}\leq n-k, -k\leq s\leq k\}$

contains all the break points. By applying binary
search technique (with some care), we can find
the optimal value of $z$ by executing the above
negative cycle detecting algorithm $\mathrm{O}(\log nk)=$

$\mathrm{O}(\log n)$ times with additional $O(n\log n)$ time for
each search process. Thus we can find the optimal
value of $z$ in $\mathrm{O}(n^{1.52}\log n)$ time in total.

Hence, we have the following theorem:

Theorem 5.1 The l-D optimized digital approx-
imation can be computed in $O(n^{1.5}\log n)2$ time.
The space requirement is $O(n)$ .

If $k$ is small (say, smaller than $n^{1/4}$ ), we can
obtain a faster algorithm.

Theorem 5.2 The l-D optimized digital approx-
imation can be computed in $O(k^{2}n\log n)$ time us-
ing $O(nk)$ space.

5.2 Optimization Under Different Dis-
tances

The previous subsection considered optimization
problem as follows:
Given a real vector $a=(a_{1}, a_{2}, \ldots, a_{n})$ such that
$0\leq a_{i}\leq 1$ for all $\dot{i}\in\{1,2, \ldots, n\}$ and $k$ is an
integer with 1 $\leq k\leq n$ , find a binary vector
$b=(b_{1}, b_{2}, \ldots, b_{n})$ with $b_{i}=0,1$ for all $\dot{i}$ that
minimizes the distance to $a$ , which is defined by

$D \dot{i}St(a, b)=\max_{I\in \mathcal{I}_{k}}|a(I)-b(I)|$ ,
where $\mathcal{I}_{k}$ is the neighborhood family consisting of
all intervals of length $k$ .

One generalization of the problem is to use dif-
ferent distance. Another natural distance is $L_{2}$

distance, that is,
$D_{\dot{i}S}t(a, b)=\sqrt{\Sigma_{I\in \mathcal{I}_{k}}(a(I)-b(I))^{2}}$.

Figure 1: A network with quadratic costs.

This problem can be solved by reducing it to
a network flow problem as follows: Define a set
of nodes by 1, 2, .. . , $n-k+$. $2$ and a set of arcs
$A\cup B$ , where
$A=\{(1,2), (2,3), \ldots, (n-k+1, n-k+2)\}$ ,
$B=\{(2,1),$ $(3,1),$

$\ldots,$ $(j-k+1,j+k-1)$ ,
... , $(n-k+2, n-k+1)\}$ .

Here, each arc $(j,j+1)$ in $A$ corresponds to an
interval starting at $j$ , that is, $[j,j+k-1]$ for all
$j\in\{1,2, \ldots, n-k+1\}$ . We want the flow on
the arc to be $a([j,j+k-1])$ . For the purpose
each node $j$ has two incoming arcs $(j-1,j)$ and

$\mathrm{v}$

$(j+k,j)$ and two outgoing arcs $(j,j+1)$ and
$(j, j-k)$ . The two $A$-type arcs $(j-1,j)$ and
$(j,j+1)$ have capacity $[0, k]$ while the B-type
arcs $(j+k,j)$ and $(j,j-k)$ have capacity $[0,1]$ .
See Fig.1 for pictorial illustration.

Now, a flow defined by $a([j,j+k-1])$ on each
$A$-type arc $(j,j+1)$ and $a_{i-1}$ on each $B$-type arc
$(j,\dot{i})$ is a feasible flow. Therefore, if we define
the costs of the arcs to be $0$ for $B$-type arcs $\dot{\mathrm{a}}$nd
$(b([j,j+k-1])-a([j,j+k-1]))2$ for each $A$,-type
arc $(j, j+1),$ $j=1,2,$ $\ldots,$

$n$ , then the problem is
to find a flow to minimize the total cost. Fortu-
$\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y},$

$.\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s}$ type of the cost minimization prob-
lems can be solved in poiynomial. time $\mathrm{b}\mathrm{o}$

,
th in $n$

and $k[1,15]$ .

5.3. Larger neighborhood family and
modified error functions

A well-known method to perform the one-
dimensional digital halftoning is “rounding with
error-propagation”. Starting from the first entry,
it determines the value of $b$ greedily. First, it
simply round $a_{1}$ to obtain $b_{1}=\lfloor a_{1}\rfloor$ . Suppose
that if we have determined $b_{1},$

$..,$
$b_{t}$ , we consider

the accumulated error sum$(t)= \sum_{i=1(a_{i}}^{t}-b_{i})$ .
Then, $b_{t+1}$ is determined as $0$ if $a_{t+1}+sum(t)\leq$

$1/2$ and otherwise 1. It is easy to obtain that
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$-1/2\leq sum(t)\leq 1/2$ . Therefore, for any inter-
val $I,$ $|a(I)-b(I)|\leq 1$ , where $a(I)= \sum_{i\in I}a_{i}$ .
This means that the algorithm gives an output
sequence $b$ with $d_{\dot{i}}st(a, b)<1$ for the family
$\mathcal{I}=\bigcup_{k=1}^{n}\mathcal{I}_{k}$ of all intervals.

Our optimal solution described in previous sub-
sections does not have the above property, since
we have only considered the neighborhood family

$\mathcal{I}_{k}$ . However, we can consider a more generalized
form in which we consider the set $\mathcal{I}$ of all inter-
vals as the neighborhood family, define the error
function $E^{I}(a, b)=|a(I)-b(I)|/z_{I}$ , where $z_{I}$ is
a constant dependent on $I$ for each $I$ . Similarly
to the $O(n^{1.5}\log n)2$ time algorithm for $\mathcal{I}_{k}$ , we
can design an algorithm with a time complexity
$O(n^{2.5}\log n)2$ for this generalized problem, pro-
vided that each $Z_{I}$ is a fractional number of a
pair of $O(\log n)$ bit integers. In particular, if we
set $z_{I}--1$ for all intervals, the output satisfies
that $|a(I)-b(I)|<1$ for every interval $I\in \mathcal{I}$ .

6 Matrix-rounding $\mathrm{p}_{\Gamma \mathrm{o}\mathrm{b}}1\mathrm{e}\mathrm{m}$

6.1 Discrepancy problem

The following Baranyai’s theorem is well-known
(See [7, 8, 9]):

Proposition 6.1 For any input $[0,1]$ -valued ma-
trix $A=(a_{i,j})$ , there exists a binary matrix $B$

attaining that $| \sum_{i=1}^{n}(a_{i,j}-b_{i,j})|<1$ for each
$j=1,2,$ $\ldots,$ $n,$ $| \sum_{j=1}^{n}(a_{i,j}-b_{i,j})|<1$ for each
$- i=...\cdot.1,.\cdot 2,$ $\ldots$ , $n,$ and- $| \sum_{j1}^{n}=1^{\sum_{i=}^{n}(}a_{i},j-b_{i},j$) $|<1$ .

This means that if we consider a region family
$\mathcal{F}$ consisting of the whole matrix, all rows and
all columns of the matrix, there always exists a
rounding satisfying that $D_{\dot{i}}st_{\infty}^{F}(A, B)<1$ . How-
$\dot{\mathrm{e}}\mathrm{v}\mathrm{e}\mathrm{r}$, the rounding error is highly dependent on
the region family $F$.

The following theorem is well-known [9]:

Theorem 6.2 The inhomogeneous discrepancy
of a $[0,1]$ valued $n\cross n$ matrix with respect to the
family of all rectangular regions is $O(\log n)3$ and
$\Omega(\log n)$ . The same bounds hold for the inhomo-
geneous discrepancy for the family of all rectangu-
lar regions containing the left-upper corner entry
of the matrix.

We are interested in the matrix-rounding with
respect to the set $\mathcal{F}_{k}$ of all $k\cross k$ square re-
gions. The following proposition is obtained in a
straightforward manner from the theorem above:

Proposition 6.3 The inhomogeneous discrep-
ancy with respect to $\mathcal{F}_{k}$ is $O(\log^{3}k)$ and $\Omega(.\log k)$ .
Indeed, these bounds also hold for the union
$\bigcup_{j=1}^{k}\mathcal{F}_{j}$ .

We remark that a polynomial time algorithm
for computing a rounding with an $O(\log^{4}k)$ dis-
crepancy can be designed based on the proof of
Theorem 6.13 in [9]. This is theoretically better
than the popular two-dimensional error diffusion
algorithm, for which the rounding error can be-
come $k$ .

For the family $\mathcal{F}_{2}$ consisting of all $2\cross 2$ square
regions, there exists an instance $A$ that the dis-
crepancy is exactly 1. However, the authors do
not know whether there exists an instance requir-
ing $D_{\dot{i}}st^{\mathcal{F}}\infty 2(A, B)>1$ or not. It is easy to show
that the inhomogeneous discrepancy with respect
to $\mathcal{F}_{2}$ is at most 2; indeed, the checkerboard bi-
nary matrix $C$ satisfies $D_{\dot{i}}st_{\infty}^{F_{2}}(A, B)\leq 2$ for any
input matrix $A$ simultaneously. However, it is
nontrivial to give a better upper bound; We can
prove the following result (the proof is involved,
and omitted in this version):

Theorem 6.4 For any $[0,1]$ valued matrix $A$ ,
there exists a binary matrix $B$ satisfying that
$Dist_{\infty}^{F}2(A, B)\leq 1.75$ .

6.2 $\mathrm{N}\mathrm{P}$-completeness of computing an
optimal matrix rounding

We showed the $\mathrm{N}\mathrm{P}$-completeness of the problem
of computing an optimal matrix rounding.

Theorem 6.5 For any $\epsilon>0$ , it is NP-complete
to decide whether the optimal rounding error of a
given matrix $A$ is greater than $1-\epsilon$ or less than
$1/2+\epsilon$ with respect to the distance $D\dot{i}st^{\mathcal{F}}\infty 2$ .

We do not repeat the proof here. Refer to [2]
for the detail. The idea is the reduction from the
planar 3-SAT problem [11].
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6.3 Approximation Algorithms

(i) Error Diffusion along Two Curves
Let us consider some approximation algo-

rithms. One of them is an extension of the
proposition 6.1 which guarantees the existence of
”good” matrix rounding in the sense that the er-
ror at each row and each column are bounded
by 1. Another observation is that the maximum
error generated by the 1-D error diffusion along
a space-filling curve is also bounded by 1. Can
we combine the two results? That is, given two
different space-filling curves $C_{1}$ and $C_{2}$ , can we
bound the maximum error by 1 simultaneously
for the two curves? The answer is positive by the
following network-flow algorithm.

A space-filling curve on a matrix can be re-
garded as a permutation of matrix elements. Let
$(\sigma_{\mu}(1), \sigma_{\mu}(2),$

$\ldots,$
$\sigma_{\mu}(n^{2}))$ be a permutation cor-

responding to a space-filling $C_{\mu},$ $\mu=1,2$ . Given
an image matrix $a[]$ , we wish to compute a bi-
nary matrix $b[]$ of the same size for which

$\max\{|\sum_{j}^{i}=1(a[\sigma_{\mu}(j)]-b[\sigma\mu(j)])|\}\leq 1$

holds for every $\dot{i},$ $1\leq i\leq n^{2}$ and $\mu=1,2$ .
Construct a network as follows (see Fig. 3):

we have two sets of $n^{2}+1$ nodes, $V_{1}$

$=$ $\{v_{1}(1),v1(2), \ldots , v_{1}(n^{2}+1)\}$ and $V_{2}$ $=$

$\{v_{2}(1), \ldots, v2(n^{2}+1)\}$ . The first set $V_{1}$ of nodes
are connected in the decreasing order while the
second in the increasing order, that is, we have
arcs $(v_{1}(\dot{i}), v_{1}(i-1))$ for each $i=2,3,$ $\ldots$ , $n^{2}+1$

and $(v_{2}(i), v2(i+1))$ for each $\dot{i}=1,2,$ $\ldots$ , $n^{2}$ . Ex-
tending $\sigma_{1}$ and $\sigma_{2}$ so that $\sigma_{1}(n^{2}+1)=\sigma_{2}(n^{2}+$

$1)=n^{2}+1$ , there is an obvious $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{0}$-one corre-
spondence between the two permutations $\sigma_{1}$ and
$\sigma_{2}$ . According to the correspondence we draw an
arc $(v_{1}(\dot{i}), v_{2}(j))$ whenever $\sigma_{1}(\dot{i})=\sigma_{2}(j)$ . Finally,
we add an arc $(v_{2}(n^{2}+1), v_{1(n^{2}}+1))$ .

Arc capacity is defined as follows: Each edge
$(v_{1(\dot{i}),v_{1(i}}-1)),$ $2\leq i\leq n^{2}+1$ is associated
with the sum of input values sum1 $(\dot{i}-1)=$

$\sum_{j=}^{i1}-a[1\sigma_{1}(j)]$ . The capacity of the edge is de-
termined by the floor and ceiling of the sum,
i.e., $[\lfloor sum_{1}(\dot{i}-1)\rfloor, \lceil sum1(\dot{i}-1)\rceil]$ . For the sec-
ond set of nodes, each edge $(v_{2}(\dot{i}), v_{2}(\dot{i}+1)),$ $1\leq$

$\dot{i}\leq n^{2}$ is associated with the sum of input val-
ues $sum_{2}( \dot{i})=\sum_{j=1}^{i}a[\sigma_{2}(j)]$ . The capacity of
the edge is determined by the floor and ceil-
ing of the sum, i.e., $[\mathrm{L}sum2(\dot{i})\rfloor, \lceil sum2(i)\rceil]$ . The
capacity of the edge $(v_{2}(n^{2}+1), v_{1}(n^{2}+1))$ is

$\ovalbox{\tt\small REJECT}_{78}4561239$

$\ovalbox{\tt\small REJECT}$

$\ovalbox{\tt\small REJECT}^{\circ_{1}}\sigma_{2}$

Figure 2: A network defined by two space-filling
curves.

Figure 3: A network defined by two binary trees.

$[ \lfloor\sum_{i=}^{n^{2}}1a[i]\rfloor, \lceil\sum_{i=}^{n^{2}}1a[\dot{i}]1]$ . Any other crossing arc
from $v_{1}(\dot{i})$ to $v_{2}(j)$ is associated with the input
value $a[\sigma_{1}(\dot{i})]=a[\sigma_{2}(j)]$ and its capacity is $[0,1]$ .

Now, a feasible flow is easily found since val-
ues associated with arcs defined above obviously
satisfy the capacity conditions. Thus, the well-
known integrality theorem implies the existence
of a integer-valued feasible flow. Take any such
flow, and the flow at crossing edges give a binary
matrix we wanted.

(ii) Combining Two Binary Structures
The same trick works for a different structures.

The network we constructed above has not hier-
archical structure. Let us extend the structure by
replacing each of the two simple paths with a bi-
nary tree structure (see Fig. 3). More concretely,
for a permutation $\sigma_{\mu}$ we construct a binary tree
$T_{\mu}$ with leaves $v_{\mu}(1),$ $\ldots$ , $v_{\mu}(n^{2})$ .

$\dot{\mathrm{F}}$or the first set $V_{1}$ we orient the arcs in the
binary tree $T_{1}$ downward, that is, from the root
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root1 down to the leaves. The arcs in the second
binary tree $T_{2}$ are oppositely directed. We draw
crossing arcs between the leaves of $T_{1}$ and $T_{2}$ , just
like previously. Each arc in the trees is associated
with the sum of input values of its descendants
(leaves). Similarly as above, the capacity of each
arc is determined by the floor and ceiling values
of the associated value. Then, those values as-
sociated with arcs define a feasible flow on the
network. Thus, again by the integrality theorem
an integer-valued flow does exist and it gives us
an approximated solution.

(iii) Scaling Algorithm
We have shown a polynomial-time approxima-

tion algorithm for a matrix rounding problem.
However, it does not suffice in practice because
of high time complexity of the underlying flow al-
gorithm. An idea to reduce the time complexity
is to use the integrality of matrix elements. Al-
though we have assumed that each input matrix
element is a real number between $0$ and 1, they
are integers, say 8-bit integers, in an image ma-
trix. Making use of the integrality we can devise
an efficient algorithm.

Assume that each matrix element is a $k$-bit in-
teger, $0$ through $2^{k}-1$ . We use the same structure
using two binary trees shown in Fig. 3. An idea
is to repeat matrix rounding $k-1$ times until all
the matrix elements become $0$ or 1. Rounding
even numbers cause no problem. For odd num-
bers we have to choose rounding up or rounding
$\mathrm{d}_{i}\mathrm{o}\mathrm{w}\mathrm{n}$ . Our intention here is to balance rounding
ups and rounding downs. If two odd integers are
adjacent, we should apply different roundings to
them, i.e., rounding up one and rounding down
the other. This idea is generalized as follows: In
the tree $T_{1}$ , we mark all leaves having odd values
and their incident arcs. We check each node at
one level up whether the two arcs incident to it
are both marked. If it is the case, we mark the
node and stop. Otherwise, we clime up one more
level in $T_{1}$ and repeat the same check. When we
reach the root of $T_{1}$ , all odd leaves are paired by
paths in $T_{1}$ or connected to the root.

The same process is applied to $T_{2}$ . Then, we
add the crossing arcs connecting the same ele-
ments in the two sets of leaves. They altogether
form (undirected) cycle(s). If we represent each
such cycle by the integer values at the nodes along
the cycle excluding the duplication, a sequence of

odd numbers is obtained. Next, we divide each
leaf value by 2. Here, those numbers in the cy-
cles must be rounded to integers. We perform
rounding up and rounding down iteratively along
the sequence obtained above. Of course, there
are two different ways of the rounding depending
on whether we start with rounding up or down.
Take any one of the two ways.

We iterate this process $k$ times. Then, all the
resulting leaf values become $0$ or 1. These values
naturally define a binary matrix. Although we
have no space to prove it, the resulting matrix
is one of the feasible flows on the network. This
algorithm is efficient enough.

(iv) $2\cross 2$ neighborhood
In Section 6.2 we claimed that it is NP-hard

to find an optimal rounding of a real-valued ma.-.
trix even for the family of $2\cross 2$ neighborhoods.
$\mathrm{H}_{\mathrm{o}\mathrm{W}\mathrm{e}}^{\backslash }\mathrm{v}\mathrm{e}\mathrm{r}$, with little more constraints we have a
$\dot{\mathrm{p}}$olynomial-time algorithm. The idea is $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ fol-
lowing. We regard an image matrix as a checker
board consisting of white and black cells. Then.,
we consider a family of 2 $\mathrm{x}2$ neighborhoods with
white cells at their main diagonals. By the defi-
nition, each cell belongs to at most two (usually
four except for boundary cells) neighborhoods.
Decompose each 2 $\mathrm{x}2$ square into two horizontal
pairs and combine them vertically. Then, 2 $\cross 2$

squares are combined horizontally, and the result-
ing $2\cross 4$ regions are combined vertically to have
$4\cross 4$ regions, etc. Moreover, define costs of arcs
appropriately, say by $(b-a)^{2}$ where $b$ is a flow on
the arc and $a$ is the sum of the values in the de-
scendants. Then, we can find an optimal solution
in the case of quadratic costs.

7 Concluding remarks

This paper gives an initial study on the
optimization-based evaluation of digital halfton-
ing algorithms. There are lot of open problems
which are interesting from both viewpoints of the-
ory and practice:
(1) For the neighborhood family consisting of
$k\cross k$ squares $(k\geq 2)$ , is it always possible to
make $d_{\dot{i}}st(A, B)<c$ where $c$ is a constant strictly
smaller than $k$?
(2) If the answer to (1) is yes, can we design a
polynomial time algorithm to assure the condi-
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tion? (Not seeking for the optimal solution).
One possible candidate is the use of random
space filling curves [4], and perform the one-
dimensional error propagation algorithm along
curves. If we fix a space filling curve, we can al-
ways construct an instance so that $d_{\dot{i}S}t(A, B)>$

$k-\epsilon$ ; however, it is difficult to construct an in-
stance which performs badly for many randomly
chosen filling curves simultaneously.
(3) Are there any good approximation algorithm
which has a theoretical performance ratio?
(4) Find a very good neighborhood family and
error function to evaluate the quality of digi-
tal halftoning in practice. If such a framework
is firmly established, modern heuristic methods
can be $\mathrm{P}^{\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}1}.\mathrm{y}$ applied to have a good digital
halftoning.
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