Quantum Logical Gate Based on Fock Space

Wolfgang Freudenberg^{*}, Masanori Ohya[†] and Noboru Watanabe[†]

[†]Department of Information Sciences, Science University of Tokyo Noda City, Chiba 278-8510, Japan Tel: 0471-24-1501 (Ext. 3319), Fax: 0471-24-1532 E-mail :watanabe@is.noda.sut.ac.jp *Brandenburgische Technische Universität Cottbus, Fakultät 1, Institut für Mathematik, PF 101344, D-03013 Cottbus, Germany

Abstracts:

In usual computer, there exists a restriction of computational speed because of irreversibility of logical gate. In order to avoid this demerit, Fredkin and Toffoli [3] proposed a conservative logical gate. Based on their work, Milburn [4] introduced a physical model of reversible quantum logical gate using beam splittings and a Kerr medium. This model is called FTM (Fredkin - Toffoli - Milburn gate). FTM gate was described by the quantum channel and the efficiency of information transmission of the FTM gate was discussed in [10]. FTM gate is using a photon number state as an input state for control gate. The photon number state might be difficult to realize physically. In this paper, we introduced a new unitary operator related to the Kerr device on symmetric Fock space in order to avoid this difficulty.

Key words: quantum logical gate, channels, beam splittings, FTM gate, Fock space

1. Quantum channels

Let $(\mathbf{B}(\mathcal{H}_1), \mathfrak{S}(\mathcal{H}_1))$ and $(\mathbf{B}(\mathcal{H}_2), \mathfrak{S}(\mathcal{H}_2))$ be input and output systems, respectively, where $\mathbf{B}(\mathcal{H}_k)$ is the set of all bounded linear operators on a separable Hilbert space \mathcal{H}_k and $\mathfrak{S}(\mathcal{H}_k)$ is the set of all density operators on \mathcal{H}_k (k = 1, 2). Quantum channel Λ^* is a mapping from $\mathfrak{S}(\mathcal{H}_1)$ to $\mathfrak{S}(\mathcal{H}_2)$. Λ^* is linear if $\Lambda^*(\lambda\rho_1 + (1 - \lambda)\rho_2) = \lambda\Lambda^*(\rho_1) + (1 - \lambda)\Lambda^*(\rho_2)$ holds for any $\rho_1, \rho_2 \in \mathfrak{S}(\mathcal{H}_1)$ and any $\lambda \in [0,1]$. Λ^* is completely positive (C.P.) if Λ^* is linear and its dual $\Lambda : \mathbf{B}(\mathcal{H}_2) \to \mathbf{B}(\mathcal{H}_1)$ satisfies

$$\sum_{i,j=1}^n A_i^* \Lambda(\overline{A}_i^* \overline{A}_j) A_j \ge 0$$

for any $n \in \mathbb{N}$, any $\{\overline{A}_i\} \subset \mathbb{B}(\mathcal{H}_2)$ and any $\{A_i\} \subset \mathbb{B}(\mathcal{H}_1)$, where the dual map Λ of Λ^* is defined by

$$tr\Lambda^*(\rho)B = tr\rho\Lambda(B), \quad \forall \rho \in \mathfrak{S}(\mathcal{H}_1), \quad \forall B \in \mathbf{B}(\mathcal{H}_2).$$
 (1.1)

Almost all physical transformation can be described by the CP channel [5], [7], [8]

Let \mathcal{K}_1 and \mathcal{K}_2 be two Hilbert spaces expressing noise and loss systems, respectively. Quantum communication process including the influence of noise and loss is denoted by the following scheme [6]: Let ρ be an input state in $\mathfrak{S}(\mathcal{H}_1), \xi$ be a noise state in $\mathfrak{S}(\mathcal{K}_1)$.

$$\begin{array}{cccc} \mathfrak{S}\left(\mathcal{H}_{1}\right) & & \underline{\Lambda^{*}} & \mathfrak{S}\left(\mathcal{H}_{2}\right) \\ \gamma^{*} \downarrow & & \uparrow a^{*} \\ \mathfrak{S}\left(\mathcal{H}_{1} \otimes \mathcal{K}_{1}\right) & & \overline{\Pi^{*}} & \mathfrak{S}\left(\mathcal{H}_{2} \otimes \mathcal{K}_{2}\right) \end{array}$$

The above maps γ^* , a^* are given as

$$\gamma^*(\rho) = \rho \otimes \xi, \quad \rho \in \mathfrak{S}(\mathcal{H}_1), \quad (1.2)$$

$$denotes the action of the transformation o$$

The map Π^* is a channel from $\mathfrak{S}(\mathcal{H}_1 \otimes \mathcal{K}_1)$ to $\mathfrak{S}(\mathcal{H}_2 \otimes \mathcal{K}_2)$ determined by physical properties of the device transmitting information. Hence the channel for the above process is given by

$$\Lambda^{*}\left(\rho\right) \equiv tr_{\mathcal{K}_{2}}\Pi^{*}\left(\ \rho \otimes \xi\right) = \left(a^{*} \circ \Pi^{*} \circ \gamma^{*}\right)\left(\rho\right) \tag{1.4}$$

for any $\rho \in \mathfrak{S}(\mathcal{H}_1)$. Based on this scheme, the noisy quantum channel [9] are constructed as follows:

Noisy quantum channel Λ^* with a noise state ξ is defined by

$$\Lambda^*(\rho) \equiv tr_{\mathcal{K}_2} \Pi^*(\rho \otimes \xi) = tr_{\mathcal{K}_2} V\left(\rho \otimes \xi\right) V^*, \tag{1.5}$$

where $\xi = |m_1\rangle\langle m_1|$ is the m_1 photon number state in $\mathfrak{S}(\mathcal{K}_1)$ and V is a mapping from $\mathcal{H}_1 \otimes \mathcal{K}_1$ to $\mathcal{H}_2 \otimes \mathcal{K}_2$ denoted by

$$V(|n_1\rangle \otimes |m_1\rangle) = \sum_{j}^{n_1+m_1} C_j^{n_1,m_1} |j\rangle \otimes |n_1+m_1-j\rangle,$$

$$C_j^{n_1,m_1} = \sum_{r=L}^K (-1)^{n_1+j-r} \frac{\sqrt{n_1!m_1!j!(n_1+m_1-j)!}}{r!(n_1-j)!(j-r)!(m_1-j+r)!} \alpha^{m_1-j+2r} \left(-\bar{\beta}\right)^{n_1+j-2r}$$
(1.6)

K and L are constants given by $K = \min\{n_1, j\}, L = \max\{m_1 - j, 0\}$. In particular for the coherent input state $\rho = |\theta\rangle \langle \theta| \otimes |\kappa\rangle \langle \kappa| \in \mathfrak{S}(\mathcal{H}_1 \otimes \mathcal{K}_1)$, we obtain the output state of Π^* by

$$\Pi^{*}\left(\left|\theta\right\rangle\left\langle\theta\right|\otimes\left|\kappa\right\rangle\left\langle\kappa\right|\right)=\left|\alpha\theta+\beta\kappa\right\rangle\left\langle\alpha\theta+\beta\kappa\right|\otimes\left|-\bar{\beta}\theta+\alpha\kappa\right\rangle\left\langle-\bar{\beta}\theta+\alpha\kappa\right|,$$

where Π^* is called a generalized beam splitting. When the noise $\xi_0 = |0\rangle\langle 0|$ is given by the vacuum state, Λ_0^* is called an attenuation channel [5] and \mathcal{E}_0^* (or Π_0^*) is called a beam splitting. Based on liftings, the beam splitting was studied by Accardi - Ohya [1] and Fichtner - Freudenberg - Libsher [2].

2. Quantum logical gate on symmetric Fock space

Recently, we reformulate a quantum channel for the FTM gate and we rigorously study the conservation of information for FTM gate [10]. However, it might be difficult to realize the photon number state $|n\rangle \langle n|$ for the input of the Kerr medium physically.

In this section, we reformulate beam splittings on symmetric Fock space and we introduce a new operator on this space instead of the Kerr medium. We discuss the mathematical formulation of quantum logical gate by means of beam splittings and the new operator.

Let G be a complete separable metric space and \mathcal{G} be a Borel σ -algebra of G. v is called a locally finite diffuse measure on the measurable space (G, \mathcal{G}) if v satisfies the conditions (1) $v(K) < \infty$ for bounded $K \in \mathcal{G}$ and (2) $v(\{x\}) = 0$ for any $x \in G$. We denote the set of all finite integer - valued measures φ on (G, \mathcal{G}) by M. For a set $K \in \mathcal{G}$ and a nutural number $n \in \mathbb{N}$, we put the set of φ satisfying $\varphi(K) = n$ as

$$M_{K,n} \equiv \{\varphi \in M; \varphi(K) = n\}.$$

Let \mathfrak{M} be a σ -algebra generated by $M_{K,n}$. F is the σ -finite measure on (M, \mathfrak{M}) defined by

$$F(Y) \equiv 1_Y(\varphi_0) + \sum_{n=1}^{\infty} \frac{1}{n!} \int_M 1_Y\left(\sum_{j=1}^n \delta_{x_j}\right) v^n \left(dx_1 \cdots dx_n\right),$$

where 1_Y is the characteristic function of a set Y, φ_0 is an empty configulation in M and δ_{x_j} is a Dirac measure in x_j . $\mathcal{M} \equiv L^2(M, \mathfrak{M}, F)$ is called a (symmetric) Fock space. We define an exponetal vector $\exp_g : M \to \mathbb{C}$ generated by a given function $g : G \to \mathbb{C}$ such that

$$\exp_{g}\left(\varphi\right) \equiv \left\{ \begin{array}{ll} 1 & \left(\varphi = \varphi_{0}\right), \\ \prod_{x \in \varphi} g\left(x\right) & \left(\varphi \neq \varphi_{0}\right), \end{array} \right. \quad \left(\varphi \in M\right).$$

2.1. Generalized beam splittings on Fock space

Let α, β be measurable mappings from G to \mathbb{C} satisfying $\bar{\alpha}$

$$|\alpha(x)|^2 + |\beta(x)|^2 = 1, \quad x \in G.$$

We intoduce an unitary operator $V_{\alpha,\beta}: \mathcal{M} \otimes \mathcal{M} \to \mathcal{M} \otimes \mathcal{M}$ defined b

$$\begin{array}{ll} \left(V_{\alpha,\beta}\Phi\right)\left(\varphi_{1},\varphi_{2}\right) &\equiv& \displaystyle\sum_{\hat{\varphi}_{1}\leq\varphi_{1}\hat{\varphi}_{2}\leq\varphi_{2}} \displaystyle\exp_{\alpha}\left(\hat{\varphi}_{1}\right)\exp_{\beta}\left(\varphi_{1}-\hat{\varphi}_{1}\right)\exp_{-\bar{\beta}}\left(\hat{\varphi}_{2}\right)\exp_{\bar{\alpha}}\left(\varphi_{2}-\hat{\varphi}_{2}\right) \\ &\times\Phi\left(\hat{\varphi}_{1}+\hat{\varphi}_{2},\varphi_{1}+\varphi_{2}-\hat{\varphi}_{1}-\hat{\varphi}_{2}\right) \end{array}$$

for $\Phi \in \mathcal{M} \otimes \mathcal{M}$ and $\varphi_1, \varphi_2 \in \mathcal{M}$. Let $\mathcal{A} \equiv \mathbb{B}(\mathcal{H})$ be the set of all bounded operators on \mathcal{M} and $\mathfrak{S}(\mathcal{A})$ be the set of all normal states on \mathcal{A} . $\mathcal{E}_{\alpha,\beta} : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ defined by

$$\mathcal{E}_{\alpha,\beta}\left(C\right) \equiv V_{\alpha,\beta}^{*}CV_{\alpha,\beta}, \quad \forall C \in \mathcal{A} \otimes \mathcal{A}$$

is the lifting in the sense of Accardi and Ohya [1] and the dual map $\mathcal{E}^*_{\alpha,\beta}$ of $\mathcal{E}_{\alpha,\beta}$ given by

$$\mathcal{E}_{\alpha,\beta}^{*}\left(\omega\right)\left(\bullet\right)\equiv\omega\left(\mathcal{E}_{\alpha,\beta}\left(\bullet\right)\right),\quad\forall\omega\in\mathfrak{S}\left(\mathcal{A}\otimes\mathcal{A}\right)$$

is the CP channel from $\mathfrak{S}(\mathcal{A} \otimes \mathcal{A})$ to $\mathfrak{S}(\mathcal{A} \otimes \mathcal{A})$. Using the exponetial vectors, one can denote a coherent state θ^f fby

$$\theta^{f}\left(A\right)\equiv\left\langle \exp_{f},\ A\exp_{f}\right\rangle e^{-\left\Vert f\right\Vert ^{2}},\quad\forall f\in L^{2}\left(G,\nu\right),\ \forall A\in\mathcal{A}.$$

In particular, for the input coherent states $\eta_0 \otimes \omega_0 = \theta^f \otimes \theta^g$, two output states $\omega_1(\bullet) \equiv \eta_0 \otimes \omega_0 \left(\mathcal{E}_{\alpha,\beta} \left((\bullet) \otimes I \right) \right)$ and $\eta_1(\bullet) \equiv \eta_0 \otimes \omega_0 \left(\mathcal{E}_{\alpha,\beta} \left(I \otimes (\bullet) \right) \right)$ are obtained by

$$\omega_1 = \theta^{\alpha f + \beta g}, \quad \eta_1 = \theta^{-\beta f + \bar{\alpha} g}$$

 $\mathcal{E}^*_{\alpha,\beta}$ is called a generalized beam splitting on Fock space because it also hold the same properties satisfied by the generated beam splitting Π^* in Section 1.

Now we introduce a self-adjoint unitary operator U, which denotes a new device instead of the Kerr medium, defined by

$$\tilde{U}\left(\Phi\right)\left(\varphi_{1},\varphi_{2}\right)\equiv\left(-1\right)^{\left|\varphi_{1}\right|\left|\varphi_{2}\right|}\Phi\left(\varphi_{1},\varphi_{2}\right)$$

for $\Phi \in \mathcal{M} \otimes \mathcal{M}$ and $\varphi_1, \varphi_2 \in G$, where $|\varphi_k| \equiv \varphi_k(G)$ (k = 1, 2). For the input state $\omega_1 \otimes \kappa \equiv \theta^f \otimes \frac{1}{\|\psi\|^2} \langle \psi, \bullet \psi \rangle$, the output state ω_2 of new device is

$$\omega_{2}(A) \equiv \omega_{1} \otimes \kappa \left(\tilde{U}(A \otimes I) \tilde{U} \right) = \frac{1}{\left\| \psi \right\|^{2}} \int_{M} F(d\varphi) \left| \psi(\varphi) \right|^{2} \theta^{(-1)^{\left| \varphi \right|^{2} f}}(A)$$

for any $A \in \mathcal{A}, \psi \in \mathcal{M}$ $(\psi \neq 0)$ and $f \in L^2(G, \nu)$. If κ is given by the vacuum state θ^0 , then the output state ω_2 is equals to ω_1 and if κ is given by one particle state, that is, $\kappa = \frac{1}{\|\psi\|^2} \langle \psi, \bullet \psi \rangle$ with $\psi \upharpoonright_{M_1^c}$ (where M_1 is the set of one-particle states), then ω_2 is obtained by θ^{-f} . Let M_o (resp. M_e) be the set of $\varphi \in M$ which satisfies that $|\varphi|$ is odd (resp. even) and M be the union of M_o and M_e . The output states ω_2 of the new device is written by

$$\omega_2(A) = \lambda_1 \theta^{-f}(A) + \lambda_2 \theta^f(A) \quad \forall A \in \mathcal{A},$$

where λ_1 and λ_2 are given by

$$\begin{cases} \lambda_{1} = \frac{1}{\left\|\psi\right\|^{2}} \int_{M_{o}} F\left(d\varphi\right) \left|\psi\left(\varphi\right)\right|^{2}, \\ \lambda_{2} = \frac{1}{\left\|\psi\right\|^{2}} \int_{M_{e}} F\left(d\varphi\right) \left|\psi\left(\varphi\right)\right|^{2}. \end{cases}$$

Two output states $\omega_3(\bullet) \equiv \omega_2 \otimes \eta_2 \left(\mathcal{E}_{\alpha_2,\beta_2} \left((\bullet) \otimes I \right) \right)$ and $\eta_3(\bullet) \equiv \omega_2 \otimes \eta_2 \left(\mathcal{E}_{\alpha_2,\beta_2} \left(I \otimes (\bullet) \right) \right)$ of the total logical gate including two beam splittings $\mathcal{E}^*_{\alpha_k,\beta_k}$ with $\left(|\alpha_k|^2 + |\beta_k|^2 = 1 \right)$ (k = 1.2) and the new device instead of Kerr medium are obtained by

$$\begin{split} \omega_{3} &= \lambda_{1} \theta^{\alpha_{2}(-(\alpha_{1}f+\beta_{1}g))+\beta_{2}\left(-\bar{\beta}_{1}f+\bar{\alpha}_{1}g\right)} + \lambda_{2} \theta^{\alpha_{2}(\alpha_{1}f+\beta_{1}g)+\beta_{2}\left(-\bar{\beta}_{1}f+\bar{\alpha}_{1}g\right)},\\ \eta_{3} &= \lambda_{1} \theta^{-\bar{\beta}_{2}(-(\alpha_{1}f+\beta_{1}g))+\bar{\alpha}_{2}\left(-\bar{\beta}_{1}f+\bar{\alpha}_{1}g\right)} + \lambda_{2} \theta^{-\bar{\beta}_{2}(\alpha_{1}f+\beta_{1}g)+\bar{\alpha}_{2}\left(-\bar{\beta}_{1}f+\bar{\alpha}_{1}g\right)},\end{split}$$

where $\omega_2 = \lambda_1 \theta^{-(\alpha_1 f + \beta_1 g)} + \lambda_2 \theta^{\alpha_1 f + \beta_1 g}$ and $\eta_2 = \eta_1 = \theta^{-\bar{\beta}_1 f + \bar{\alpha}_1 g}$.

Based on the above settings, we could show that new logical gate performs the complete truth table. The further development of our study will be appear in [11].

References

- [1] L.Accardi and M.Ohya, Compound channels, transition expectations, and liftings, Appl. Math. Optim. Vol.39, 33-59, 1999.
- [2] K.H. Fichtner, W. Freudenberg and V. Liebscher, Beam splittings and time evolutions of Boson systems, Fakultät für Mathematikß und Informatik, Math/ Inf/96/39, Jena, 105, 1996.
- [3] E.Fredkin and T. Toffoli, Conservative logic, International Journal of Theoretical Physics, 21, pp. 219-253 1982.
- [4] G.J. Milburn, Quantum optical Fredkin gate, Physical Review Letters, **62**, 2124-2127, 1989.
- [5] M.Ohya, Quantum ergodic channels in operator algebras, J. Math. Anal. Appl. 84, pp. 318 - 327, 1981.
- [6] M.Ohya, On compound state and mutual information in quantum information theory, IEEE Trans. Information Theory, 29, pp. 770 - 777, 1983.
- [7] M. Ohya, Some aspects of quantum information theory and their applications to irreversible processes, Rep. Math. Phys., 27, pp. 19 – 47, 1989.
- [8] M. Ohya and D. Petz, Quantum Entropy and Its Use, Springer, 1993.
- [9] M. Ohya and N. Watanabe, Construction and analysis of a mathematical model in quantum communication processes, Electronics and Communications in Japan, Part 1, Vol.68, No.2, 29-34, 1985.
- [10] M. Ohya and N. Watanabe, On mathematical treatment of optical Fredkin

 Toffoli Milburn gate, Physica D, Vol.120, 206-213, 1998.
- [11] W. Freudenberg, M. Ohya and N. Watanabe, Generalized Fock space approach to Fredkin Toffoli Milburn gate, SUT preprint.