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Abstracts:

In usual computer, there exists a restriction of computational speed because
of irreversibility of logical gate. In order to avoid this demerit, Fredkin and
Toffoli [3] proposed a conservative logical gate. Based on their work, Milburn
[4] introduced a physical model of reversible quantum logical gate using beam
splittings and a Kerr medium. This model is called FTM (Fredkin ‐Toffoli
‐ Milburn gate). FTM gate was described by the quantum channel and the
efficiency of information transmission of the FTM gate was discussed in [10].
FTM gate is using a photon number state as an input state for control gate.
The photon number state might be difficult to realize physically. In this paper,
we introduced a new unitary operator related to the Kerr device on symmetric
Fock space in order to avoid this difficulty.
Key words: quantum logical gate, channels, beam splittings, FTM gate, Fock
space

1. Quantum channels

Let (B(\mathcal{H}_{1}), \mathfrak{S}(\mathcal{H}_{1})) and  (B(\mathcal{H}_{2}), \mathfrak{S}(\mathcal{H}_{2})) be input and output systems, respec‐
tively, where  B(\mathcal{H}_{k}) is the set of all bounded linear operators on a separa‐
ble Hilbert space  \mathcal{H}_{k} and  \mathfrak{S}(\mathcal{H}_{k}) is the set of all density operators on  \mathcal{H}_{k}

 (k=1,2) . Quantum channel  \Lambda^{*} is a mapping from  \mathfrak{S}(\mathcal{H}_{1}) to  \mathfrak{S}(\mathcal{H}_{2}) .  \Lambda^{*} is linear
if  \Lambda^{*}(\lambda\rho_{1}+(1-\lambda)\rho_{2})=\lambda\Lambda^{*}(\rho_{1})+
(1-\lambda)\Lambda^{*}(\rho_{2}) holds for any  \rho_{1},  \rho_{2}\in \mathfrak{S}(\mathcal{H}_{1})
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and any  \lambda\in[0,1] .  \Lambda^{*} is completely positive  (C.P.) if  \Lambda^{*} is linear and its dual
 \Lambda :  B(\mathcal{H}_{2})arrow B(\mathcal{H}_{1}) satisfies

  \sum_{i,j=1,\sim}^{n}A_{i}^{*}\Lambda(\overline{A}_{i}^{*}\overline{A}_{j})
A_{j}\underline{>}0
for any  n\in N , any  \{\overline{A}_{i}\cdot\}\subset B.(.\mathcal{H}_{2}) ‘and any  \{A_{i}\}\subset. B.  (\mathcal{H}_{I})\prime” where the dual map \Lambda of  \Lambda^{*} is defined by

 tr\Lambda^{*}(\rho)B=tr\rho\Lambda(B) ,  \forall\rho\in \mathfrak{S}(\mathcal{H}_{1}) ,  \forall B\in B(\mathcal{H}_{2}) . (1.1)
 t

Almost all physical transformation can be described by the CP channel [5],
[7], [8]

Let  \mathcal{K}_{1} and  \mathcal{K}_{2} be two Hilbert spaces expressing noise and loss systems,
respectively. Quantum communication process including the influence of noise
and loss is denoted by the following scheme [6]: Let  \rho be an input state in
 e(\mathcal{H}_{1}),  \xi be a noise state in  \mathfrak{S}(\mathcal{K}_{1}) .

 \mathfrak{S}(\mathcal{H}_{1})  arrow\Lambda^{*}  \mathfrak{S}(\mathcal{H}_{2})
 \gamma^{*}\downarrow  \uparrow a^{*}

 \mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{K}_{1})  rightarrow\backslash \Pi^{*}  \mathfrak{S}(\mathcal{H}_{2}\otimes \mathcal{K}_{2})
 \backslash 1

The above maps  \gamma^{*},  a^{*} are given as

 \gamma^{*}(\rho)  =  \rho\otimes\xi ,  \rho\in \mathfrak{S}(\mathcal{H}_{1}) , (1.2)
 a^{*}(\sigma)  =   tr_{\mathcal{K}_{2}}\sigma ,  \sigma\in \mathfrak{S}(\mathcal{H}_{2}\otimes \mathcal{K}_{2}) . (1.3)

The map  \Pi^{*} is a channel from  \mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{K}_{1})to\mathfrak{S}(\mathcal{H}_
{2}\otimes \mathcal{K}_{2}) determined by physical
properties of the device transmitting information. Hence the channel for the
above process is given by

 \Lambda^{*}(\rho)\equiv tr_{\mathcal{K}_{2}}\Pi^{*}(\rho\otimes\xi)=(a^{*}\circ
\Pi^{*}0\gamma^{*})(\rho) (1.4)

for any  \rho\in \mathfrak{S}(\mathcal{H}_{1}) . Based on this scheme, the noisy quantum channel [9] are
constructed as follows:

Noisy quantum channel  \Lambda^{*} with a noise state  \xi is defined by

 \Lambda^{*}(\rho)\overline{=}tr_{\mathcal{K}_{2}}\Pi^{*}(\rho\otimes\xi)=
tr_{\mathcal{K}_{2}}V(\rho\otimes\xi)V^{*} , (1.5)
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where  \xi=|m_{1}\rangle\langle  m_{1}| is the  m_{1} photon number state in  \mathfrak{S}(\mathcal{K}_{1}) and  V is a mapping
from  \mathcal{H}_{1}\otimes \mathcal{K}_{1} to  \mathcal{H}_{2}\otimes \mathcal{K}_{2} denoted by

  V(|n_{1} \rangle\otimes|m_{1}\rangle)=\sum_{j}^{n_{1}+m_{1}}C_{j}^{n_{1},m_{1}
}|j\rangle\otimes|n_{1}+m_{1}-j\rangle ,

 C_{j}^{n_{1},m_{1}}= \sum_{r=L}^{K}(-1)^{n_{1}+j-r}\frac{\sqrt{n_{1}!m_{1}
!j!(n_{1}+m_{1}-j)!}}{r!(n_{1}-j)!(j-r)!(m_{1}-j+r)!}\alpha^{m_{1}-j+2r}(-
\overline{\beta})^{n_{1}+j-2r}
 K and  L are constants given by  K= \min\{n_{1}, j\},  L= \max\{m_{1}-j, 0\}.In(16)
particular for the coherent input state  \rho=|\theta\rangle  \langle\theta|\otimes|\kappa\rangle\langle\kappa|\in \mathfrak{S}(\mathcal{H}
_{1}\otimes \mathcal{K}_{1}) , we
obtain the output state of  \Pi^{*} by

 \Pi^{*}(|\theta\rangle\langle\theta|\otimes|\kappa\rangle\langle\kappa|)=
|\alpha\theta+\beta\kappa\rangle\langle\alpha\theta+\beta\kappa|\otimes|-
\overline{\beta}\theta+\alpha\kappa\rangle\langle-\overline{\beta}\theta+
\alpha\kappa| ,

where  \Pi^{*} is called a generalized beam splitting. When the noise  \xi_{0}=|0\rangle\langle  0| is
given by the vacuum state,  \Lambda_{0}^{*} is called an attenuation channel [5] and  \mathcal{E}_{0}^{*} (or
 \Pi_{0}^{*}) is called a beam splitting. Based on liftings, the beam splitting was studied
by Accardi‐ Ohya [1] and Fichtner‐Freudenberg‐Libsher [2].

2. Quantum logical gate on symmetric Fock space

Recently, we reformulate a quantum channel for the FTM gate and we rigorously
study the conservation of information for FTM gate [10]. However, it might be
difficult to realize the photon number state  |n\rangle\langle  n| for the input of the Kerr
medium physically.

In this section, we reformulate beam splittings on symmetric Fock space
and we introduce a new operator on this space instead of the Kerr medium. We
discuss the mathematical formulation of quantum logical gate by means of beam
splittings and the new operator.

Let  G be a complete separable metric space and  \mathcal{G} be a Borel  \sigma‐algebra of
G.  v is called a locally finite diffuse measure on the measurable space  (G, \mathcal{G}) if
 v satisfies the conditions (1)   v(K)<\infty for bounded  K\in \mathcal{G} and (2)  v(\{x\})=0
for any  x\in G . We denote the set of all finite integer‐ valued measures  \varphi on
 (G, \mathcal{G}) by  M . For a set  K\in \mathcal{G} and a nutural number  n\in \mathbb{N} , we put the set of  \varphi

satisfying  \varphi(K)=n as

 M_{K,n}\equiv\{\varphi\in M;\varphi(K)=n\} .
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Let  \mathfrak{M} be a  \sigma‐algebra generated by  M_{K,n} .  F is the  \sigma‐finite measure on  (M, \mathfrak{M})
defined by

 F( Y)\equiv 1_{Y}(\varphi_{0})+\sum_{n=1}\frac{1}{n!}\int_{M}1_{Y}(\sum_{j=1}
^{n}\delta_{x_{j}})v^{n}(dx_{1}\cdots dx_{n}) ,

where  1_{Y} is the characteristic function of a set  Y,  \varphi_{0} is an empty configulation
in  M and  \delta_{x_{j}} is a Dirac measure in  x_{j} .  \mathcal{M}\equiv L^{2}(M, \mathfrak{M},F) is called a (symmetric)
Fock space. We define an exponetal vector  \exp_{g} :  Marrow \mathbb{C} generated by a given
function  g:Garrow \mathbb{C} such that

 \exp_{g}(\varphi)\equiv\{
1  (\varphi=\varphi_{0}) ,

  \prod_{x\in\varphi}g(x)  (\varphi\neq\varphi_{0}) ,
 (\varphi\in M) .

2.1. Generalized beam splittings on Fock space

Let  \alpha,  \beta be measurable mappings from  G to  \mathbb{C} satisfying  \overline{\alpha}

 |\alpha(x)|^{2}+|\beta(x)|^{2}=1 ,  x\in G .

We intoduce an unitary operator  V_{\alpha,\beta} :  \mathcal{M}\otimes \mathcal{M}arrow \mathcal{M}\otimes \mathcal{M} defined  b

 (V_{\alpha,\beta}\Phi)(\varphi_{1}, \varphi_{2})  \equiv   \sum_{\hat{\varphi}_{1}\leq\varphi_{1}}\sum_{\hat{\varphi}_{2}\leq\varphi_{2}}
\exp_{\alpha}(\hat{\varphi}_{1})\exp_{\beta}(\varphi_{1}-\hat{\varphi}_{1})\exp_
{-\overline{\beta}}(\hat{\varphi}_{2})\exp_{\overline{\alpha}}(\varphi_{2}-\hat{
\varphi}_{2})
 \cross\Phi(\hat{\varphi}_{1}+\hat{\varphi}_{2}, \varphi_{1}+\varphi_{2}-
\hat{\varphi}_{1}-\hat{\varphi}_{2})

for  \Phi\in \mathcal{M}\otimes \mathcal{M} and  \varphi_{1},  \varphi_{2}\in M . Let  A\equiv B(\mathcal{H}) be the set of all bounded opera‐
tors on  \mathcal{M} and  \mathfrak{S}(A) be the set of all normal states on A.  \mathcal{E}_{\alpha,\beta} :  A\otimes Aarrow A\otimes A

defined by
 \mathcal{E}_{\alpha,\beta}(C)\equiv V_{\alpha}^{*},{}_{\beta}CV_{\alpha,\beta} ,  \forall C\in A\otimes A

is the lifting in the sense of Accardi and Ohya [1] and the dual map  \mathcal{E}_{\alpha,\beta}^{*} of  \mathcal{E}_{\alpha,\beta}
given by

 \mathcal{E}_{\alpha,\beta}^{*}(\omega)(\bullet)\equiv\omega(\mathcal{E}
_{\alpha,\beta}(\bullet)) ,  \forall\omega\in \mathfrak{S}(A\otimes A)

is the CP channel from  \mathfrak{S}(A\otimes A) to  \mathfrak{S}(A\otimes A) . Using the exponetial vectors,
one can denote a coherent state  \theta^{f}i3by

 \theta^{f}(A)\equiv\langle  \exp_{f}, A  \exp_{f}\rangle  e^{-||f||^{2}} ,  \forall f\in L^{2}(G, \nu),  \forall A\in A .
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In particular, for the input coherent states  \eta_{0}\otimes\omega_{0}=\theta^{f}\otimes\theta^{g} , two output states
 \omega_{1}(\bullet)\equiv\eta_{0}\otimes\omega_{0}(\mathcal{E}_{\alpha,\beta}((
\bullet)\otimes I)) and  \eta_{1}(\bullet)\equiv\eta_{0}\otimes\omega_{0}(\mathcal{E}_{\alpha,\beta}
(I\otimes(\bullet))) are obtained

by
 \omega_{1}=\theta^{\alpha f+\beta g} ,  \eta_{1}=\dot{\theta}^{-\overline{\beta}f+\overline{\alpha}g} .

 \mathcal{E}_{\alpha,\beta}^{*} is called a generalized beam splitting on Fock space because it also hold the
same properties satisfied by the generated beam splitting  \Pi^{*}in Section 1.

Now we introduce a self‐adjoint unitary operator  \tilde{U} , which denotes a new
device instead of the Kerr medium, defined by

 \tilde{U}(\Phi)(\varphi_{1}, \varphi_{2})\equiv(-1)^{|\varphi_{1}||\varphi_{2}
|}\Phi(\varphi_{1}, \varphi_{2})

for  \Phi\in \mathcal{M}\otimes \mathcal{M} and  \varphi_{1},  \varphi_{2}\in G , where  |\varphi_{k}|\equiv\varphi_{k}(G)  (k=1,2) . For the input
state   \omega_{1}\otimes\kappa\equiv\theta^{f}\otimes\frac{1}{||\psi||^{2}}
\langle\psi, \bullet\psi\rangle , the output state  \omega_{2} of new device is

  \omega_{2}(A)\equiv\omega_{1}\otimes\kappa(\tilde{U}(A\otimes I)\tilde{U})=
\frac{1}{||\psi||^{2}}\int_{M}F(d\varphi)|\psi(\varphi)|^{2}\theta^{(-1)^{\}
\varphi 1^{2}f}}(A)
for any  A\in A,  \psi\in \mathcal{M}(\psi\neq 0) and  f\in L^{2}(G, \nu) . If  \kappa is given by the vacuum
state  \theta^{0} , then the output state  \omega_{2} is equals to  \omega_{1} and if  \kappa is given by one particle
state, that is,   \kappa=\frac{1}{||\psi||^{2}}\langle\psi, \bullet\psi\rangle with  \psi r_{M_{1}^{c}} (where  M_{1} is the set of one‐particle

states), then  \omega_{2} is obtained by  \theta^{-f} . Let  M_{o} (resp.  M_{e} ) be the set of  \varphi\in M
which satisfies that  |\varphi| is odd (resp. even) and  M be the union of  M_{o} and  M_{e} .
The output states  \omega_{2} of the new device is written by

 \omega_{2}(A)=\lambda_{1}\theta^{-f}(A)+\lambda_{2}\theta^{f}(A)  \forall A\in A ,

where  \lambda_{1} and  \lambda_{2} are given by

 \{   \lambda_{1}=\frac{1}{||\psi||^{2}}\int_{M_{o}}F(d\varphi)|\psi(\varphi)|^{2} ,

  \lambda_{2}=\frac{1}{||\psi||^{2}}\int_{M_{e}}F(d\varphi)|\psi(\varphi)|^{2}
Two output states  \omega_{3}(\bullet)\equiv\omega_{2}\otimes\eta_{2}(\mathcal{E}_{\alpha_{2},
\beta_{2}}((\bullet)\otimes I)) and  \eta_{3}(\bullet)\equiv\omega_{2}\otimes\eta_{2}(\mathcal{E}_{\alpha_{2},\beta_
{2}}(I\otimes(\bullet)))
of the total logical gate including two beam splittings  \mathcal{E}_{\alpha_{k},\beta_{k}}^{*} with  (|\alpha_{k}|^{2}+|\beta_{k}|^{2}=1)
 (k=1.2) and the new device instead of Kerr medium are obtained by

 \omega_{3}  =  \lambda_{1}\theta^{\alpha_{2}(-(\alpha_{1}f+\beta_{1}g))+\beta_{2}(-
\overline{\beta}_{1}f\overline{\alpha}_{1}g}+)_{+\lambda_{2}\theta^{\alpha_{2}
(\alpha_{1}f+\beta_{1}g)+\beta_{2}(_{-\overline{\beta}_{1}f+\overline{\alpha}
_{1}g})}} ,

 \eta_{3}  =  \lambda_{1}\theta^{-\beta_{2}(-(\alpha_{1}f+\beta_{19}))+\overline{\alpha}2(-
\overline{\beta}_{1}f)_{+\lambda_{2}\theta^{-\overline{\beta}_{2}(\alpha_{1}f+
\beta_{1}g)+\overline{\alpha}_{2}(-\overline{\beta}_{1}f+\overline{\alpha}_{19}}
}}+\overline{\alpha}_{19}) ,
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where  \omega_{2}=\lambda_{1}\theta^{-(\alpha_{1}f+\beta_{1}g)}+\lambda_{2}
\theta^{\alpha_{1}f+\beta_{1}g} and  \eta_{2}=\eta_{1}=\theta^{-\overline{\beta}_{1}f+\overline{\alpha}_{1}g} .

Based on the  a\acute{b}ove settings, we could show that new logical gate performs
the complete truth table. The furtherdevelopment of our study will be appear
in [11].
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