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1 Introduction

In this paper, we deal with fuzzy measures in the sence of Sugeno[14]. That is, a fuzzy
measure 4 is a nonnegative real valued set function defined on o—algebra X wifh the
properties (@) = 0 and A C B = pu(A) < u(B) for A,B € X. We consider the space
F M of fuzzy measures, that is, the linear space generated by the set of fuzzy measures.
The element of FM is a non monotonic fuzzy measure [8] of bounded variation. The
variation of non monotonic set functions is defined by Aumann and Shapley[l] in the
context of game theory. The total variation is a norm in F M. Tgy denotes the topology
of the variation norm.

The Choquet integral [3, 7] of a nonnegative measurable function f with respect to a

non monotonic fuzzy measure y is defined by

© [ sdu= [ uitalf(e) 2 a}yda

Fuzzy measure and Choquet integral are basic tools for multicriteria decision making,

image processing and recognition [4, 5].
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Using the Choquet integral, we introduce the topologies Ty and T+ in the space of
fuzzy measure F M. The concept of topology is equivalent to the concept of convergence.
The convergence of the net of fuzzy measures can be considered in several ways. We
discuss the relation and their difference among three types of convergence.

In section 2, we define the space FM of fuzzy measures and show the preliminary
propositions. We also define the variation,' two topologies Ty and Tp+.

In section 3, we consider the space F M and the relation of three convergence. We
show that the three convergence are different from each other in the general situation.

In section 4, we consider the space F M of monotone fuzzy measures and its relative
topology. Unlike the previous result, we have Ty = Tg+. But it remains that Ty # Tpy.

In section 5, we suppose that the universal set X is a finite set. We show that three
types of convergence are same in this situation. This means that three topologies coincide,
that is , T+ = Tx = Tav-

Iﬁ section 6, we define 0 — o fuzzy measure generated by 0 — a necessity measures.
We show that every fuzzy measure can be represented by the linear combination of 0 — &

fuzzy measures generated by 0 — a necessity fuzzy measures.

2 Space of ‘fuzzy measures

In this section, we show some preliminary definitions and propositions.

Definition 2.1. Let (X, X’) be a measurable space. A non monotonic fuzzy measure is a
real valued set function on X with p(0) = 0. We say that (X, X,u) is a non monotonic

fuzzy measure space when p is a non monotonic fuzzy measure.

Definition 2.2. Let (X, X, ) be a non monotonic fuzzy measure space.
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The positive variation p*(A) of u on the set A € X is given by

i (A) = sup{Y_ max{u(A:) - p(4i-1), 01}

where the sup is taken over all non decreasing sequence ) = Ay C Ay C --- C A, =

A A € X1 =1,2,-- - n, the negative variation = (A) of p on the set A € X s given by

po(A) = sup{z max{u(Ai1) — p(4:),0}}

where the sup is taken over all non decreasing sequence ) = Ay C Ay C --- C A, =

A A € X,i=1,2,---n and the total variation |u|(A) of u on the set A € X is given by

|ul(A) = u*(A) + p=(A).

We denote the variation |u|(X) by ||p||, and say that p is of bounded variation if

[l < oo

We define FM* := {ulp : X — R*,uis a fuzzy measure} (ap)(A) = a(u(A)),
(1 +0)(4) = () 4 W), (1~ V)(A) = p(4) ~ W(A) for v € FM* , a € R, and

FM ={u—v|u,v € FM*}. Then FMT is a positive cone, and FM is a linear space.

~Proposition 2.3. [1] Let u be a non monotonic fuzzy measure. Then p is of bounded

variation if and only if p € FM.

The variation || - || is a norm on FM. We say || - || BV-norm. Let (y;) be a net in

FM. If u; converges to p with respect to BV-norm, we write u; —2 p.

Definition 2.4. Let f be a nonnegative measurable function. We define the map Cy :

FM — R by Cs(p) = (C) [ fdu. We define Cy =Cy, for X € X.

We denote the set of bounded nonnegative measurable functions by B*.

It is obvious that C; is a linear map on FM for all f € B*.
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Definition 2.5. We shall say that the coarsest topology for which every C4 is continuous
for A € X is X - topology for FM, and that the coarsest topology for which every Cy is

continuous for f € B is Bt - topology for FM.

Let (u;) be a net in FM. If p; converges to p with respect to X- topology, we write

pi —% p . If yu; converges to u with respect to B*- topology, we write p; —B* .
Lemma 2.6. [6] Let (u:)ier be a net in FM.
(1) p; —* p if and only if p;(A) — p(A) for all Ac X.

(2) pi —B* u if and only if C¢(u;) — Cy(n) for all f € B*.

3 General theory

In this section, we consider the space F M and the relations of three type of convergence.

The next theorem follows from the definition and Lemma 2.6.
Theorem 3.1. Let (u;) be a net in FM.
(1) pi —BY u implies p; —2" p.
(2) —B* 1 implies p; —* p
The converse of (i) is not dlways true.

Example 1. Let X =[0,1] , )\ the Lebesgue measure on X, and X be the class of Borel
subsets of X.

We define the set function on X by

k
n? if MA =—
/"n(A)= ( ) n

0  if otherwise
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fork=1,2,3,--- ;nand Ae X .

Then we have

+
pn (A) = k k
. +1
kn? if i < A(A) o
and
n?  if A(A) > —
- k E+1
i@ ={ kn if = < MA) <2
n n

o
<
>~
—~~
by
N—r
I
(es)

fork=0,1,2,3,--- ,nand Ac X .

We have p, € FM. Let A € X . If N(A) = 0 then p,(A) = 0 for every natural
number n. If A\(A) > 0, there exists a natural nymber no such that A(A) > nio' It follows
from the definition of p, that n > ng imply p,(A) = 0. Therefore we have pn(A) — 0
asn —» oo for all A € X. Define u(A) = 0 for all A € X. We have p, —* p as

n — 0o. It is obvious that p € FM.

Let
n 1 1
—_ 1 — << =
fz)=4 ntl / (n+1)2 — n?
0 if z=0o0rz=1
forz € X andn = 1,2,3,--- . It is obvious that f € Bt. Leét A, denote A, :=

n 1 1
{z|f(z) > m} forn =1,2,3,---. It follows from A, = [0, — ] that A(A,) = —
and p,(Ay,) = n?. Suppose that p is a prime number, we have p,(An) =0 for a positive
number m such that m # p.

Then we have

if p 1s a prime number.
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Since p = 0, we have Cy(u) = 0. This fact shows that p, —* p as n — 0o but

fin —B" 4 as n — 0.

The converse of (ii) is also not always true.

Example 2. Let X = [0,1] , X be the class of Borel subsets of X and A, = (

S
+
—

Define the sequence of set functions pi, : X — [0,1] by

1 ifA=A4A,
pa(A) =

0 if otherwise
fork=1,2,3,--- ,nand A€ X .

It follows from Definition 2.2

1 ifA, CA
pa (A) =
0 if otherwise
and
1 fA.CAA#A
p (A) =

0 if otherwise
fork=0,1,2,3,--- ,nand A€ X .
Therefore we have p, € FM for alln € N.
Let f € B*. Suppose that there exists a > 0 and n € N such that A, = {z|f(z) > a}.
Let- m > n. Suppose that there exists b > 0 such that A,, = {z|f(z) > b}, then we have
{z|f(z) > a} C {z|f(z) > b} or {z|f(z) > b} C {z|f(z) > a}, and A, N A, = 0. This

is contradictory. Therefore we have

(©) [ fdun =0

for all m > n. This means p, —B+ 0. On the other hand, we have ||u,|| = 2 for all

n € N. That is, p /—BV 0.
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4 Space of monotone fuzzy measure

In this section, we consider the space of monotone fuzzy measure FM™* and three type
of its relative topology. Unlike the previous result, the convergence with respect to &

coincide with the convergence with respect to B*.

Theorem 4.1. [9] Let (;) be a net in FM™ and consider the relative topology to FM™.

Then p; —* w implies p; —B 4.

Even if we restrict the topology to FM™, the convergence with respect to BV is not

always coincide with the convergence with respecct to X' (therefore to BY).

Example 3. Let X = [0,1] , X be the class of Borel subsets of X and A, = [0, n=l],

Define the sequence of set functions p, : X — [0,1] by

1 if A subsetA
pn(A) =
0 if otherwise

It is obvious from the defition that u, € FM for all n € N. Define the fuzzy measure p

in X by

1 if[o,1)C A
L) = f10,1) C

0 if otherwise

Then we have p, —* u, since [0,1) = U A,. On the other hand, we have ||p, —p|| = 2
n=0

for alln € N, that is, p, /=% p.

5 Finite case

Suppose that p; —¥ p. If X is a finite set, there exists a real number M > 0 such

that 2X! < M. For every X € X and € > 0, there exists jo € J such that j > j, implies
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()= p(A)] < 5o Define n; = X 4z (15(4)~s(4)) — (15(B) ~(B)]. 1t s obvions
n; < e. It follows from Definition 2.2 that ||u; — u|| < n;. We have y; —BY 4. Therefore

three topologies coincide.

Theorem 5.1. Suppose that X is a finite set. Let (u;) be a net in FM and p € FM .

Then p; —* p implies p; —BY p.

Remark. n; in the above proof may be replaced by Banzhaf value B(y;) [2]. In fact, it

is obvious that n; —» 0 if and only if B(y; —p) — 0.

6 Extreme point of fuzzy measure space

First, we define a convex hull and an extreme point in a general vector space.

Definition 6.1. Let E be a vector space and AC E.

We define the convez hull ¢(A) by
c(A) =n{Y|A CY,Yis a convex set}.

We say that x € X is an extreme point of X if ¢ = Azq+ (1 — A)zg521,22 € X,0 <A <1

implies x, = x5 = x. We denote the set of extreme points of A by E(A).

It is obvious that FM® is a convex set. In fact we have Ay (X) + (1 — Mpa(X) = @

for M1, 2 € fMa,O S A S 1.
Definition 6.2. Let o > 0.

(1) We say that p € FM®* is 0 — a fuzzy measure if u(A) = 0 or u(A) = « for all

A€ B. We denote the set of 0 — o fuzzy measures by FMG. That is,

FMg = {”lﬂ € 'FM+’N :B— {O,Q}}

212
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(2) Let B € B. We say that Ng € FMY is 0 — a necessity measure if

a BCA

(3) Let B € B andC C B. 0—« fuzzy measure N¢ of C generated by 0— « fuzzy measure
is defined by
N¢ = sup Np
Bec
where -NB is a 0 — a necessity measure.

The next proposition follows from Definition 6.2

Proposition 6.3. Let B€ B ,C C B and a > 0.

(1) 0 — o fuzzy measure is 0 — a fuzzy measure generated by 0 — a necessity fuzzy

measures. That is, FMg = {Nc|C C B}.

(2) 0—a fuzzy measure is an extreme point of a— fuzzy measure. Conversely, an extreme

point of a— fuzzy measure is 0 — « fuzzy measure. That is, E(FM*) = FMg.
Applying Klein-Milman’s theorem [13], we have the next theorem.
Theorem 6.4. Let o > 0.
(1) FM* = cl(c(FMY)).
(2) If |B] < 00, FM* = ¢(FMQ).

Corollary 6.5. (Representation of fuzzy measures )
Suppose that |B| < oo. For every uy € FM® there exist ay,as, - am > 0 (a3 + az +

o+ a, =1) and C,Cy, -+ -Cpy C B such that p =3y " a;Ng,.



214

Remark In the case of @ = 1 a 0 — & fuzzy measure is sometimes called a logical fuzzy
measure. Radojevi¢ [11, 12] gives a logical interpretation to a discrete fuzzy measure.
In his theory, the relations between any fuzzy measure and fuzzy logical measures are
important. Radojevi¢’s proposition (Proposition 2 in [11]) is one of the special case of

Theorem 6.4.
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