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80. Introduction

This note is a survey of our recent preprints [6], [7]. In previous works [3],[4],
we investigated a noncommutative “de Moivre-Laplace theorem” and a noncom-
mutative “Brownian motion” based on the baby and adult monotone Fock spaces,
respectively. In these cases, we obtained the normalized arcsine law

p(IL‘) = Nﬁ (—\/§<.’L‘<\/2-)

as the central limit distribution. Also in [2] Lu discussed the essentially same struc-
ture as monotone Fock space under the name of chronological Fock space, indepen-
dently from the author. But we did not catch the complete characterization of
the independence structure which must have been hidden in our Fock space. The
purpose of this note is to explain this independence structure which we call the
monotonic independence and to give a monotonic analogue of some probabilistic
results obtained from the independence argument, which contains the followings:

monotonic central limit theorem, monotonic law of small numbers,
monotonic convolution for probability measures on the real line, and
monotonic Lévy-Hincin formula.

§1. Monotonic Independence

Let (A, ¢) be a C*-probability space consisting of a unital C*-algebra A and a
state ¢ over .A. Each element X € A is interpreted as a (bounded) random variable
on a C*-probability space (A, ¢).

28



Definition 1 (monotonic independence). [6] A family {X;}icr C A of random
variables on (A, $) with totally ordered index set I is said to be monotonically
independent w.r.t. a state ¢ if the following two conditions are satisfied.

(@) XiXPXi = ¢(XF)XiXi whenever i< j>k.
6) XDy XEXEXPXLXE - X

= G(XI™) - H(XE)P(XE)S(XD)P(X L) H(XE) - -+ p(XE)
whenever iy > - > i3> >i<ji <jo<- < Jn.

Here p’s and ¢’s are arbitrary natural numbers (> 0). The notation i < j > k is
understood as ¢ < j and j > k (there is no assumption on the order relation between
i and k). The notation iy, > - >4 >4 > 1 < j; < jp < -++ < jp is understood
aS ity > > i >0 >tand i < j; < Jp < --+ < Jn. Of course, the case of m =0
(resp. n = 0) in the condition (b) is understood in the natural way.

The above two conditions (a) and (b) can be viewed as the decomposition rules
for expectations ¢(Xj, - - - X;, X;,) of monomials X;_ --- X;,X;, in X’s, as explained
as follows.

Denote by (i, - - - i3i;) the expectation ¢(X;, - -- X;,X;,) for short. Then the ex-
pectation (i, - - - i2¢;) can be uniquely decomposed based on the following procedure.
As an example, take a configuration (i, - - -isi;) = (341224353233). At first, by the
repeated use of rule (a), we have

(341224353233 ) = (4)(4)(5)( 312233233 )
(4)(4) (5)(33) ( 3122233 ).

This process can be visualized as

%”W“W

We see that once use of rule (a) means to take a “top” off the “mountains.” After
the maximal use of rule (a), we get a factor ( 3122233 ) which has a form of “valley.”
But this final factor can be decomposed further by the use of rule (b). After all we
obtain the final decomposition:

(341224353233 ) = (4)(4)(5)(33)(3)(1)(222)(33).

Of course this procedure works well for general configurations (i, - - -i2¢;), and it
uniquely defines the natural decomposition of (X;_ --- X;, X;,).

Monotonically independent random variables naturally arise on the monotone
Fock space [6]. Also monotonically independent random variables with prescribed
probability distributions can be naturally constructed with the help of the monotone
product of C*-probability spaces [7].

§2. Central Limit Theorem and Law of Small Numbers

Now let us give a monotonic analogue of central limit theorem. Denote by X,
the indicator function of an interval I.
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Theorem 2 (monotonic central limit theorem). [6] Let (A,¢) be a C*-
probability space, and let {X, |n = 1,2,3,---} C A be self-adjoint, monotonically
independent and identically distributed random variables with mean 0 and variance
1. Then the probability distribution of

Xi+Xo+ -+ Xa
/n

converges in the weak* topology as n — oo to the normalized arcsine distribution p
which is given by the probability density function

1
p@) = X _ 5 5@ gt

Next let us give a monotonic analogue of law of small numbers. Denote by E;*
the nth branch of the product log function E~! (= the inverse ana.lytlc function of
an entire function F(z) = ze®.) See [6] for the details. We denote E~] by E~! for
short. IN* denotes the set of all nonzero natural numbers.

Theorem 3 (monotonic law of small numbers). [6] Let (A, ¢) be a C*-

probability space, and let {z™ |1 < i < n; n € N*} be a family of elements in
A, satisfying the following conditions:

(a) a:(ln),x -, 2™ are self-adjoint, monotonically independent and identically
dzstmbuted random variables for each fized n;
(b) There ezists a constant A > 0 such that Jim n ¢((m§") ) =X forallp € N*.

Then the probabilty distribution of the sum of x(ln) + xé") + -+ 4+ 2™ converges in
the weak* topology as n — 0o to a unique probability measure v. The measure v
is the sum 11 + v, of its absolutely continuous part vy and the atomic part vy. The
absolutely continuous part vy is given by the density function

1 1
P(T) = Xew(@)- - Imm,

where the support of p(x) s supp(

) The atomic part is vy = ¢ &, where &
18 the Dirac measure at the origin x

[a, b].
0. Here the constants a, b, ¢ are given by

1 1 1
— —1 — -1 —
o=t () 0= () o=

respectively.

§3. Monotonic Convolution

Let p be a probability measure on the real line R. Then the Cauchy transform
Gu(z) of p is defined by

Gu(z) = /+°° : du(z),  ze€C*.

-0 2 — T
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Here C* denotes the upper half plane of complex numbers. The reciprocal Cauchy
transform H,(z) of p is defined by

Hu(z) = u() ze€eC .

This H,(2) satisfies H, (C*) c CH.
The following theorem saids that the reciprocal Cauchy tra.nsform H,(z) plays
“monotonic probability” a role analogous to that played by the Fourier transform

n “classical probability” and also to that played by the Voiculescu R-transform in
“free probability” [9].

Theorem 4. [7] Let X1, X5, -+, X, € A be monotonically independent self-adjoint

random variables on a C*-probability space (A, ¢), in the natural order of {1,2,---,n}.

Then
HX1+X2+~-~+Xn(Z) = HXl(HXz(' t (HXn(z)) o ))

Here Hx(z) denotes the reciprocal Cauchy transform of the probability distri-
bution px of X under ¢.

This result motivates us to give the following definition.

Definition 5 (monotonic convolution). [7] For a pair of probability measures p,
v on R, the unique probability measure A satisfying Hy(z) = H,(H,(2)), z € C™,
is called the monotonic convolution of p and v, and denoted by A = u > v.

The unique existence of such measure ) is assured based on the theory of Pick-
Nevanlinna functions on the upper half plane C*. The monotonic convolution y > v
satisfies the following properties.

Properties of monotonic convolution.

Mbbpu=p>b=pn;

(2) (A b ) By = A (1B y);

(3) the map pu — p > v is affine;

(4) the map p— p > v (resp. v — p > v) is weak* continuous.

Here 6y denotes the point measure at the origin x = 0. Note that the monotonic
convolution is not commutative in general: p >v #v > p.

84. Monotonic Lévy-Hinéin formula

Now let us formulate, in the sense of “monotonic probability,” the following three
objects:

(A) infinitely divisible distribution ;
(B) continuous one-parameter convolution semigroup ;
(C) (certain) integral representation (= “Lévy measure”).

We wish to establish the equivalence beteween among three objects (A), (B) and (C).
This should be the content of “monotonic Lévy-Hin¢in formula.” The equivalence
between (B) and (C) will be established in Theorem 10 in the general setting. On
the other hand, the equivalence between (A) and (B) is established in Theorem 12,
but in the restricted class of compactly supported probability measures

Let us give the definitions of notions concerning the “infinite divisibility.”
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Definition 6. A probability measure y on R is said to be >-infinitely. divisible if,
for each n € N*, there exists some probability measure v on R such that

n

—— e
p=vDUp>-bu.

Definition 7. A one-parameter family {u}:>0 of probability measures on R is said
to be a weak™ continuous one-parameter I>-semigroup if the following conditions are
satisfied: (1) po= 8o ; (2) frsst = ts B> pe ; (3) the map t — p; is weak* continuous.

Definition 8. A one-parameter family {H;(2)}:>0 of reciprocal Cauchy transforms
of probability measures on R is said to be a continuous one-parameter semigroup of
reciprocal Cauchy transforms if the following conditions are satisfied: (1) Ho(z) = 2 ;
(2) Hﬁd”(z) = Hy(Hy(z)) ; (3) the map t — Hy(2) is continuous for each fixed
z€ C.

There is the natural bijective correspondence beteween the above two kinds
of continuous one-parameter semigroups {u:}:>0 and {H;(2)}s>0. Besides there is
the natural correspondence from the set of all weak* continuous one-parameter >-
semigroups {p:}s>0 to the set of all >-infinitely divisible distributions p given by
the specialization (t:=1) : {:}+>0 — 1. (In Theorem 12, we show a partial con-
verse p — {i}¢>0 for the class of >-infinitely divisible distributions with compact
supports.)

Let us give some examples of continuous one-parameter semigroups { H;(2) }s>0
and its associated D>-infinitely divisible distributions u = p;. Denote by p,. (resp.
ps) the absolutely continuous part (resp. the singular part) of 4 w.r.t. the Lebesgue
measure dz. Here E;! denotes an appropriate branch of E~! composed from Ej*
and E7{.

Ezample 9.
(a) Arcsine distribution (= monotonic Gaussian distribution) [3]:
1
Hy(2) = v22 =2, dp(x) = x(_\5y5) () ——=dz

2 -2

(b) Monotonic Poisson distribution [6]:

Hy(z) = —E; (" E(-2)),
1
B E(=2))

’ _ 1 _ 1 1
a=—Eq 1(—6—1;;), b= “E—}(—e—l;;), c== (A>0).

1
dpac() = X(ap)(T) - ;I dr, ps=cby,

(c) Cauchy distribution:

Hiz) = z+ibt,  dp(g) = ~—2

w2 4 b2

dz (b>0).

These examples reveal the following two features of “monotonic probability.”

e It is often that important probability distributions may have the reciprocal
form: m. (Of course‘this is an immediate effect Qf the reciprocgl
Cauchy transform.) It can be said that, in a sense, “monotonic probability” is
a “reciprocal probability.”
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o It is often that the reciprocal Ca.uchy transform H,(z) of a D>-infinitely divisi-
ble distribution x includes a pair consisting of some function f and its inverse
function f~!. In fact, this is a general phenomenon as shown in the following.

Theorem 10 (monotonic Lévy-Hiné¢in formula in terms of semigroups).
[7] Let {p:}i>0 be a one-parameter familiy of probability measures on R. Assume
that py # 6o for allt > 0. Then the following two conditions are equivalent.

(1) {pe}ezo0 is a weak™ continuous one-parameter B>-semigroup. '

(2) There ezists a pair (a,7y) (# (0,0)) of a real number o and a finite positive
measure vy on R such that the reciprocal Cauchy transform Hy(2) of p: is given
by

_ +
= Hy(2) += 'weC st / A(z) t,. (%)
where the function A(z) is defined by

A@) = at [ i), (4

If the above conditions hold, (c,7) and A(z) are unique.

Remark. Put F(2) = / z%, then the condition (*) can be rewritten as follows:

= Hy(z) <= uniquews.t. F(w) — F(2) = t. *)
Hence H:(z) has the representation

Hy(z) = F7Y(F(2) +1). (% % %)

Note that, for any weak* continuous one-parameter >-semigroup {u;}:>0 of
probability measures, it is hold that either i) u; # 8o for all ¢ > 0, or, i) u = &
for all ¢ > 0. The case ii) corresponds to (a,7y) = (0,0). The pair (a,) is called
the Lévy measure for short although it is not a measure but a pair of a number and
a measure. For each semigroup {H;(z)}+>0 in Example 9, let us give its generator
A(z) and the Lévy measure (a,<y) in the standard form (*x).

Example 11. .
(a) Arcsine distribution : A(z) = —2 (e, y) = (0, 6p)-
A A
(b) Monotonic Poisson distribution: A(z) = 1—/\_—2, (o) = (——5, 561>
(c) Cauchy distribution:

b/+°°1+:cz dx b dzx

A(z):lb=; o T—2z 1422’ =0, dy(z) = ol 4z

Now, let us establish the equivalence among the three objects (A), (B) and (C),
but in the restricted class of compactly supported probability measures. Denote by
P. the set of all probability meassures on R which are compactly supported. Then
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Theorem 12 (monotonic Lévy-Hiné&in formula for class P, ). [7] Let p be
a compactly supported probability measure on R. Assume that p # 6. Then the
following three conditions are eguivalent.

(1) p is >-infinitely divisible.
(2) There exists a weak* continuous one-parameter 1>-semigroup {{i}¢>o0 of prob-
ability measures on R such that py = p.

(8) There ezists a pair (a,p) (# (0,0)) of a real number a and a compactly sup-
ported finite positive measure p on R such that the Pick function

+oo ]
Az) = a+ [_ T —dp(a) (5.1)
generates H,(2) as
w = Hy(z) <= weCt st. /w;l% =1

If the above conditions hold, then {p:}i>0, (a, p) and A(z) are unique, and pis € P,
forallt > 0.

An example of compactly supported >-infinitely divisible distributions is given
by a compound monotonic Poisson distribution p. which is defined by its generator

A = [T ar(a),

r—z

where 7 is a compactly supported finite positive measure on R. This compound
monotonic Poisson distribution p. satisfies a generalization of monotonic law of
small numbers [7]. Note that the case 7 = A6; corresponds to the monotonic
Poisson distribution.

85. Conclusion

Finally, as a conclusion of this note, we summarize our results in the following
table. We see that several probabilistic concepts can be built based on our “mono-
tonic independence,” in an analogous way as in “classical probability” and also as
in “free probability.”

Classical Probability
(commutative prob.)

Free Probability
(D. Voiculescu)

Monotonic Probability
(N.M.)

commuting independence
tensor product

Fourier transform
convolution pu * v

Gaussian distribution

Poisson distribution

Lévy-Hin¢in formula

symmetric Fock space
Brwonian motion

free independence
free product
R-transform
free convolution p8 v
Wigner semi-circle dist.
Marcenko-Pastur dist.
free Lévy-Hinéin formula
full Fock space
free Brownian motion

monotonic independence
monotone product
reciprocal Cauchy transform
monotonic convolution p > v
arcsine distribution
monotonic Poisson distribution
monotonic Lévy-Hinéin formula
monotone Fock space
monotonic Brownian motion

Some aspects concerning noncommutative stochastic processes on the monotone

Fock space were treated in [1], [5]; [8].
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