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§0. Introduction

This note is a survey of our recent preprints [6], [7]. In previous works [3],[4] ,
we investigated a noncommutative “de Moivre‐Laplace theorem” and a noncom‐
mutative “Brownian motion” based on the baby and adult monotone Fock spaces,
respectively. In these cases, we obtained the normalized arcsine law

 p(x)= \frac{1}{\pi\sqrt{2-x^{2}}}  (-\sqrt{2}<X<\sqrt{2})

as the central limit distribution. Also in [2] Lu discussed the essentially same struc‐
ture as monotone Fock space under the name of chronological Fock space, indepen‐
dently ffom the author. But we did not catch the complete characterization of
the independence structure which must have been hidden in our Fock space.  \prime rhe

purpose of this note is to explain this independence structure which we call the
monotonic independence and to give a monotonic analogue of some probabilistic
results obtained from the independence argument, which contains the followings:

monotonic central limit theorem, monotonic law of small  numbers_{f}
monotonic convolution for probability measures on the real line, and
monotonic Lévy‐Hinčin formula.

§1. Monotonic Independence

Let  (A, \phi) be a  C^{*}‐probability space consisting of a unital  C^{*}‐algebra  A and a
state  \phi over  A . Each element  X\in A is interpreted as a (bounded) random variable
on a  C^{*}‐probability space  (A, \phi) .
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Definition 1 (monotonic independence). [6] A family  \{X_{i}\}_{i\in I}\subset A of random
variables on  (A, \phi) with totally ordered index set  I is said to be monotonically
independent w.r.t. a state  \phi if the following two conditions are satisfied.

 (a)  X_{i}X_{j}^{p}X_{k}=\phi(X_{j}^{p})X_{i}X_{k} whenever  i<j>k .

 (b)  \phi(X_{i_{m}}^{p_{m}}\cdots X_{i_{2}}^{p_{2}}X_{i_{1}}^{p_{1}}X_{i}^{p}
X_{j_{1}}^{q_{1}}X_{j_{2}}^{q_{2}}\cdots X_{j_{n}}^{q_{n}})
 =\phi(X_{i_{m}}^{p_{m}})\cdots\phi(X_{i_{2}}^{p_{2}})\phi(X_{i_{1}}^{p_{1}})
\phi(X_{i}^{p})\phi(X_{j_{1}}^{q_{1}})\phi(X_{j_{2}}^{q_{2}})\cdots\phi(X_{j_{n}
}^{q_{n}})

whenever  i_{m}>\cdots>i_{2}>i_{1}>i<j_{1}<j_{2}<\cdots<j_{n} .

Here  p' s and  q' s are arbitrary natural numbers  (\geq 0) . The notation  i<j>k is
understood as  i<j and  j>k (there is no assumption on the order relation between
 i and  k). The notation  i_{m}>\cdots>i_{2}>i_{1}>i<j_{1}<j_{2}<\cdots<j_{n} is understood
as  i_{m}>\cdots>i_{2}>i_{1}>i and  i<j_{1}<j_{2}<\cdots<j_{n} . Of course, the case of  m=0

(resp.  n=0 ) in the condition (b) is understood in the natural way.
The above two conditions (a) and (b) can be viewed as the decomposition rules

for expectations  \phi(X_{i_{r}}\cdots X_{i_{2}}X_{i_{1}}) of monomials  X_{i_{r}}\cdots X_{i_{2}}X_{i_{1}} in  X' s , as explained
as follows.

Denote by  \langle i_{r}\cdots i_{2}i_{1}\rangle the expectation  \phi(X_{i_{r}}\cdots X_{i_{2}}X_{i_{1}}) for short. Then the ex‐
pectation  \langle i_{r}\cdots i_{2}i_{1}\rangle can be uniquely decomposed based on the following procedure.
As an example, take a configuration  (i_{r}\cdots i_{2}i_{1})=(341224353233) . At first, by the
repeated use of rule (a), we have

 \langle 341224353233\rangle  =  \langle 4\rangle\langle 4\rangle\langle 5\rangle\langle 312233233\rangle
 =  \langle 4\rangle\langle 4\rangle\langle 5\rangle\langle 33\rangle\langle 
3122233\rangle .

This process can be visualized as

 arrow  arrow

We see that once use of rule (a) means to take a “top” off the “mountains.” After
the maximal use of rule (a), we get a factor  \langle 3122233\rangle which has a form of “valley.”
But this final factor can be decomposed further by the use of rule (b). After all we
obtain the final decomposition:

 \langle 341224353233\rangle  =  \langle 4\rangle\langle 4\rangle\langle 5\rangle\langle 33\rangle\langle 
3\rangle\langle 1\rangle\langle 222\rangle\langle 33\rangle .

Of course this procedure works well for general configurations  (i_{r}\cdots i_{2}i_{1}) , and it
uniquely defines the natural decomposition of  \langle X_{i_{r}}\cdots X_{i_{2}}X_{i_{1}}\rangle .

Monotonically independent random variables naturally arise on the monotone
Fock space [6]. Also monotonically independent random variables with prescribed
probability distributions can be naturally constructed with the help of the monotone
product of  C^{*}‐probability spaces [7].

§2. Central Limit Theorem and Law of Small Numbers

Now let us give a monotonic analogue of central limit theorem. Denote by  \chi_{I}
the indicator function of an interval  I .
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Theorem 2 (monotonic central limit theorem). [ 6J Let  (A, \phi) be a  C^{*}-

probability space, and let  \{X_{n}|n=1,2,3, \cdots\}\subset A be  self- adjoint_{f} monotonically
independent and identically distributed random variables with mean  0 and variance
1. Then the probability  distr\dot{v}bution of

  \frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{n}}
converges in the weak* topology as   narrow\infty to the normalized arcsine distribution  \mu

which is given by the probability density function

 p(x)  =x_{(-\sqrt{2},\sqrt{2})}(x) \frac{1}{\pi\sqrt{2-x^{2}}} .

Next let us give amonotonic analogue of law of small numbers. Denote by  E_{n}^{-1}
the  nth branch of the product  \log function  E^{-1}(=the inverse analytic function of
an entire function  E(z)=ze^{z}.) See [6] for the details. We denote  E_{-1}^{-1} by  E^{-1} for
short.  N^{*} denotes the set of all nonzero natural numbers.

Theorem 3 (monotonic law of small numbers). [6] Let  (A, \phi) be a  C^{*}-

probability space, and let  \{x_{i}^{(n)}|1\leq i\leq n;n\in N^{*}\} be a family of elemenis in
 A , satisfying the following conditions:

 (a)x_{1}^{(n)},  x_{2}^{(n)},  \cdots ,  x_{n}^{(n)} are  self- adjoint_{f} monotonically independent and identically
distributed random va  7\dot{\eta}ables for each fixed   n,\cdot

 (b) There exists a constant  \lambda>0 such that   \lim_{narrow\infty}n\phi((x_{i}^{(n)})^{p})=\lambda for all  p\in N^{*} .

Then the probabilty  dist7\dot{v}bution of the sum of  x_{1}^{(n)}+x_{2}^{(n)}+\cdots+x_{n}^{(n)} converges in
the weak* topology as   narrow\infty to a unique probability measure  \iota/ . The measure  \iota/

is the sum  \nu_{1}+\nu_{2} of its absolutely continuous  pa7t\nu_{1} and the atomic part  |y_{2} . The
absolutely continuous part  \nu_{1} is given by the density function

 p(x)  = \chi_{(a,b)}(x)\cdot\frac{1}{\pi}{\rm Im}\frac{1}{E^{-1}(e^{\lambda}E(-x))} ,

where the support of  p(x) is  supp(p)=[a, b] . The atomic part is  \nu_{2}=c\delta_{0} , where  \delta_{0}
is the Dirac measure at the origin  x=0 . Here the constants a,  b,  c are given by

 a=-E_{0}^{-1}(- \frac{1}{e^{1+\lambda}}) ,  b=-E_{-1}^{-1}(- \frac{1}{e^{1+\lambda}}) ,  c= \frac{1}{e^{\lambda}} ,

respectively.

§3. Monotonic Convolution

Let  \mu be a probability measure on the real line R. Then the Cauchy transform
 G_{\mu}(z) of  \mu is defined by

 G_{\mu}(z)= \int_{-\infty}^{+\infty}\frac{1}{z-x}d\mu(x) ,  z\in C^{+} .
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Here  C^{+} denotes the upper half plane of complex numbers. The reciprocal Cauchy
transform  H_{\mu}(z) of  \mu is defined by

 H_{\mu}(z)= \frac{1}{G_{\mu}(z)} ,  z\in C^{+} .

This  H_{\mu}(z) satisfies  H_{\mu}(C^{+})\subset C^{+} .

The following theorem saids that the reciprocal Cauchy transform  H_{\mu}(z) plays
in “monotonic probability” a role analogous to that played by the Fourier transform
in “classical probability” and also to that played by the Voiculescu  R‐transform in
“free probability” [9].

Theorem 4. [7] Let  X_{1},  X_{2},  \cdots,  X_{n}\in A be monotonically independent self‐adjoint
random variables on a  C^{*} ‐probability space  (A, \phi) , in the natural order of  \{1, 2, \cdots, n\} .
Then

.  H_{X_{1}+X_{2}+\cdots+X_{n}}(z)=H_{X_{1}}(H_{X_{2}}(\cdots(H_{X_{n}}(z))\cdots)
) .

Here  H_{X}(z) denotes the reciprocal Cauchy transform of the probability distri‐
bution  \mu_{X} of  X under  \phi .

This result motivates us to give the following definition.

Definition 5 (monotonic convolution). [7] For a pair of probability measures  \mu ,
 \nu on  R , the unique probability measure  \lambda satis\Psi ingH_{\lambda}(z)=H_{\mu}(H_{\nu}(z)),  z\in C^{+} ,
is called the monotonic convolution of  \mu and  \nu , and denoted by  \lambda=\mu\triangleright\nu .

The unique existence of such measure  \lambda is assured based on the theory of Pick‐
Nevanlinna functions on the upper half plane  C^{+} . The monotonic convolution  \mu\triangleright U
satisfies the following properties.

Properties of monotonic convolution.

(1)  \delta_{0}\triangleright\mu=\mu\triangleright\delta_{0}=\mu ;
(2)  (\lambda\triangleright\mu)\triangleright \mathcal{U}=
\lambda\triangleright(\mu\triangleright\nu) ;
(3) the map  \mu\mapsto\mu\triangleright\iota/is affine;
(4) the map  \mu\mapsto\mu\triangleright\ddagger J (resp.  \nu\mapsto\mu\triangleright\nu ) is weak* continuous.

Here  \delta_{0} denotes the point measure at the origin  x=0 . Note that the monotonic
convolution is not commutative in general:  \mu\triangleright\nu\neq\nu\triangleright\mu .

§4. Monotonic Lévy‐Hinčin formula

Now let us formulate, in the sense of “monotonic probability,” the following three
objects:

(A) infinitely divisible distribution;
(B) continuous one‐parameter convolution semigroup;
(C) (certain) integral representation (  = “Lévy measure”).

We wish to establish the equivalence beteween among three objects (A), (B) and (C).
This should be the content of “monotonic Lévy‐Hinčin formula.” The equivalence
between (B) and (C) will be established in Theorem 10 in the general setting. On
the other hand, the equivalence between (A) and (B) is established in Theorem 12,
but in the restricted class of compactly supported probability measures

Let us give the definitions of notions concerning the “infinite divisibility.”
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Definition 6. A probability measure  \mu on  R is said to be  \triangleright ‐infinitely divisible if,
for each  n\in N^{*} , there exists some probability measure  \nu on  R such that

  \mu=\frac{n}{\nu\triangleright\nu\triangleright\cdots\triangleright\nu,
\backslash } .

Definition 7. A one‐parameter family  \{\mu_{t}\}_{t\geq 0} of probability measures on  R is said
to be a weak* continuous one‐parameter  \triangleright ‐semigroup if the following conditions are
satisfied: (1)  \mu_{0}=\delta_{0} ; (2)  \mu_{s+t}=\mu_{s}\triangleright\mu_{t} ; (3) the map  t\mapsto\mu_{t} is weak* continuous.

Definition 8. A one‐parameter family  \{H_{t}(z)\}_{t\geq 0} of reciprocal Cauchy transforms
of probability measures on  R is said to be a continuous one‐parameter semigroup of
reciprocal Cauchy tmnsforms if the following conditions are satisfied: (1)  H_{0}(z)=z ;
(2)  H_{s+t}(z)=H_{s}(H_{t}(z)) ; (3) the map  t\mapsto H_{t}(z) is continuous for each fixed
 z\in C^{+} .

There is the natural bijective correspondence beteween the above two kinds
of continuous one‐parameter semigroups  \{\mu_{t}\}_{t\geq 0} and  \{H_{t}(z)\}_{t\geq 0} . Besides there is
the natural correspondence from the set of all weak* continuous one‐parameter  \triangleright-

semigroups  \{\mu_{t}\}_{t\geq 0} to the set of all  \triangleright‐infinitely divisible distributions  \mu given by
the specialization  (t:=1) :  \{\mu_{t}\}_{t>0}\mapsto\mu_{1} . (In Theorem 12, we show a partial con‐
verse  \mu\mapsto\{\mu_{t}\}_{t\geq 0} for the class   0\overline{f}\triangleright‐infinitely divisible distributions with compact
supports.)

Let us give some examples of continuous one‐parameter semigroups  \{H_{t}(z)\}_{t\geq 0}
and its associated  \triangleright‐infinitely divisible distributions  \mu=\mu_{1} . Denote by  \mu_{ac} (resp.
 \mu_{s}) the absolutely continuous part (resp. the singular part) of  \mu w.r.t. the Lebesgue
measure  dx . Here  E_{*}^{-1} denotes an appropriate branch of  E^{-1} composed from  E_{0}^{-1}
and  E_{-1}^{-1} .

Example 9.
(a) Aroeine distribution (  =monotonic Gaussian distribution) [3]:

 H_{t}(z)=\sqrt{z^{2}-2t} ,  d \mu(x)=\chi_{(-\sqrt{2},\sqrt{2})}(x)\cdot\frac{1}{\pi\sqrt{2-x^{2}}}dx .

(b) Monotonic Poisson distribution [6]:

 H_{t}(z)=-E_{*}^{-1}(e^{\lambda t}E(-z)) ,

 d \mu_{ac}(x)=\chi_{(a,b)}(x)\cdot\frac{1}{\pi}{\rm Im}\frac{1}{E^{-1}
(e^{\lambda}E(-x))}dx ,  \mu_{s}=c\delta_{0} ,

 a=-E_{0}^{-1}(- \frac{1}{e^{1+\lambda}}) ,  b=-E_{-1}^{-1}(- \frac{1}{e^{1+\lambda}}) ,  c= \frac{1}{e^{\lambda}} ,  (\lambda>0) .

(c) Cauchy distribution:

 H_{t}(z)=z+ibt ,  d \mu(x)=\frac{1}{\pi}\frac{b}{x^{2}+b^{2}}dx  (b>0) .

These examples reveal the following two features of “monotonic probability.”

 \bullet It is often that important probability distributions may have the reciprocal
form:  \propto_{someunction}1 . (Of course this is an immediate effect of the reciprocal
Cauchy transform.) It can be said that, in a sense, “monotonic probability” is
a “reciprocal probability.”
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 \bullet It is often that the reciprocal Cauchy transform  H_{\mu}(z) of a  \triangleright‐infinitely divisi‐
ble distribution  \mu includes a pair consisting of some function  f and its inverse
function  f^{-1} . In fact, this is a general phenomenon as shown in the following.

Theorem 10 (monotonic Lévy‐Hinčin formula in terms of semigroups).
[7] Let  \{\mu_{t}\}_{t>0} be  a one‐parameter familiy of probability measures on R. Assume
that  \mu_{t}\neq\delta_{0}\overline{f}or all  t>0 . Then the following two conditions are equivalent.

(1)  \{\mu_{t}\}_{t\geq 0} is a weak* continuous one‐parameter  \triangleright ‐semigroup.
(2) There exists a pair  (\alpha, \gamma)(\neq(0,0)) of a real number  \alpha and a finite positive

measure  \gamma on  R such that the reciprocal Cauchy transform  H_{t}(z) of  \mu_{t} is given
 by

 w=H_{t}(z)  \Leftrightarrow  \exists 1w\in C^{+}s.t .   \int_{z}^{w}\frac{dz}{A(z)}=t ,  (\star)

where the function  A(z) is defined by

 A(z)= \alpha+\int_{-\infty}^{+\infty}\frac{1+xz}{x-z}d\gamma(x) .  (\star\star)

If the above conditions hold,  (\alpha, \gamma) and  A(z) are unique.

Remark. Put  F(z)= \int_{i}^{z}\frac{dz}{A(z)} , then the condition  (\star) can be rewritten as follows:

 w=H_{t}(z)  \Leftrightarrow unique  ws.t .  F(w)-F(z)=t .  (\star')

Hence  H_{t}(z) has the representation

 H_{t}(z)=F^{-1}(F(z)+t) .  (\star\star\star)

Note that, for any weak* continuous one‐parameter  \triangleright‐semigroup  \{\mu_{t}\}_{t\geq 0} of
probability measures, it is hold that either i)  \mu_{t}\neq\delta_{0} for all  t>0 , or, ii)  \mu_{t}=\delta_{0}
for all  t\geq 0 . The case ii) corresponds to  (\alpha, \gamma)=(0,0) . The pair  (\alpha, \gamma) is called
the Lévy measure for short although it is not a measure but a pair of a number and
a measure. For each semigroup  \{H_{t}(z)\}_{t\geq 0} in Example 9, let us give its generator
 A(z) and the Lévy measure  (\alpha, \gamma) in the standard form  (\star\star) .

Example 11.

(a) Arcsine distribution:  A(z)=- \frac{1}{z} ,  (\alpha, \gamma)=(0, \delta_{0}) .

(b) Monotonic Poisson distribution:  A(z)= \frac{\lambda z}{1-z},  ( \alpha, \gamma)=(-\frac{\lambda}{2},   \frac{\lambda}{2}\delta_{1}) .

(c) Cauchy distribution:

 A(z)=ib= \frac{b}{\pi}\int_{-\infty}^{+\infty}\frac{1+xz}{x-z}\frac{dx}{1+x^{2}
} ,  \alpha=0 ,  d \gamma(x)=\frac{b}{\pi}\frac{dx}{1+x^{2}} .

Now, let us establish the equivalence among the three objects (A), (B) and (C),
but in the restricted class of compactly supported probability measures. Denote by
 P_{c} the set of all probability meassures on  R which are compactly supported. Then
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Theorem 12 (monotonic Lévy‐Hinčin formula for class  P_{c} ). [7] Let  \mu be
a compactly supported probability measure on R. Assume that  \mu\neq\delta_{0} . Then the
following three conditions are equivalent.

(1)  \mu   is\triangleright ‐infinitely divisible.
(2) There exists a weak* continuous one‐parameter  \triangleright ‐semigroup  \{\mu_{t}\}_{t\geq 0} of prob‐

ability measures on  R such that  \mu_{1}=\mu .
(3) There exists a pair  (a, \rho)(\neq(0,0)) of a real number  a and a compactly   \sup-

ported finite positive measure  \rho on  R such that the Pick function

 A(z)=a+ \int_{-\infty}^{+\infty}\frac{1}{x-z}d\rho(x) (5.1)

generates  H_{\mu}(z) as

 w=H_{\mu}(z)  \Leftrightarrow  \exists 1w\in C^{+}s.t .   \int_{z}^{w}\frac{dz}{A(z)}=1 .

If the above condiiions  hold_{f} then  \{\mu_{t}\}_{t\geq 0},  (a, \rho) and  A(z) are unique, and  \mu_{t}\in P_{c}
for all  t\geq 0 .

An example of compactly supported  \triangleright‐infinitely divisible distributions is given
by a compound monotonic Poisson  dist7\dot{?}bution\mu_{\tau} which is defined by its generator

 A(z)= \int_{-\infty}^{+\infty}\frac{xz}{x-z}d\tau(x) ,

where  \tau is a compactly supported finite positive measure on R. This compound
monotonic Poisson distribution  \mu_{\tau} satisfies a generalization of monotonic law of
small numbers [7]. Note that the case  \tau=\lambda\delta_{1} corresponds to the monotonic
Poisson distribution.

§5. Conclusion

Finally, as a conclusion of this note, we summarize our results in the following
table. We see that several probabilistic concepts can be built based on our “mono‐
tonic independence,” in an analogous way as in “classical probability” and also as
in “ffee probability.

Some aspects concerning noncommutative stochastic processes on the monotone
Fock space were treated in [1], [5], [8].
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