
PROOF CHECKING USING PROLOG

MAKOTO TSUKADA

ABSTRACT. A proof system for propositional and predicate logic is
discussed. As a meta‐language specifying the system, a logic program‐
ming language, namely, Prolog is adopted. All of proof rules, axioms,
definitions, theorems and also proofs can be described as predicates of
Prolog.

1. INTRODUCTION

Proof is a way of showing that something is true. It is a process of reasoning
to reach a desired fact by using general rules and some facts already shown. In
natural deduction we have a collection of proof rules. The most useful proof rules
may be so‐called modus ponens which infers the formula Q from two premises one
of which is a formulas P and the other is a formula Parrow Q . In this paper we
introdue a notion of the tablet on which we construct a calulus for reasoning about
propositions by natural deduction. The tablet is a stack‐like memory on which
formulas are piled. The operations push and pop act at the top of the memory same
as the usual stack, however not only the top of the items but also each item in the
tablet can be refered at any time. All proof rules, axioms, definitions, theorems and
their proofs are discribed as operations accessing the tablet. For example, modus
ponens is considered as an operation which places the formula Q on the tablet if the
formula P and also Parrow Q already exist on it.

We adopt a logic programming language, namely, Prolog, as a meta‐language
system to describe mathematics. A program of Prolog is a series of the Horm
clauses. A Horn clause is in general of the form

 P:- Q_{1}, Q_{2}, \ldots, Qn .

This is called a rule and means that P succeeds when all of Q_{1}, Q_{2}, \ldots and Q_{n}
succeed. In the case of n=0 we denote it by `\zeta P. ” instead of “ P :‐.”, and call it a
fact. The following is an example of mathematical description using Prolog.

constant (socrates).

variable (x).

formula (X is_{-}a_{-}man) :—term (X).

formula (X is_{-}a_{-}morta1) :—term (X).

2000 Mathematics Subject Classification. 03B35,68T15 .
Key words and phrases. proof theory, theorem proving, proof checker, Prolog.

「計算機による解析学における論理計算」 として講演した内容の—部である

数理解析研究所講究録
第1186巻 2001年 78-83

78

axioml :‐then forall (x,xis_{-a_{-^{m}}}an imp xiS_{-a_{-^{mort1)}}}a .
axiom2 :‐ then socrates is_{-}a-man .

theoreml :‐ then socrates is_{-}a-morta1 .

proofl :‐

forall(x,xis_{-a_{-^{m}}}an imp xis_{-}a_{-}morta1) by axioml,
socrates is_{-^{a_{-man}}} imp socrates is_{-}a_{-^{m}}orta1

by sp (xis_{-a_{-^{m}}}an imp xis_{-}a_{-^{m}}orta1,X , socrates) ,
socrates is_{-}a_{-m}an by axiom2,
socrates i_{S_{-}a_{-}}morta1

by mp (socrates is_{-^{a_{-man}}} , socrates i_{S_{-}a_{-^{mo}}}rta1).

We need a lot of built‐in predicates, which make proofl be a valid proof of theoreml.

2. SYNTAX ANALYSIS OF FORMULAS

We have first to develope a language in which each sentence is argued to be
true or false. Such a sentense is called a formula. The BNF (Backus‐Nauer Form) is
often used when the language is of context free. In predicate logic the collection of
closed formulas (formulas in which all variables are dominated) is context sensitive,
because every variable in a formula has its own scope. In this case we can not use
the BNF.

Let FORMULA be the set of P' s such that formula (P) succeeds under‐ the
following \dot{f}acts and rules.

constant (socrates).

term (X) : ‐ constant (X).

formula (X is_{-}a_{-}man) :‐term(X).
 f ormula (X iS_{-^{a}-^{mort}}a1) :-term (X).
formula (not P) :‐formula (P).

formula (P and Q) :‐formula (P) , formula (Q).
formula (p or Q) :‐formula(P) , formula(Q).
formula (p imp Q) :‐formula (P) , formula (Q).

Then

FORMULA = {socrates is_{-^{a}-^{m}}an , socrates i_{S_{-}a_{-}mo}rta1 ,
not socrates is_{-}a_{-^{man}} , not socrates i_{S_{-}a}-morta1 ,

socrates i_{S_{-}a_{-}}man and socrates is_{-}a_{-^{man}} , . . .}

In order to treat equalities, the first order predicate logic and set theory, we must
further add some other following clouses.

variable (x).

variable (y).
variable (z).
constant ([]) .

formula (X=Y) :‐term (X) , term (Y).
formula (X in Y) :‐term(X) , term(Y).

79

formula(x subseteq Y) :‐term(X) , term (Y) .
formula (forall(x,P)):-

variable (X) , substitute (P,X=[] , Q) , formula(Q).
formula (forSome(x,p)):-

variable (X) , substitute (P,X=[] , Q) , formula(Q).
term (setof(X,p)):-

variable (X) , substitute (P,X=[] , Q) , formula(Q).

 [] is a dummy constant. substitute (P,X=[] , Q) succeeds whenever Q is unified
with the formula obtained by replacing each occurrences of term X or free occurrences
of variable X in P with [] . For instance, we like to denote \forall x(x=x A \exists y(x=y\vee x\in
 \{x|X=y\})) by

forall(x,X^{=}X and forsome(y,x=y or x in setof (x,x=y))),

which is a formula because

 []=[] and forsome (y, []=y or [] in setof (x,x=y))

is a formula without free variable occurrence, namely, a closed formula.

3. THE PREDICATE ` if/1 ’ AND ` then/1 ’

In our system the prefixed predicates if/1 and then/1 play central roles. if is
defined as follows.

if P :‐formula(P) , tablet (P).

if P :‐tablet (suppose (p)).

then P succeeds whenever either formula P or suppoese (P) is in the tablet.

then P :‐formula (P) , asserta (tablet(P)) .

then P succeeds whenever P is a formula and has a side effect by which P is pushed
onto the tablet. Using the predicate if/1 and then/1 above we can express a proof
rule such that

 \frac{P_{1}P_{2}\cdots P_{n}}{Q}
as follows.

if P_{1} , if P_{2}, \cdots , if P_{n} , then Q .

Especially the proof rule of modus ponens \frac{PParrow Q}{Q}MP is denoted by

mp(P,Q) :‐ if P , if P imp Q , then Q.

A proof rule without if‐part is called a axiom or a scheme of axioms.
In order to treat the logic with equalities we need a scheme of axioms such that

eql (X) :‐term(X) , then X eq X.

and also a proof rule such that

80

eq2 (P,x=Y, Q) :‐if P , if X=Y , substitute (P,x=Y, Q) , then Q.

The followings are proof rules necessary for predicate logic.

sp (P,X=Y) : ‐ if forall (X. P) , term(Y) , substitute (P,X=Y, Q) ,
then Q.

gen (P,X=Y) :‐if P , term (X) , variable (Y), . substitute (P,X=Y,Q) ,
then forsome (Y,Q) .

For example, if

forall (x,xis_{-}a_{-^{man}} imp xi_{S_{-^{am}}}-orta1)

can be found in the tablet,

 sp (xis_{-a_{-^{m}}}an imp xis_{-}a_{-mo}rta1,X^{=_{Soc}}rateS)

succeeds and pushes

socrates is_{-}a_{-^{man}} imp socrates i_{S_{-}a_{-}}morta1

onto the tablet. On the other hand, if it is in the tablet,

 sp (soCratesis_{-}a_{-^{man}} imp socrates i_{S_{-^{a_{-}m}}}orta1, SocrateS^{=}x)

succeeds and pushes

forsome (x,xis_{-}a_{-^{man}} imp xi_{S_{-^{am}}}-orta1)

onto the tablet.

4. s_{EMANT}ICs OF PROPOSITIONAL LOGIC

Semantics of propositional logic is of truth values. We consider a formula P to
be true, whenever the predicate if P succeeds.

is‐true(P) :— if P.

Conversely if P is true, then P can be piled on the tablet. Therefore we have the
following proof rule.

truth‐value (P) : ‐ is‐true (P) , then P.

Moreover the system have the following built‐in facts and rules. These are of the
truth tables.

formula (true).

formula (false).

is‐true (true).

is‐false (false).

is‐true (P) :‐is‐false (P).

is‐false(P) :‐ is‐true(P)

is‐true (p imp Q) :‐is‐true (P) , is‐true (Q).
is‐false (P imp Q) :‐is‐true (P) , is‐false (Q).
is‐true (P imp Q) :‐is‐false (P) , is‐true (Q).
is‐true (P imp Q) :‐is‐false (P) , is‐false (Q).

81

We also have the truth tables for the logical conjunctions and,or and eqv .
We can place some phrases on the tablet, which themselves are not formulas.

begin‐suppose (P) :‐formula(P) , asserta(tablet (suppose (p))).

The predicate begin‐suppose (P) succeeds and the phrase suppose (P) is pushed
on the tablet whenever P is a formula. The prefixed predicate begin_{-}suppoSe/1
opens a suppose block on the tablet and this block must be closed by the predicate
 end_{-\sup po}se/0 . In this block, we can treat P as a true formula. Out of the block,
we refer the formula Q in the block as a true formula P imp Q.

begin‐forall (X) :‐variable (X) , asserta (atblet (forall (X))).

The predicate begin‐forall (X) succeeds and the phrase forall (X) is pushed
on the tablet whenever X is a variable. The prefixed predicale begin_{-}foral1/1
opens a forall block on the tablet and this block must be closed by the predicate
 end_{-}foral1/0 . In this block, we can treat X as a constant. Out of the block, we
refer the formula Q in the block as a true formula forall (X, Q).

We also have the other kind of block called a forsome block. If the top of
the tablet is a formula forsome (X, P), then such a block canbe opened using the
prefixed predicate begin-forsome/1 and imediately pushed P on the tablet. This
block must be closed by the predicate end_{-}f_{0}rSome/0 . In this block, we can treat
X as a constant and P is a true formula. Out of the block, we refer the formula Q in
the tablet as a true formula in itself only if X does not occur in Q as a free variable.

3. p_{ROOF}S OF THEOREMS

Let us prove theoreml under axioml and axiom2 as follows.

axioml :‐then forall (x,x is_{-}a−man imp xis_{-}a_{-^{m}}orta1).
axiom2 :‐ then socrates is_{-}a-man .

theoreml :‐ then socrates is_{-^{a}-^{mor}}ta1 .

Because we consider proving theoreml as coding a program which places the formula
socrates is_{-}a_{-}morta1 on the tablet, the following is a proof of theoreml.

proofl :‐
axioml,

sp (X is_{-}a−man imp xis_{-}a_{-^{m}}orta1,X , socrates) ,
axiom2,

mp (socrates is_{-}a-man , socrates is_{-}a_{-^{m}}orta1).

After proofl succeeds, the tablet becomes as follows.

tablet (socrates is_{-}a_{-^{m}}orta1).

tablet (socrates is_{-}a_{-}man).

tablet (socrates is_{-}a_{-^{man}} imp socrates is_{-^{a}-or}mta1).
tablet (forall (x,x is_{-}a−man imp xiS_{-}a_{-^{mor}}ta1)).

In order to make a proof look like usual proofs which we write down on a notebook
or a black board, we prepare an infixed predicate by/2 . P by A succeeds whenever
A succeeds and also the top of the tablet is P. Indeed, P by A is definec as follows.

82

 P by A :-A , top (P).
top (P) :‐tablet (P) , ! , X=Y .

Using the predicate by/2 , we can write a proof of theoreml as follows.

proofl :‐
forall(x,X is_{-}a−man imp xis_{-}a_{-}morta1) by axioml,
socrates is_{-}a−man imp socrates is_{-^{a}-^{mor}}ta1

by sp (x is_{-}a−man imp xiS_{-}a_{-^{mor}}ta1,x , socrates) ,
socrates is_{-}a−man by axiom2,
socrates is_{-^{a}-^{mor}}ta1

by mp (socrates is_{-}a-man , socrates is_{-}a_{-}morta1).

REFERENCES

1. M. Huth and M. Ryan, Logic Computer Science: Modelling and reasoning about systems, Cam‐
bridge, 2000.

2. Y. Nakamura, A Language System for Description of Mathematics ‐THEAX‐ (in Japanese),
Department of Information Engineering, Shinshu University, 1985.

DEPARTMENT OF INFORMATION SCIENCES, TOHO UNIVERSITY, FUNABASHI, CHIBA 274‐
8510, JAPAN..

 E‐mail address: tsu.kada@is.Sci.t_{oh-}ou.ac.j_{P}

83

