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1. Introduction

In our previous papers ([4], [5]) we estimated correlation dimensions of quasi-
periodic orbits according to algebraic properties, rational (badly) approximable prop-
erties, of the irrational frequencies. We introduced a class of irrational numbers, quasi
Roth numbers, which contains the class of Roth numbers. These irrational numbers
are classified according to badness levels of approximable properties by rational num-
bers. On the contrary, Liouville numbers are well known as the irrational numbers
which have extremely good approximable properties by rational numbers. In [7] we
introduced a new class of irrational numbers which contains the class of Liouville
numbers and we called them a-order Liouville numbers or quasi Liouville numbers,
specifying goodness levels of rational approximations by the order values. In this pa-
per we consider a class of irrational numbers, which have weaker goodness levels of
rational approximations than the a-order Liouville numbers, and call them a-order
weak Liouville numbers.

In [4] we estimated the correlation dimensions of discrete quasi-periodic orbits
from below, using the badness levels of rational approximations for the irrational
frequencies which are a-order quasi Roth numbers. In this paper first we introduce
definitions of recurrent or periodically recurrent dimensions and we give the rela-
tions between correlation dimensions and recurrent dimensions. Then we estimate
lower and upper dimensions of quasi-periodic orbits of a nonlinear discrete dynami-
cal system by using the goodness levels of rational approximations for the irrational

* frequencies which are a-order Liouville or a-order weak Liouville numbers.

Our plan of this paper is.as follows: In section 2 we introduce definitions of
recurrent dimensions and give inequality relations with correlation dimensions. In
section 3 we estimate these dimensions, from below and upper, of quasi-periodic
orbits with frequencies given by quasi Roth or weak Liouville numbers.

2. Recurrent dimension

Let T' be a nonlinear operator on a Banach space X. For an element z € X we
consider a discrete dynamical system given by

z, =T"z, n € No:=NU{0}
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and its orbit is denoted by
Y, ={T"z: n €Ny}

For a small € > 0, define upper and lower first e-recurrent times by

M, = sup min{m : T™*"z € V,(T"z), m € N},
n€ENpg
M, = {Enl\i; min{m : T"*"z € V,(T"z), m € N},

respectively, where V,(z) = {y € X : ||y — z|| < €}. Then upper and lower recurrent
dimensions are defined as follows:

D.(Z;) = limsup log M.

es0  —loge’
D.(5,) = liminf 8
=0 —loge

fM.=M

M, and the limit exits as ¢ — 0, we denote D,(Z,) = D,(Z,) = D, (%,;).
The recurrent properties are essential for almost periodic dynamical systems.
Next we define periodically recurrent dimensions of almost periodic orbits. Let the
operator T' be invertible and consider the almost periodic orbit £, = {T™z : m € Z}:

For each ¢ > 0 there exists a number I, > 0 such that for every m € Z there
exists an integer p € [m,m + [.] N Z with the property

|T¢+m g — T z| <e  forall n € Z.

(2.1)

Here the point u is called an e-almost period and I, is called an inclusion length for
e-almost period.

By using the inclusion length we can define periodically recurrent dimensions as
follows:

D,(Z,) = limsup log .

e—0 —loge’
~ {
D,(%,) = liminf ~28%_
=0 —loge

If the limit exists as ¢ — 0, we put Dp(iz) =D,(%,) = D,(%,)
From the definitions it is obvious that

Dy(22) > Do(5s),
since [, > M..



Correlation dimensions are most popular and studied in various dynamical sys-
tems or in fractal geometry. Let S = {z1,z9,...,Zn,...} be an infinite sequence of
elements in X and, for a small number € > 0, define

1
n?

N(e) = lim Z (& = llzi — =;ll)

where H(-) is a Heaviside function:

H(a):{l 'ifa20

0 ifa<.

The upper and lower correlation dimension of S, D.(S), D.(S), are defined as follows:

D.(S) = limsup M’
el0 loge

D.(5) = im inf 228 2V(E)
el0 log e

If D, = D, we say that S has the correlation dimension D,(S) = D, = D..

Theorem 1. Let X be a Banach space and consider a nonlinear operator T on X
and its orbits X, = {T™xz : n € No} for some z € X. Then

D.(%2) > D(%.). (2:2)

Proof. From the definition, for every § > 0, there exists a constant €9 > 0 such

that, if 0 < € < &y,
log M,

D, <
= —loge

+ 4.

It follows that
et < M.

For a large integer n € N, let 1 <I{m <n. f0<m-I< e~ B+ we have
7™z — T'e|| = |T™'T'e — T'z|| > ¢,
and also, if 0 <1 —m < e+ we have

HTI:L _ me” — ||Tlf-nzTnlw _ Tm.fE” Z c.
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Let M,(e) be a number of elements 7™z, 1 < m < n in the &-neighborhood of
Tz, 1 <1< n;

M,(e)=#{m e N:T"z € V,(T'z), 1 <m <n}.

Then we have
M,(e/2) < nelr=*
and it follows that
1 & € m 1 _ _
= 2 HG = T'e = T"al) < —n-neB ™0 =70,

2
ne,

m=1
Thus we obtain
log N(= log e2--¢
D. = timinf 2BV S o nploBe= T
e—0 1og 2 e—0 log %

for every § > 0, which yields (2.2). 'O

On the other hand, we can estimate the upper bound of the correlation dimensions
by using the periodically recurrent dimension by using the similar argument to the
proof of Theorem 1.

Theorem 2. Let T™x,m € Z, be almost periodic and denote
S,={T"z: meZ.

Then we have 3 3
Dy(2;) > D(X,). (2.3)

3. Dimensions of quasi-periodic orbits

Let S(t), t > 0, be a semigroup of continous (generally nonlinear) operators on
a Banach space X. For each z € X, assume that S(¢t + 1)z = S(¢)z, ¢t > 0 and
consider the following Holder conditions:

(G1) There exists a constants §; : 0 < &; < 1 and a monotone increasing function
k; : RY — R*, which satisfies

1Sz = S(s)all < ka(llzDlt = s, ts 20,1t —s| < eo



for a small constant g5 > 0.

(G2) There exists a constant d; : 0 < d; < 1 and a monotone increasing function
ky : RY — R*, which satisfies

IStz — S(s)zll 2 ka(lll)lt — s, t,5 20, ]t — 5] < %

For an irrational number 7: 0 < 7 < 1, define a quasi-periodic dynamical system
by
T"z = S(tn)z, n € Ny,

then our purpose is to estimate the recurrent dimension under the following algebraic
conditions on the frequency 7.

(i) Constant type; there exists a constant co > 0 such that
Co
72

; (3.1)

r
-1
q
for every positive integers r, q.
(ii) Roth number type; for every € > 0, there exists a constant ¢, > 0 which satisfies

r Ce
> (3.2)

for every positive integers r, g.
(iil) ap-order quasi Roth number type; there exist a constant oy > 0 such that for
every a > og there exists a constant ¢, > 0 which satisfies

Ca

r
|T — El Z q2+°‘ | (33)

for every positive integers r, q.

These above conditions are classified by the rational approximable properties of
the irrational number 7: ' '

Consider the continued fraction of the number 7 = [a;a;- - a, ---|. and take the
rational approximation as follows. Let mg = 1,n9 = 0,m_; = 0,n_; = 1 and define
the pair of sequences of natural numbers

m; = a;m;_1 + m;_g,

n; = aNi_1 +Nig, 1 2>1, (3.5)

then the elementary number theory gives the Diophantine approximation

1 i 1 1 |
<|T—n— < <— (3.6)

mi(miy1 + m;) m; MMy M
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where the sequence {n;/m;} is the best approximation in the sense that
n; r
T ——| <|r - 7’

holds for every rational r/l: [ < m;
An irrational number 7, which has extremely good approximable property by
rational numbers, is called a Liouville number if
1

lT_E|< mz’

V.

Here we introduce a class of irrational numbers which contains Liouville numbers as
follows. We state that an irrational number 7 is an a;-order Liouville number, or a
quasi Liouville number with its order a; if

(iv) there exist constants ¢,a; > 0 such that

IT— |< 2+a, Vi. (3.7)

m;

Furthermore, considering some subsequece of the Diophantine approximation, we
define a;-order weak Liouville numbers as follows:
(v) There exists a subsequence {my,} C {m;}: which satisfies

|T _ nkj | c
: mkj m]2€+a1

for some constant ¢ > 0.

For the case of the constant type (i), it is well known (cf. [8]) that the uniform
boundedness of the sequence {a;} is equivalent to the property (1.1). For the quasi
Roth numbers and the weak Liouville numbers we can show the equivalent or suffi-
cient conditions to the rationally approximable properties of these numbers by using
the growth rate of some subsequences’ {m;c }.

(R1) There exists a subsequence {mkj} Which'satisﬁes
Mg, < [me‘ﬁ, V. ’ (3.8)
‘er- some constants 3, K > 0: We can obtain the following two lemmas.

Lemma 1. If Hypothesis (R1) is satisfied for an irrational number 7, then 7 is a
quast Roth number with its order

a=pB+3). (3.9)



On the other hand, in [5] we have already proved the following Lemma.

Lemma 2.([5]) If7 is a quasi Roth number with its order oy, then for every 8 > ay,
there exists Kg > 0 which satisfies

m;1 < KgmitP, Vi (3.10)

For the a-order Liouville numbers we have given the equivalent condition in [5]:
(L1) There exist constants a;, L > 0:

mjp1 > Lmit) vy (3.11)

Lemma 3.([5]) 7 is a quasi Liouville number with its order oy if and only if T
satisfies the condition (L1).

Obviously, (L1) is equivalent to the following condition on the partial quotients
in the continued fraction expansion of .

(L2) There exist constants ay, L' > 0:
ajy1 > L'mj*, Vj. (3.12)

In [5] we have given a sufficient condition for a quasi Roth number usmg the
partial quotients of the continued fraction expansion.

Lemma 4.([5]) Let {a;} be the partial quotients in the continued fraction expansion
of 7. Assume that, for a given constant ¢ > 0, there exists a constant C, > 0, which
satisfies

aj+1a§ < Ce(@j-1aj-3---a1)%, V7.
Then we have .
q2+e ’

r—) >

Vg,r € N

where ¢, = 1/(16C.).

For a a-order Liouville number we can show the following lemma.
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Lemma 5. If the partial quotients in the continued fraction expansion of 7 satisfies
ajy1 2 L0a§‘3+17 vy

for some 8 > 0 and Lo > 2°%!, then 7 is a quasi Liouville number with its order 3.
For the weak Liouville numbers we can show the equivalent condition:

(WL1) There exist constants oy, L > 0:

mi; 41 > It ™, 5. (3.13)

Lemma 6. 7 is a weak Liouville numbers with its order o if and only if T satisfies
the condition (WL1).

Obviously, (WL1) is equivalent to the following condition on the partial quotients
in the continued fraction expansion of 7.

(WL2) There exist constants ay, L' > 0:
akj+1 Z L'm,oc‘;, V] (314)

For a sufficient condition for a quasi-Roth number, instead of Lemma 4, we can
show the following lemma. '

Lemma 7. Let {a;} be the partial quotienﬁs in the continued fraction expansion of
7. Assume that there exists a subsequence {a,}, which satisfies that, for a given
constant € > 0, there exists a constant C, > 0 such that

(akj+1+l)(akj +1)2(akj—1+1)2 e (a‘kj—1+2+1)2(akj—l+1+1)2 < CE(akj—la’kj—l“l cear)s, Vi

Then we have

r Ce
— >
EES

Tte? Vl,TEN

On the other hand, for a weak Liouville number, we can show the following
lemma.

Lemma 8. Assume that the partial quotients {a;} in the continued fraction expan-
sion of 7 has a subsequence {ay;}, which satisfies

Qhjyy 2 (akj+1—1 + 1)ﬁ(ak1+1—2 + l)ﬁ T (akﬁ-l + 1)5(6”%’ + 1)ﬁakj (3.15)

¥



for some 8 > 0, then 7 is a weak Liouville number with its order 3.
Example 1. For some positive numbers k, M > 1, let
a; ~ Mﬁj,

that is, there exist constants d; > dy > 0 :

A MF > a; > dM”. (3.16)

Assume that iy
Mem > 2 (3.17)

dy

then 7 is a quasi Liouville number with its order §:

< logd, +K*log M
~ log2d, + klog M

Example 2. Let {k;} be a sequence of integers which is increasing and goes to
infinity such that :

ki —k;i_y < Cx’ (3.19)
for some C > 0 and « > 1. For constants M, M’ > 1, to simplify the argument, let
a, =M",  a <M, I¢{k:jeN} (3.20)

Then the irrational number, which has the partial quotients above, is a weak Liouville
number with its order 3, which satisfies

k—1
B < — i a3 (3.21)
1+ lfg(M ) + log]\?

The number, which satisfies (3.19) and (3.20), is also a quasi Roth number with
its order « such that

log(M' +1)

> (k —
a>(k—1)(2Ck log M

+2).

In fact, for every ¢ > 0, which saisfies

A log(M' + 1)

20 k2
e—1° log M K+ 2x,

(3.18)
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there exists a constant C, such that

CME=e 5 (M 4 1) MR g2

> (M 4 1) M 22k =k=1) (g 4 132,
Thus we have
Co MWW TR T2 tme > (MY 4 1)(M! 4 1) =R~ D (¥ 412,

which implies the condition in Lemma 7.

Since the correlation dimensions are estimated by the recurrent dimensions, here
we give upper bounds and lower bounds of the recurrent dimension of the quasi-
periodic orbits

Y, ={S(mn)z:n €N}, ze€X

when the frequency 7 is (iii) a quasi Roth number and (v) a weak Liouville number,
respectively.

Theorem 3.  Under the assumption (G2), assume that there exists a constant
K5 > 0 such that

inf ky(||S(mn)z|)) > K

n€Ng

and assume that the frequency T is a quasi Roth number with its order ay. Then the
recurrent dimension of the quasi-periodic orbit ¥, satisfies

D(%2) 2 ——

Z 50t a0) (3.22)

Proof. Put
o(m) = S(tm)z, m € Ny,

then, since we can find an integer n”:

|mT —n'| < !
2 bl
it follows from (iii), (G2) and Hypothesis that

lp(m +n) =@l = [IS(r(m +n))z — S(rn)z|
[15(r(m + n))z — S(7n + n')z]|
ka(||S(rn)z||)lrm — n'|

Z -A2( :;_ )527 VC“ZO!(),

Y




for all m € N and for all n € Ny. For every € > 0, there exists m € N such that

Ca

- 2 - Co 2
Kl )" <= < Bl sy

ml+a

and as € = 0, m — +o00. Thus we can obtain

D = liminfi 28

=0 —loge
logm

> liminf
=0 —loge

> logm
m
= me 32(1 + ) log(m + 1) — log Kycf2

1
52(1 + a)

foralla > ay. O

Theorem 4. Under the assumption (G1), assume that the frequency T is a weak
Liouville number with its order o;. Then the recurrent dimension of the quasi-
periodic orbit 3, satisfies

1
D (%

D, (%;) < ATETNE (3.23)

Proof. Put
_ k1(JIS(rno)l|)e

& = (14a1)

&1
my,

for some positive integer ng and = € X. It follows from Hypothesis that we have
¢

011+1 °
my;

[me, 7 —ny,| < (3.24)

By the above estimate and (G1) we have

|S(T(mk, + no)x — S(Tne)z||

|S(7 (M, + no)z — S(Tno + ny,)z||
k(1S (rmoal s, 7 = i [
kr(IS(mno)a|)

g (1+e) T
J

i

(2, + mo) — p(no)

IN

IN
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Thus we can obtain

D = lim inf 08Me

= g0—00<e<eg — log £

log M.,

< lim
j—oo —loge;

log my,

< I
795 8,(1+ ) log s, — log by ([S(rmo)e])”

1
51+ ay)
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