MODULI SPACE OF THE POLYNOMIALS
WITH DEGREE N

KYOKO NISHIZAWA
Graduate School of Science, Josai University
E-mail: kiyoko@math.josai.ac.jp

Keywords and phrases: complex dynamical systems – topological conjugate
– fixed points – multipliers coordinates – moduli space of the polynomials –
algebraic curves – the group of automorphisms – holomorphic index formula.

1 Introduction

The subject of this paper is a new coordinate system, so-called multiplier coordinates, introduced into the moduli space, \mathcal{M}_n, of the polynomial maps $\text{Poly}_n(\mathbb{C})$ from the Riemann sphere, $\hat{\mathbb{C}}$, to itself, with degree n.

In study of its geometry and topology from a viewpoint of complex dynamical systems, we make use of this system in order to express singular part, and dynamical loci as algebraic curves or surfaces. And to exhibit the moduli space with a higher degree under this system deserves particular attention: for example, a problem of characterization of exceptional part, $\mathcal{E}_n(= \mathbb{C}^{n-1} \setminus \mathcal{M}_n)$. This problem is our main subject.

The initiator of the use of multiplier coordinates is J. Milnor ([Mil93]), to the case of the quadratic rational maps.

First, we investigate the moduli space \mathcal{M}_n consisting of all holomorphic (affine) conjugacy classes of $\text{Poly}_n(\mathbb{C})$. A polynomial map p of degree n is monic and centered if it has the form $p(z) = z^n + c_{n-2}z^{n-2} + \cdots + c_1z + c_0$. Every polynomial map from $\hat{\mathbb{C}}$ to itself is conjugate under an affine change of variable to a monic centered one, and this is uniquely determined up to conjugacy under the action of the group $G(n-1)$ of $(n-1)$-st roots of unity. Hence the affine space $\mathcal{P}_1(n)$ of all monic centered polynomials of degree n with coordinate $(c_0, c_1, \cdots, c_{n-2})$ is regarded as an $(n-1)$-sheeted covering space of \mathcal{M}_n. Thus we can use $\mathcal{P}_1(n)$ as a coordinate space
for the moduli space M_n, though it remains the ambiguity up to the group $G(n-1)$. This coordinate space has the advantages of being easy to be treated.

However, it would be also worthwhile to introduce another coordinate system having any merit different from $P_1(n)$'s. In fact, Milnor successfully introduced coordinates in the moduli space of the space of all quadratic rational maps using the elementary symmetric functions of the multipliers at the fixed points of a map ([Mil93]). In the case of $\text{Poly}_n(\mathbb{C})$, we try to explore an analogy to this in section 2.

2 Polynomials of degree n

2.1 Moduli space of polynomial maps

Let $\hat{\mathcal{C}}$ be the Riemann sphere, and $\text{Poly}_n(\mathbb{C})$ be the space of all polynomial maps of degree n from $\hat{\mathcal{C}}$ to itself: $p(z) = a_nz^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ $(a_n \neq 0)$. The group $\mathcal{A}(\mathbb{C})$ of all affine transformations acts on $\text{Poly}_n(\mathbb{C})$ by conjugation:

$$g \circ p \circ g^{-1} \in \text{Poly}_n(\mathbb{C}) \quad \text{for} \quad g \in \mathcal{A}(\mathbb{C}), \ p \in \text{Poly}_n(\mathbb{C}).$$

Two maps $p_1, p_2 \in \text{Poly}_n(\mathbb{C})$ are **holomorphically conjugate** if and only if there exists $g \in \mathcal{A}(\mathbb{C})$ with $g \circ p_1 \circ g^{-1} = p_2$. Under the conjugacy of the action of $\mathcal{A}(\mathbb{C})$, it can be assumed that any map in $\text{Poly}_n(\mathbb{C})$ is “monic” and “centered”, i.e.,

$$p(z) = z^n + c_{n-2}z^{n-2} + c_{n-3}z^{n-3} \cdots + c_0.$$

This p is determined up to the action of the group $G(n-1)$ of $(n-1)$-st roots of unity, where each $\eta \in G(n-1)$ acts on $p \in \text{Poly}_n(\mathbb{C})$ by the transformation $p(z) \mapsto p(\eta z)/\eta$. For example, in the case of $n = 4$ the following three monic and centered polynomials belong to the same conjugacy class:

$$z^4 + az^2 + bz + c$$
$$z^4 + a\omega z^2 + bz + c\omega^2$$
$$z^4 + a\omega^2 z^2 + bz + c\omega$$

where ω is a third root of unity.

The quotient space of $\text{Poly}_n(\mathbb{C})$ under this action will be denoted by M_n, and called the **moduli space** of holomorphic conjugacy classes $\langle p \rangle$ of polynomial maps p of degree n. Let $P_1(n)$ be the affine space of all monic centered polynomials of degree n with coordinate $(c_0, c_1, \cdots, c_{n-2})$. Then we have an $(n-1)$-to-one canonical projection Φ from $P_1(n)$ onto M_n. Thus we can use $P_1(n)$ as coordinate space for M_n though there remains the ambiguity up to the group $G(n-1)$.

2.2 Multiplier coordinates

Now we intend to explore another coordinate space for \mathbb{M}_n. For each $p(z) \in \mathrm{Poly}_n(\mathbb{C})$, let $z_1, \ldots, z_n, z_{n+1}(=\infty)$ be the fixed points of p and μ_i the multipliers of $z_i; \mu_i = p'(z_i) \ (1 \leq i \leq n)$, and $\mu_{n+1} = 0$. Consider the elementary symmetric functions of the n multipliers,

\[
\sigma_{n,1} = \mu_1 + \cdots + \mu_n, \\
\sigma_{n,2} = \mu_1\mu_2 + \cdots + \mu_{n-1}\mu_n = \sum_{i=1}^{n-1} \mu_i \sum_{j>i}^{n} \mu_j, \\
\vdots \\
\sigma_{n,n} = \mu_1\mu_2\cdots\mu_n, \\
\sigma_{n,n+1} = 0.
\]

Note that these are well defined on the moduli space \mathbb{M}_n, since μ_i's are invariant by affine conjugacy.

2.2.1 The holomorphic index fixed point formula

For an isolated fixed point $f(x_0) = x_0, \ x_0 \neq \infty$ we define the holomorphic index of f at x_0 to be the residue

\[
\iota(f, x_0) = \frac{1}{2\pi i} \oint \frac{1}{z - f(z)} dz.
\]

For the point at infinity, we define the residue of f at ∞ to be equal to the residue of $\varphi' \circ f \circ \phi$ at origin, where $\phi(z) = \frac{1}{z}$. The Fatou index theorem (see [?]) is as follows: For any rational map $f : \mathbb{C} \rightarrow \mathbb{C}$ with $f(z)$ not identically equal to z, we have the relation $\sum_{f(z) = z} \iota(f, z) = 1$. This theorem can be applied to these μ_i's ; $\sum_{i=1}^{n} \frac{1}{1-\mu_i} + \frac{1}{1-0} = 1$, provided $\mu_i \neq 1(1 < i < n)$. Arranging this equation for the form of elementary symmetric functions, we have

\[
\gamma_0 + \gamma_1\sigma_{n,1} + \gamma_2\sigma_{n,2} + \cdots + \gamma_{n-1}\sigma_{n,n-1} = 0
\]

where

\[
\gamma_k = (-1)^k n \binom{n-1}{k} / \binom{n}{k} = (-1)^k(n-k).
\]

Note that $\mu_i = 1 \ (1 \leq i \leq n)$ is allowable here. Then we have the following Linear Relation :

Theorem 1 Among $\sigma_{n,i}$'s, there is a linear relation

\[
\sum_{k=0}^{n-1} (-1)^k(n-k)\sigma_{n,k} = 0,
\]

where we put $\sigma_{n,0} = 1$.
\bullet For the cubic case \((n=3)\), we have \(3 - 2\sigma_{3,1} + \sigma_{3,2} = 0\)

\bullet For the quartic case \((n=4)\), we have \(4 - 3\sigma_{4,1} + 2\sigma_{4,2} - \sigma_{4,3} = 0\)

In view of Theorem, we have the natural map \(\Psi\) from \(\mathbb{M}_n\) to \(\mathbb{C}^{n-1}\) corresponding to \(\Psi(p) = (\sigma_{n,1}, \sigma_{n,2}, \cdots, \sigma_{n,n-2}, \sigma_{n,n})\).

Let \(\Sigma(n)\) be the image \(\Psi(M_1^n)(\subset \mathbb{C}^{n-1})\).

2.2.2 Characterization of exceptional set

To investigate whether this map \(\Psi\) is surjective or not is our main subject: a problem of characterization of the part of \(\mathbb{C}^{n-1} \setminus \Sigma(n)\).

We call this set exceptional set and denote it by \(\mathcal{E}_n = \mathbb{C}^{n-1} \setminus \Sigma(n)\).

As for the cases of general \(n\), we expect analogous results.

We have a following result:

Theorem 2 (M. FUJIMURA)

If a polynomial \(m(z)\) has \(n\) roots \(\mu_i \neq 1\) satisfying \(\sum_i \frac{1}{b_i} = 0 b_i = 1 - \mu_i\), and for any proper subset \(S\) of roots, \(\sum_{s \in S} \frac{1}{b_s} \neq 0\), then there exists a polynomial \(p(z) \in \mathcal{P}_1(n)\) such that

\[p(z_i) = z_i, \quad (i = 1, \cdots, n) \text{ with } \mu_i = p'(z_i). \]

Examples

\bullet For a set \(\{\mu, 2 - \mu, \lambda, 2 - \lambda\}\), \(\mu \neq \lambda, \mu \neq 1\) a corresponding polynomial exits.

\bullet For a set \(\{\mu, 2 - \mu, \mu, 2 - \mu\}\) \(\mu \neq 1\), no corresponding polynomial exits.

\bullet For a set \(\{\mu, \mu, \mu, \lambda, \lambda\}\), \(\mu \neq 1, 5 - 2\mu - 3\lambda = 0\) a corresponding polynomial exits.

\bullet For a set \(\{\mu, \mu, 2 - \mu, \frac{3 - \mu}{2}\}\), \(\mu \neq 1\), no corresponding polynomial exits.
2.3 Polynomials of degree 3

2.3.1 Moduli space $\mathcal{M}_3(\mathbb{C})$

Here we abbreviate $\sigma_{3,i}$ as σ_i. These σ_i $i = 1, 2, 3$ are defined on $\mathcal{M}_3(\mathbb{C})$, with the linear relation: $3 - 2\sigma_1 + \sigma_2 = 0$

For the cubic case, we can show that the excetional set is empty: namely for any point $(s_1, s_3) \in \mathbb{C}^2$, we can regard it as a point of $(\sigma_1, \sigma_3) \in \Sigma(3)$ satisfying the above relation $3 - 2\sigma_1 + \sigma_2 = 0$. Therefore, $(s_1, s_3) \in \mathbb{C}^2$ uniquely determines $\langle p \rangle \in \mathcal{M}_3(\mathbb{C})$.

In fact, a map in $\text{Poly}_3(\mathbb{C})$ is conjugate to a normal form $z^3 + az + b$, whose parameter (a, b^2) is unique to the class $\langle p \rangle$. (a, b^2) relates to (σ_1, σ_3) as follows:

Translation Formula for Cubic Polynomials

$$
\begin{align*}
\sigma_1 &= -3a + 6, \\
\sigma_3 &= 27b^2 + a(2a - 3)^2,
\end{align*}
$$

(2)

Inverse Formula for Cubic Polynomials

$$
\begin{align*}
a &= (6 - \sigma_1)/3, \\
b^2 &= (4\sigma_1^3 - 36\sigma_1 + 81\sigma_1 + 27\sigma_3 - 54)/729.
\end{align*}
$$

(3)

Proposition 1 (σ_1, σ_3) is a coordinate system of $\mathcal{M}_3(\mathbb{C})$.

2.4 Polynomials of degree 4

2.4.1 Moduli space $\mathcal{M}_4(\mathbb{C})$

In the case of $\text{Poly}_4(\mathbb{C})$, we can go on further analysis by using a symbolic and algebraic computation systems. Here we write $\sigma_{4,i} = \sigma_i$ ($i = 1, \cdots, 4$) for brevity. Set $\text{Poly}_4(\mathbb{C}) \ni p(z) = a_4z^4 + a_3z^3 + a_2z^2 + a_1z + a_0$, $\mathcal{P}_1(4) \ni p(z) = z^4 + c_2z^2 + c_1z + c_0$, $\mathcal{M}_4 \ni \langle p \rangle$

$$
p = z^4 + c_2z^2 + c_1z + c_0
$$

$$
\sim z^4 + \omega c_2z^2 + c_1z + \omega^2 c_0
$$

$$
\sim z^4 + \omega^2 c_2z^2 + c_1z + \omega c_0
$$

$(\omega^3 = 1)$

There are natural projections:

$$
\Phi : \mathcal{P}_1(4) \longrightarrow \mathcal{M}_4 \quad \text{three-to-one map}
$$

$$
\Psi : \mathcal{M}_4 \longrightarrow \Sigma(4) \subset \mathbb{C}^{n-1} \quad \text{two-to-one in general.}
$$
2.4.2 Exceptional set

For a polynomial $p(z) = a_4z^4 + a_3z^3 + a_2z^2 + a_1z + a_0$, we chose $z^4 + c_2z^2 + c_1z + c_0 \in \mathbb{C}$ and set $\Sigma(4) \ni (\sigma_1, \sigma_2, \sigma_4)$. For the quartic case, a linear relation is as follows: $4 - 3\sigma_1 + 2\sigma_2 - \sigma_3 = 0$. We have a following transformation formula:

$$\begin{align*}
\sigma_1 &= -8c_1 + 12 \\
\sigma_2 &= 4c_2^3 - 16c_0c_2 + 18c_1^2 - 60c_1 + 48 \\
\sigma_4 &= 16c_0c_2^3 + (-4c_1^2 + 8c_1)c_2^3 - 128c_0c_2^2c_1 - (144c_0c_2^3 - 288c_0c_1 + 128c_0)c_2 - 27c_1^4 + 108c_1^3 - 144c_1^2 + 64c_1 + 256c_0^3
\end{align*}$$

We have the following result:

Theorem 3 Exception set is a punctured curve:

$$\mathcal{E}_4 = \{(4, s, \frac{s^2}{4} - 2s + 4), \ s \neq 6, \ s \in \mathbb{C}\}$$

2.4.3 On \mathcal{E}_4

To a point

$$(\sigma_1, \sigma_2, \sigma_4) = (4, s, \frac{s^2}{4} - 2s + 4),$$

we set a polynomial

$$m(z) = z^4 - \sigma_1z^3 + \sigma_2z^2 - \sigma_3z + \sigma_4$$

where

$$4 - 3\sigma_1 + 2\sigma_2 - \sigma_3 = 0.$$

Let roots of this polynomial $m(z)$ be μ, μ, $2 - \mu$, $2 - \mu$, and $(\sigma_1, \sigma_2, \sigma_4) = (4, -2(\mu^2 - 2\mu - 2), \mu^4 - 4\mu^3 + 4\mu)$, $\mu \neq 1$. Then we consider that on the exceptional set \mathcal{E}_4, quadratic polynomials

$$z^2 - \frac{1}{4}\mu^2 + \frac{1}{2}\mu$$

are doubled.
参考文献

