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Abstract

Fixed point theoretic characterization of generalized Stackelberg equilibrium
points in the case of oligopoly games is given.

1 Introduction
Stackelberg [1] [2] [5] gave the basic exmaple of duopoly in which both players are pro-
ducers and their gain functions are only dependent on the pair of these two players’
productions. On the assumption that the player taking the initiative in producing knows
that tlle follower, namely the opponent, will use the optimal decision rule, Stackelberg
proved that the existence of a certain equilibrium point in which the player taking the
initiative can yields a larger gain to him and the follower is forced to yield a smaller gain.
In this paper, the generalization of Stackelberg equilibrium points from the case of duopoly
into the case of oligopoly is given, according to the methods of set valued analysis [3] [4].

2 Superposition of set-valued mappings
Throughout this paper, $\mathbb{N}$ (resp. $\mathbb{R}$ ) denotes the set of all positive integers (resp. the
set of all real numbers). Let $X$ be a compact Hausdorff space, and $f,$ $g$ be two upper
semi-continuous, set-valued mappings on $X$ with values in $2^{X}$ . Then, the superposition
of $g$ and $f$ is defined as

$(g \mathrm{o}f)(x)=\bigcup_{y\in f(x)}g(y)$
, $x\in X$ .

Then, we have the following:

Lemma 1. $g\circ f$ is upper semi-continuous.

Proof. Let $x_{0}$ and $z_{0}$ be two elements of $X$ . Let $\{x_{\alpha}\}$ and $\{z_{\alpha}\}$ be two nets consisting
of elements of $X$ , which converge to $x_{0}$ and $z_{0}$ , respectively. Then, it is sufficient to prove
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that $z_{0}\in(g\circ f)(x_{0})$ holds if $z_{\alpha}\in(g\circ f)(x_{\alpha})$ holds for all $\alpha$ . For any $\alpha$ , there exists $y_{\alpha}$

satisfying
$z_{\alpha}\in g(y_{\alpha})$ .

Since $X$ is compact, there exist $y_{0}$ and a subnet $\{y_{\alpha_{\beta}}\}$ satisfying

$\lim_{\beta}y_{\alpha_{\beta}}=y_{0}$ .

Therefore, we have

$y_{\alpha_{\beta}}$
$\in$ $f(x_{\alpha_{\beta}})$ ,

$z_{\alpha_{\beta}}$
$\in$ $g(y_{\alpha_{\beta}})$ .

Since $f$ and $g$ are upper semi-continuous, we have

$y_{0}$ $\in$ $f(x_{0})$ ,
$z_{0}$ $\in$ $g(y_{0})$ .

These results conclude the proof.
Let $f$ be a set-valtled mapping on $X$ with values in $2^{X}$ . Then, for any $S\subset X$ , the image
of $S$ under the mapping $f$ is defined as

,’

.

$f(S)= \bigcup_{x\in S}f(x)$ .
. $\mathrm{x}^{\gamma}$

Now, we have tlle following:

Lemma 2. Let $X$ (resp. $Y$ ) be a Hausdorff space (resp. a compact Hausdorff space),
$f$ be an upper senli-continuous, set-valued nuapping on $|X$ with values in $2^{Y}$ . Then, for
any compact subset $S\in 2^{X},$ $f(S)$ is also compact. $:\cdot,$ . $\cdot$ :

$..j$
‘

Proof. Let $y_{0}$ be an elenuent of $Y$ and $\{y_{\alpha}\}$ be a net consisting of $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ of $Y$ , which
converges to $y_{0}$ . Then, it is sufficient to prove that $y_{0}\in f(S)$ holds. For any $\alpha$ , there
exists $x_{\alpha}\in S$ satisfying .2

$y_{\alpha}\in f(x_{\alpha})$ .

Since $\{x_{\mathfrak{a}}\}$ is ako a net collsisting.. $\mathrm{o}\mathrm{f}’ \mathrm{e}\mathrm{l}\mathrm{e}.$ nlerits of $S,$ there: exist an accumulating point
$x_{0}\in X$ and a subnct $\{x_{\alpha_{\beta}}\}$ which convergcs to $x_{0}.$ Since $y_{\alpha_{\partial}}\in f(x_{\alpha_{\beta}})$ holds for all $\beta$ , we

obtain. . :
$y_{0}\in f(x_{0})\subset f(S)$ .

. :.
$\cdot$ ..,

$:^{\neg}$ ! . :

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\dot{\mathrm{e}}\mathrm{f}\mathrm{o}\mathrm{r}\acute{\mathrm{e}},\dot{\mathrm{t}}\mathrm{h}\mathrm{i}\mathrm{s}$ result $\tilde{\mathrm{c}}\mathrm{o}\mathrm{n}\mathrm{c}\mathrm{l}‘ \mathrm{u}\dot{\mathrm{d}}$

’

es the proof.
, . $\cdot,.\tau$ . $\}:$ :

Let $X$ be a $\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ space with its metric $d\mathrm{a}\mathrm{I}\mathrm{t}\mathrm{d}f$ be a boundcd closed set-valued mapping
on $X$ with values in $2^{X}$ Thcn, for any $x_{0}\in X,$ $f$ is said to $\mathrm{r}\mathrm{b}\mathrm{e}$ continuous at $x_{0}$ , if $f$

satisfies the following condition:

$7\mathrm{t}arrow\infty \mathrm{l}\mathrm{i}\mathrm{n}1H(f(x_{n}), f(x_{0}))=0,$
$\cdot$

$i$ ’
$-$ : ${ }$

$\downarrow$

where $\{x_{n}\}_{ll=1}^{\infty}$ is a sequcnce consisting of elements of $X$ , which converges to $x_{0}$ and
$H\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}$ Hausdorff’s metric. It is clear that $f$ is npper $\mathrm{s}\mathrm{e}_{\vee}\mathrm{m}\mathrm{i}$-continnous at $x_{0}$ , if $f$ is
continuous at $x_{0}$ .
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3Generalized Stackelberg equilibrium points

For any positive integer $k$ satisfying $1\leq k\leq 3$ , let $X_{k}$ be a $\mathrm{n}\mathrm{l}\mathrm{c}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ space with its nletric
$d_{k},$ $S_{k}$ be a compact subset of $X_{k}$ and $p_{k}$ be a continuous function on $S_{k}$ with values in $\mathbb{R}$ .
Then, for any $(x_{1}, x_{2}, x_{3})\in\Pi_{i=1}^{3}S_{i}$ , the response function fronl $p_{3}$ to $p_{1}$ and $p_{2}$ is defined
as

$R_{3}(x_{1}, x_{2})= \{(x_{1}, x_{2}, y_{3});y_{3}\in S_{3},p_{3}(x_{1}, x_{2}, y_{3}‘)=\sup_{z_{3}\in S_{3}}p_{3}(x_{1},.x_{2,;},.‘ z_{3})\}$
.

By the same way as above, the response function from $p_{2}$ to $p_{1}$ is defined as

$R_{2}(x_{1})$ $=$ $\{(x_{1}, y_{\mathit{2}}, y_{3});y_{2}\in S_{\mathit{2}},$ $(x_{1}, y_{2}, y_{3})\in R_{3}(x_{1}, y_{2})$ ,
$p_{2}‘(x_{1}, y_{2}, y_{3})--$ $p_{2}(x_{1}, z_{2}, z_{3})\}$ .

$(x_{1},z_{2},z_{3}) \in R_{3}(x_{1,2})z_{2}\in S_{2}\sup_{\sim}$

,

Finally, the Stackelberg equilibrium set is defined as

$R_{1}= \{(y_{1}, y_{2}, y_{3});y_{1}\in S_{1}, (y_{1}, y_{2}, y_{3})\in R_{2}(y_{1}),p_{1}(y_{1}, y_{2}, y_{3})=(z_{1},z_{2},z_{3})\in R_{2}(_{\sim})z_{1}\in S_{1}\sup_{1}.p_{1}(z_{1}, z_{2}, z_{3})\}$

.

Then, we have the following:

Theorem 3. If $R_{3}$ is continuous, then the Stackelberg equilibrium set is not empty.

Proof. Since $p_{3}$ is continuous on $\Pi_{i=1}^{3}S_{i}$ , for any $x_{1}\in S_{1}$ and $x_{2}\in S_{2},$ $R_{3}(x_{1}, x_{2})$ is
nonempty and compact, The assumption that $R_{3}$ is continuous on $\Pi_{i=1}^{2}S_{i}$ implies that
$R_{3}$ is also upper semi-continuous. Therefore, for any $x_{1}\in S_{1},$ $R_{2}(x_{1})$ is nonempty and
compact, because $f_{2}$ is continuous on $\Pi_{i=1}^{3}S_{i}$ and $R_{3}(x_{1}, S_{2})$ is nonempty and compact.
It is sufficient to prove that $R_{2}$ is also upper semi-continuous on $S_{2}$ . Let $x_{1}^{0}$ be an element
of $S_{1}$ and $\{x_{1}^{n}\}_{n=1}^{\infty}$ be a sequence consisting of elements of $\Pi_{i=1}^{3}S_{i}$ , which converges to $x_{1}^{0}$ .
Let $(x_{1}^{0}, z_{2}^{0}, z_{3}^{0})$ be an element of $\Pi_{i=1}^{3}S_{i}$ and $\{(x_{1}^{n}, y_{2}^{n}, y_{3}^{n})\}_{n=1}^{\infty}$ be a sequence consisting of
elements of $\Pi_{i=1}^{3}S_{i}$ satisfying

$(x_{1}^{n}, y_{2}^{n}, y_{3}^{n})$ $\in$ $R_{2}(x_{1}^{n})$ , $n\in \mathrm{N}$ ,

$\lim_{narrow\infty}(x_{1}^{n}, y_{2}^{n}, y_{3}^{n})$ $=$ $(x_{1}^{0}, z_{2}^{0}, z_{3}^{0})$ .

We have only to prove that $(x_{1}^{0}, z_{2}^{0}, z_{3}^{0})\in R_{2}(x_{1}^{0})$ holds. For any $(x_{1}^{0}, z_{2}^{0}, w_{3}^{0})\in R_{3}(x_{1}^{0}, z_{2}^{0})$ ,
there exists a sequence $\{(x_{1}^{n}, y_{2}^{n}, w_{3}^{n})\}_{n=1}^{\infty}$ consisting of elements of $\Pi_{i=1}^{3}S_{i}$ satisfying

. $(x_{1}^{n}, y_{2}^{n}, w_{3}^{n})$ $\in$ $R_{3}(x_{1}^{n}, y_{2}^{n})$ , $n\in \mathrm{N}$ ,
$\lim_{narrow\infty}(x_{1}^{n},\cdot y_{2}^{n}, w_{3}^{n})$ $=$ $(x_{1}^{0}, y_{2}^{0}, w_{3}^{0})$ ,

because the assumption shows the following equality:

$0$ $=$ $\lim_{narrow\infty}H(R_{3}(x_{1}^{n}, y_{2}^{n}),$
$R_{3}(x_{1}^{0}, z_{2}^{0}))$

$\geq$ $\lim_{narrow\infty}H(R_{3}(x_{1}^{n}, y_{2}^{n}),$
$\{(x_{1}^{0}, z_{2}^{0}, w_{3}^{0})\})$
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holds. Since the definition of $R_{3}$ shows the following inequality:

$p_{2}(x_{1}^{n}, y_{2}^{n}, y_{3}^{n})\geq p_{2}(x_{1}^{n}, y_{2}^{n}, w_{3}^{n})$ , $n\in \mathrm{N}$

holds. Therefore, we have

$p_{2}(x_{1}^{0}, z_{2}^{0}, z_{3}^{0})$ $=$ $\lim_{narrow\infty}p_{2}(x_{1}^{n}, y_{2}^{n}, y_{3}^{n})$

$\geq$ $\lim_{narrow\infty}p_{2}(x_{1}^{n}, y_{2}^{n}, w_{3}^{n})$

$=$ $p_{2}(x_{1}^{0}, z_{2}^{0}, w_{3}^{0})$

Since $S_{1}$ is compact, $R_{2}$ is upper semi-continuous and $p_{1}$ is continuous on $\prod_{i=1}^{3}S_{i},$ $R_{1}$ is
also nonempty and compact.
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